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ABSTRACT
We use majorizing measures to provide a simpler proof of the following
unpublished result of J. Bourgain. For any set of characters on a com-
pact group there exists a subset of proportional size such that, on the
span of this subset, the £! and 2 norm are equivalent up to a factor
(Clognloglogn)l/2,

1. Introduction

In a remarkable paper, J. Bourgain proves, for p > 2, the existence of A(p) sets
of “maximal density” [B1]. The proof of this result is probabilistic. The use of
general tools has allowed this author to show that the heart of Bourgain’s result
can be seen as a result on restriction of operators. Before we state this result, we
need to recall that a Banach space W is called 2-smooth if, for some constant
C, we have for each vector z,y of W that

(1.1) lyll = 1= lly +2ll + lly — zll <2+ Cll=|i*.

The number C will be called the smoothness constant of W.
We denote by (e;)i<n the canonical basis of £2.

* Partially supported by an N.S.F. grant.
Received October 2, 1995

173
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THEOREM A ([T2]): Consider an operator U from €% to a 2-smooth Banach
space W. Consider a number § < § < 1 and, for i < n, consider independent
random variables (6;)i<y, with é; € {0,1} and Eé; = 6. Consider the random set
I = {i <m: §; = 1} and denote by U|; the restriction of U to the space generated
by the vectors (e;);c;. Then

K(C)

E(U) <

(101 + swpleolviogn)

S

log

where K(C) depends upon C only.

The problem with Theorem A is that it involves a hypothesis on the whole
space, and that there are natural situations (such as the one considered in the
abstract) where it is desirable that have a “local” version of Theorem A, i.e.,
where the geometric condition on the entire space is replaced by a geometrical
condition, say, on the vectors (U(e;)). _ .

‘We will introduce such a condition, as follows.

Definition 1.1: Consider a number C' > 0. We say that a family of vectors
(%i)i<r of a Banach space W satisfies condition H{C) provided for each vector
y of W, with |jy|| = 1, and each sequence (;);<, of numbers, we have

(1.2) P(||y+zaigi$i“ < 1+022a§) z%

i<n i<n

where (g;)i<n is a sequence of independent standard normal random variables.
Certainly this condition looks unappealing at first sight. It turns out, however,
that it is a weakening of 2-smoothness as is shown by the following.

ProproSITION 1.2: If the Banach space W satisfies (1.1), then any sequence of
vectors (z;)i<n in W satisfies condition H(5C maxi<n ||2;]])-

The appeal of condition H(C) does not lie in its aesthetics, but in the fact that
it is rather easy to check in the case motivated by the situation of the abstract.
We recall that for a function f a probability space, its Ly, norm is given by

I, = nt {3> 0.8 (o (L)) < 2}.

We denote by Ly, the Banach space of functions f for which || f|lw, < co. This
space is not 2-smooth. However, we have the following.
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PRroOPOSITION 1.3: Consider a sequence (;);<n of functions on a probability
space. Assume that ||z;||c < 1 for i < n. Then the sequence (z;)i<n satisfies
condition H(C) in Ly,, where C is universal.

The usefulness of condition H{C) is demonstrated by the following.

THEOREM 1.4: Consider an operator U from {2 to a Banach space W. Denote
by || - | the norm on W, and consider another norm || - ||~ on W such that
-1l <1l ||~- Assume that the sequence (U(ei))Kn satisfies condition H(C) in
(W,]| - ||~). Then, with the notation of Theorem 1, we have

BVl <~ [0+ O o]

where K is universal.

The usefulness of considering two different norms is related to rather technical
reasons. So, in order to compare this statement with Theorem 1, we assume that
I-ll~ = II-1l- In that case, the main difference is that the hypothesis of Theorem
A that W is 2-smooth has been replaced in Theorem 1.4 by the hypothesis that
the vectors z; = U(e;) satisfy condition H(C). Thus Proposition 1.2 shows that
Theorem 1.4 is an extension of Theorem 1.1.

The main motivation at present behind Theorem 1.4 is the following.

THEOREM 1.5 (J. Bourgain [B2]): Consider a sequence (y;);<n of orthogonal
functions on a probability space (2, P). Assume that |;llec < 1, and let o =
inf;<n, ||@:ill2. Then there is § > 0, depending on « only, such that for most
subsets I of {1,...,n}, with card I < né, we have for each number (a;);c; that

(1.3) “ Zai%
il

o’ 1/2
1 = K\/lognlog1@<;a?) ’

It is known that the term logn is necessary. Whether the term loglogn is
necessary is a rather interesting question. Such terms are usually parasitic. There
is, however, no readily identifiable place in the arguments we use where an obvious
weakness would create this term. It seems to me that removing this term if at
all possible would require a deeper analysis rather than a simple modification of
the present approach.
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2. Exploring condition H(C)

We start with Proposition 1.2. The easy proof helps one to understand the nature
of condition H(C). A basic ingredient of the proof is the fact that 2-smoothness
implies type 2. Since the proof of [Li-Tz] is somewhat indirect, we will in passing
give a direct proof. We assume (1.1), that is

(2.1) vy.z €W, lyll=1= lly+zl +lly -2l <2+ Clz|?

where C' > 1.

LEMMA 2.1: Consider y € W, y* € W* with |ly*|| = |ly|l =1 = y*(y). Then

(2.2) VzeW, |y+z| <1+y*(z)+Clzl*

Proof: Set
A=ly+zll-y"(y+2)=lly+zl| -1~y (2),

so that A > 0. Similarly
B=ly-z|-1+y"(z) 2 0.

Now, by (2.1}, we have A + B < C||z||?, so that 4 < Cl|z|>. [ |

LeMMA 2.2: Consider y,z € W, and a standard normal random variable g.
Then

Elly + gz||* < llyll* + 6Cllz>.

Proof: First, by the triangle inequality

lly+ gzl < |y}l + lglljul
so that
lly + gzl < Iyll® + 2llyllli=lilg] + ¢l |®
and, taking expectation, and since Elg| < 1, Eg® = 1,

(2.3 Bly+ gaf? < lulP + lal? [1-+214].

Next, using (2.2) and homogeneity

2 Jzlf?

lly + gzl < liyll + Cg o

+ gy (x)
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where ||y*|| =1 = y* (Tf%l[)

Taking squares, taking expectation, and using the fact that Eg = Eg¢® = 0,
we get

llz|*
Elly + gzli> < lylI* + ly* (z)|* + 2C||=}|* + C*Egq 4“ s

Now |y*(z)| < liz]|, so that, since C > 1 and Eg* = 3, we get

|2
(24) Elly + ga|* < ly|* + 3C||z| (1 MTTE I||1 “2>

The result then follows from (2.3) if ||ly|| < C||z|| and from (2.4) if |ly|| > C||z|l.
Proof of Proposition 1.2: By (2.2), we have

2
(2.5) Hy+ Zaigimi < 1+y*(Za,~gix,—) +C“ Zaigizi
i<n i<n i<n

By Lemma 2.2 and induction, we have

E“ Zaigt-:ci ? < 6C’Zaf||a:,-]|2

i<n i<n
so that ) 3
P(| Yeugias| <243 odllail?) = 5.
i<n i<n
Now by symmetry,
1
P (L cuges) s0) 2 5
i<n

so that, with probability at least %, we have

y‘ ( Z aigi-xi) < 0 ” Z Qi G;T;
i<n

< 24C " oz,

i<n

and thus

+ Qi G;T; <1+24C’2( )su z;||2. |
lv+3 aug > af) suplzi|

i<n
i<n i<n =

We now turn to the proof of Proposition 1.3.

The functions in Ly, are defined on a probability space (2, P). For simplicity,
we write E(2) for [zdP. On the other hand, we consider gaussian r.v. (g;)i<n-
Expectation and probability with respect to these variables are denoted respec-
tively by E; and P,.

We start with some simple observations.
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LEMMA 2.3: For any function z, we have

I2]15, < Eexp(z®).
Proof: This follows from the fact that if ¢ > 1 we have

(2.6) e p—t2 —-1< E (expt® — 1)
. X _ X
2 p— p

so that
2

1
exp— <1+ —2expt2.
a a
Using this for a? = Eexp(z?) we get

22
Eexp— < 2. |
a

LEMMA 2.4: Consider two functions u,v, with ||v||g, < 1. Then

2 liol3 u
Eexp(u 4 v*) <21"¥2 FPexp——rs—.
1- H”ng
Proof: We use Holder’s inequality

Eexp(u +v*) < (Eexpg)a (Eexp%j)ﬁ

with 8 = [|v]|3,, @ =1-6. |

LEMMA 2.5: Consider functions (x;);<n with ||z;|loc <1 and independent stan-

dard normal random variables (g;)i<n. Then for all numbers (o;)i<n, we have

A(|Sasa],, <a(T)") 2
i<n i<

Proof: 'We observe that Fexpfg?/4 < V2 for 8 < 1, so that

2
(Z ai9i$i>
i<n < \/5

4% 02~

i<n

E,Eexp
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by inverting the expectations, and observing that ). «;g,2;(w) is distributed

like Bg, for B = (X, cn a'f:ni(:u)Q)l/2 < 1. Combining with (2.6) for a® = 4, we
get
2
;g L5
E | E (g . ) V2o !
4( ‘CX T T~ 5 - — -
AT =4 3%
1<n
and the result follows from Chebyshev’s inequality. ]

We now start the proof of Proposition 1.3. We consider y with |y||y, = 1,
functions (z;)i<n with ||lz;llc < 1, and numbers (;)i<,. For simplicity we set

r= (Zi<n af) 1/2'

If we combine Lemma 2.5 with the triangle inequality,

Hy + Zaigi:cin <14 Z(Xigiil,'i”\p,_,,
2

i<n

we see that there is nothing to prove unless r < 1/8. So we assume r < 1/8.
We try to prove that there is a universal constant K such that, if we set
A =1+ Kr?, with probability P, at least 1/4, we have

,
(y +2 aigixi>

i<n
A2

Eexp <2

We appeal to Lemma 2.4 for

1 . 1
U= (yz + 2yzai9-i$i)§ v= Zzaigiiﬁz-

i<n i<n

By Lemma 2.5, we have [lvlly, < 47 with probability P, at least 7/8. Thus, it
suffices to prove that with probability at least 3/8, we have

u 2
Ee < 21—161‘ ]
LXpl — 1672 —

Setting B = A%(1 — 16r?), consider the random variable

2

_ Y 2yh  2yh
X—E(expB(expB 5 1) ,

where for simplicity we set h = ZKn Qi %5
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We observe the crucial fact that X is non-negative (since 1+ z < €) so that
Py(X < 8EgX) > L.

To bound E,X from above, we permute the expectations E and E,, and we
observe that Ech = 0 and

23}27.2

Bz
Indeed, h is distributed like (3" a?22)1/%g, E expag = expa?/2 and ¥ o?2? <
S al <l

Thus, when B > 1, with probability P, at least 7/8, we have

2 2 2.2
X <8E (exp%(exp yBT - 1)) .

Egexp 2?:

< exp

Now, the random variable E ((2yh/B)exp(y®/B)) is symmetric, so it is smaller
than or equal to zero with probability Py at least 1/2. Thus, with probability P,
at least 3/8, we have

E(exp%—(exp?—%ﬁ - 1)) < 8E<exp§'§— (epry;T2 — 1))

2 16 2,2
P )
using the inequality 8(e® — 1) < €8% — 1. Thus, with probability P, at least 3/8,
we have

249 1+ 1672
E(exp_yﬂ%h) < Eexpr(;BL)‘

Thus, the proof is finished provided the last term is at most 2!~16*. Now, for
B > 1+ 1672, by Holder’s inequality we have

Eexp(y2l_+élfﬁ> < (Eexpy2)(1+16r2)/3 < gU+162)/B.
Thus, it suffices that e
+ 167
B2 16e
or, equivalently, .
A% > A 1677

Since (1—z)"! < 1+ 2z for < 1/2, A = 1 + Kr? will work for K large enough.
]
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3. Proportion of characters

In this section we prove Theorem 1.5. On the space of measurable functions, we

consider the norm || - ||g, and its dual norm || - |[,,. We consider the norm || - ||*
given by

(3.1) Iyl = llyll2 + Vieg nliyllg,-

We consider the dual norm || - || of || - ||*, and the Banach space W with norm

Il - II. We observe that

iyl < vl
(3.2) 1

llyll < \/b—gEHwaz-

Consider the operator U from £2 to W given U(e;) = ¢;, where (e;)i<y, is the

canonical basis of £2. Thus, by (3.2) and since the functions ; are orthogonal,
we have |U|| < 1.

Consider the norm )

HyH~= \/l-dg—n“y“‘lm
By Proposition 1.3, the functions ¢; = U(e;) have property H(K/+\/logn) in
(W, |l - l|~), where K is universal.

It then follows from Theorem 1.4 that, with the notations of that theorem, we

E|Ulr|l < K/+/log1/8

where K is universal. Thus, we can fix § depending on a only such that E||U|,|| <
/8. We now show that (1.3) holds under the condition ||U|;|| < @/4. This will
finish the proof, since P(card I > dn) is about 1/2.

have

LEMMA 3.1: Consider a function h, with ||kl < 1 and a = P(|h| # 0). Then
(for a < 1/2), we have

. 1
pllg, < K alogg.

Proof: Consider f with ||f|jg, < 1. Then, as is well known, for p > 1, we have

| fll < K\/p. Thus, by Holder’s inequality

E(fh) < K\/pllhlly < Ky/pa’ =

where 1/p+ 1/q = 1. Taking ¢ such that ¢ = 1+ 1/log(1/a) finishes the proof.
1
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To prove (1.3), we can assume »_,.;a? = 1. Thus, if f =37, ; aip;, we have
a < |fll2 £ 1. Consider
f
h= 14,
1712

where P(A) = a, and where A will be determined later.
From (3.1) and Lemma 3.1, we see that

1 1/2
IhI* <1+ K(alog - logn) .
Thus, ||h]|* £ 2 whenever
2 1
(3.3) K*alog - logn < 1.
When this occurs, since ||U];]] < «/4, we have

2
r <W§E1A> = E(fh) < IULIRN" < fraco2.

N <f_2 ) a
E<||f||2“c>"'f“2 E\imt) 22

and, if we now take A = {|f| > b}, we have

Thus,

bE(|f]) > E(f*1ac) > o?/2

and thus E(|f|) > o?/2b. Since P{|f] > b) < 1/b?, this holds provided a = 1/*
satisfies (3.3). |

4. Majorizing measures

The aim of this section is to prove Theorem 1.4. We keep the notation and the
hypothesis of this theorem. First, we observe that if a family (z;);<n of vectors
satisfies condition H(C), for A > 0 the family (Az;)i<, satisfies H(AC). Thus,
by homogeneity, there is no loss of generality to make the technical assumption
that C' > 1.

For z* € W*, i < n, we set h;j(z*) = sign (z*(z;))z*(z;)?, and h(z*) =
(hz(m*))Kn We consider the set

T = {h(z");z" € Wi}
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where Wi = {z* € W}, ||lz*| < 1}
It is shown in [T2] that to prove Theorem 1.4, it suffices to prove that

(4.1) 71(T,doo) < K(|UJJ? + C* logn)

where d, denotes the distance induced on R™ by the supremum norm and where,
for a metric space (T, d),

> 1
T,d) = inf su / log ————-de
n(T,d) = in up | gﬁ(g(t’e))

where the infimum is taken over all (atomic) probability measures on 7T
Given u € T,k > 0, we define

(4.2) Ci(u) = {a* € W3 [Ih(z") — ulloo < 207"}

There, and in the rest of the section, r = 16. We observe that Ck(u) is convex.
We now define, for v in T',

op(u) = > (jus| — min(jug), 207))

¢k (u) = inf{fla*[|o; 2" € Cr(u)},
pi(w) = (1—r7")logn

and
o () = @ (u) + C? log nj (u) + i (u).

It is obvious that

(4.3) ry1{u) > or(u),

ee(u) < |U|* + C*logn + logn

(4.4) Y
< |UJI* +2C* logn,

since ||z*||~ < ||z*|| <1 for * € Wy, and since C > 1.
It is shown in {T2], Section 4 that to prove (4.1), it suffices to prove the
following.
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PROPOSITION 4.1: Consider k € Nyu € T, points uy,...,uy of T such that

(4.5) V<N, |lu—uelloo <r7F,
(4.6) V6O, 1<f<l <N, |lug—uploo>r*1
Then
r—k |
: > —
(4.7) maxpr+2(ug) 2 pr(u) + 7 log N,

where M is a universal constant.

We now observe that we can assume without loss of generality that M > 4;
using the contribution of ¢, we see that (4.7) holds if N < n?. We can hence
assume in the rest of the proof that N > n?.

LEMMA 4.2: Ift > r=%"1/4, we have

48)  |s—t| <r7* = s—min(s,2r %) + r7F71/8 < t — min(t, 2r*2).
Proof: The right-hand side is

—k-1 —k-1
T T
t—2r k2> — " or—k-2 >

since 7 = 16. Thus the claim is proved if s < 2r=%. If s > 2r—%  the claim
reduces to 1

r
s—2r 7k 4+ 5t—2r"k"1

which is true since |s — | < r7k, r=k-1/8 4 2r—F=2 < p—k, [
We now start the proof of (4.7). Since |u; —ue;| < r~% Lemma 4.2 shows that

—k—1

(4.9) <p,lc+2(w) > <p,lc(u) + T card{s < n; |ug;| > r‘k_1/4}.

Consider a parameter K; to be determined later.
CASE 1: For some £ < N, we have

—k—-1

log N
card {z <y fugs] > } > £
K
In this case, by (4.9) we have
-k

SI{IT

P ya(ue) > i (u) + log N.
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Also, since Ciyo(ug) C Ci(u), we have

Prra(ue) > pi(u)
so that

-k
8K1’I‘

rv2(ug) > pr(u) + log N

and (4.7) holds provided M > 8K;r.
Case 2:  We have

r“k‘l} < log N

. < ; < > .
(4.10) V¢ < N, card {z < n,fugs) > y X,

This is the main case; the purpose of the functional ¢! was actually to create
this condition.
Consider the interval D = [~r~%~1/4, =%~ /4]. For a number ¢ € Z, we set

D(g)=Du(D+ qr_;_l).

LEMMA 4.3 (Separation): If N > n? and if K, is chosen appropriately, we can
find a subset L of {1,...,N} such that card L > v/N and integers (i )i<n such
that

(411) Vi < n, Vi e L, Ug; € D(q,)

Proof: For each i < n, consider the set @Q; of integers ¢ such that

r—k—l

(D+q )ﬂ[ui~r_k,u,-+r_k]#@.

Thus card@; < 4r + 4. Consider the set Q@ = II;<,Q;, provided with the
normalized counting measure P.
The key point is that, for any £ < N, we have

(4.12) P({(q:')iSn € Q,V'L <n, Ug; € D(q,)}) > 1/\/1_V-

Indeed, once (4.12) is proved, (4.11) follows by the Fubini theorem.
To prove (4.12) we fix £, and we observe that there is a sequence (ge;) € Q
such that us; € D(qe;) whenever ¢ < nn. Consider the set

I={i < n;lugi| >r*1/4}.



186 M. TALAGRAND Isr. J. Math.

ugs| < r7%71/4, so that 1,; € D(g:;) whatever the value of

For ¢ ¢ I, we have
q;- Thus
Viel, ¢ =qu=>Vi<n, up; € D(g).

Thereby the left-hand side of (4.12) is at least
-1
<H card Q1> — (47. + 4)(:ardl > l/m
iel
by (4.10) and provided K, = 2log(4 + 4r). |

In the rest of the proof, we fix (¢;)i<n as provided by Lemma 4.3, and we set
J={i<nilql > 2}
For £ € L, we consider the set
R(€) = {i € Jyug; € D+ Lqir™*'}.

Thus, u,; € D for 1 ¢ R(£).

By (4.6), if £ # ¢, there is i < n such that |ug; — up | > r~k=1. Since
g, — wpr ;) < 77%72/2 when ¢ € J, when i € R(£) N R(¢), or when ¢ €
J\(R(#) U R(£')), we must have R(f) # R(Z').

There exists at least card L different sets of the type R(f). Since we assume
N > n?, we have card L > v'/N > n. Consider then the largest integer p such
that card L > (’;) Then p > 1, and

card L < < " ) < prt!
p+1

so that
) > p+1 S logcard L S l()gN'
- 2 T 2logn ~ 4logn

(4.13)

We now appeal to the Sauer-Shelah lemma [Sa], [Sh] and we see that there
is a subset I of J with card I > p that is shattered by the family of sets R(¥¢),
¢ € L. This means that for every subset B of I, we can find ¢(B) in L such that

B=1nNR({(B)).
For each such subset B we consider a vector z} in Ck.2(ugp)) such that
(4.14) Izl = Chya(uen))-

We now consider standard normal r.v. (¢;)ier-
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LEMMA 4.4: We have

1
4.15 E sup z7} ( ia:‘) > —p K/ 2card 1.
(4.15) BCI; B i;g ' K

Proof: Consider the random variable Yg = 3. g:x ().
STEP 1: We prove that

—k/2

(4.16) (Elvg —Yp[?)/? > 1

Z card(BAB').

Indeed, the left-hand side is
1/2
(Y lene) ~ap @) "
iel
Observe now that we have

|h(zl(2:)) — wemys < 2r F72

If i ¢ B, we have uy(p); € D, and thus

—k—1 3 —k—1
o (@) < = 427 s T

so that
|z (x| < (§)/ 2= (EF0/2,

187

If i € B, then uypy; € D+q;r™""1/2, so that |ugp);| > 3r=%=1/4 since |g;| > 2,

and
3pk-1

4

o ()? > —arht By

and
5 ()] > (3)!/ P~ BHD/2,

The same holds for B’ rather than B. Thus
i € BAB' = |zh(z;) — 2(zy)| > r %2/ K

and this implies (4.16).
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STEP 2: A simple counting argument shows that there is a family B of subsets
of I such that

1
logcard B > % card I,

B,B € B,B# B' = card(BAB') > }card .

Then, by Sudakov minoration (L-T, Th. 3.18) we have

1
EsupYp > E\/logcardBinf{(E[YB -Y|)Y%,B,B€BB#B} 1
BeB

Consider € > 0. Since Cp(u) is convex and weak* closed, we can find y in W
with ||y|j~ = 1 and

(4.17) Vy* € Cil(u), v*(y) > vilu) — e

LEMMA 4.5: IfcardI > K, then for each a > 0 we have

ar~k/?
K

card I) >

|

(418)  P(swpsh(y+al gm) 2 ofu) —e+
Bcl iel

Proof: Using (4.17) we have

sup z5(y + aZgia;i) > piu)—et+aZ
Bct i€l

where Z = Supgcy 1%(2,-61 9iZs).
I claim that |2%(x;)| < 2r~%/2 for i € I, B C I. To see this, we first observe
that if £y = £(D), then ug, ; € D for i ¢ R(fp); but R(£o) NI =0, s0 Jug, ;| < r7*.

~k. Since

Now, for any B, we have z}; € Ci(u), so that |hi(zh) —wi < 7
lug, s — ;| < 7~F, we have |hi(z})] < 3r~F, and |z} (z;)| < 2r—k/2,
Consider

o* = sup Zm}‘;(xi)z.

BC1I

Thus ¢ < 2r~*%/2\/cardI. Now, the concentration of the measure phenomenon
for the gaussian measure (such as in [L-T}, Section 1.1) shows that

P(Z > EZ — Ko) > 3.

The result follows. |
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We observe that the condition card I > K is not restrictive; indeed by (4.13),
card I > log N/4logn, so that card I > K provided log N > Mlogn and M is
large enough. On the other hand, if log N < M logn, to prove (4.7) it suffices to
see that for every £, we have wyi2(us) > ¢r(u). We have already observed that
011 o(ue) > @h(u). Also,

(4.19) Prra(te) 2 gi(w)
follows from the elementary fact that, for s, > 0,
|s —t| < 7% = s — min(s,2r %) < t — min(t, 2r%2).

We now prove (4.7). The first part of the proof is somewhat secondary. It is
to establish that

(4.20) r~*cardI < KC%

To see this, we observe that, for any a > 0,
a“ Z 9iT4
icl ~

Thus, by condition H(C),

<1+ [y+ Y aga
i€l ~

(HZglat 2+02a2 cardl)) i
and thus, by optimization over «,
1
(HZgzml < 2v2CVcard I ) 1

and

N

P(“y +a> gizs| <1+2v8Cavcard 1) >
i€l ~

Combining with (4.18), we get
03 (u )—e+—r 2Vcard I < 1+ 2v2CaVcard .

This holds for each a > 0, so that (4.20) holds.
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The main argument starts now. Combining (4.18) with condition H{C), we
find that, given «, there exists a vector z (= y + ) _;.; @;g;) such that

ar_k/2

sup 35(2) > i (u) — €+ card I

BCI
while
2]~ €1+ C%?card].

Thus, there exists B C I such that

0 (u) —e+ar *2cardI/K
14+ C?a?card ]
ar~*/?card I/ K — C?a? card
1+ C%a%card I

e~ >

= pi(u) — e+
We see that a good choice for a is r~%/2/KC?. Using (4.20), we get

r~*card I

Izl > ohw) — e+ =

Since € is arbitrary, this implies that there exists £ < N for which

r~%card ]

Pialue) 2 hw) + 25

Thus, using (4.13) and (4.19),

—k
T
Prr2(ue) 2 or(u) + N logN. 1

ACKNOWLEDGEMENT: I am very grateful to J. Bourgain who kindly suggested
that majorizing measures could yield a simpler proof of his result.
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