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ABSTRACT 

We use majorizing mea~s'ures to provide a ,simpler proof of the following 

unpublished result of J. Bourgain. For any set of characters on a com- 

pact group there exists a subset of proportional size such that, on the 

span of this subset, the s and 2 2 norm are equivalent up to a factor 

(C log n log log n) ]/2. 

1. I n t r o d u c t i o n  

In a remarkable paper, J. Bourgain proves, for p > 2, the existence of A(p) sets 

of "maximal density" [B1]. The proof of this result is probabilistic. The use of 

general tools has allowed this author to show that  the heart of Bourgain's result 

can be seen as a result on restriction of operators. Before we state this result, we 

need to recall that  a Banach space W is called 2 - s m o o t h  if, for some constant 

C, we have for each vector x, y of W that  

(1.1) ttyil = 1 ~ lly + xli + tly - xll < 2 + cIIxt]  ~ 

The number C will be called the s m o o t h n e s s  c o n s t a n t  of W. 

We denote by (ei)i<n the canonical basis of 22. 
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THEOREM A (IT2]): Consider an operator U from s to a 2-smooth Banach 

space W. Consider a number 0 <_ 8 < 1 and, for i <_ n, consider independent 

random variables (5~)i<_~ with ~i E {0, 1} and Ehi = 5. Consider the random set 

I = {i <_ n: 5i = 1} and denote by UIi the restriction of U to the space generated 

by the vectors (edges. Then 

E(llg]Ill) <<- ~ I]Ull +supllU(ei)]l l o x / ~ i < _ n  

where K(C)  depends upon C only. 

The problem with Theorem A is that it involves a hypothesis on the whole 

space, and that there are natural situations (such as the one considered in the 

abstract) where it is desirable that have a "local" version of Theorem A, i.e., 

where the geometric condition on the entire space is replaced by a geometrical 

condition, say, on the vectors (U(ei))i< n. 

We will introduce such a condition, as follows. 

Definition 1.1: Consider a number C > 0. We say that a family of vectors 

(xi)i<~ of a Banach space W satisfies condition H(C) provided for each vector 

y of W, with liYiI = 1, and each sequence (c~i)i<~ of numbers, we have 

1 
(1.2) P(ilY § ~ oligixill < 1 +  C2~--~ o~ 2) > 

i < n  i < n  

where (gi)i<_n is a sequence of independent standard normal random variables. 

Certainly this condition looks unappealing at first sight. It turns out, however, 

that it is a weakening of 2-sm0othness as is shown by the following. 

PROPOSITION 1.2: If the Banach space W satisfies (1.1), then any sequence of 

vectors (xi)~<_~ in W satisfies condition H(5C maxi_<~ Ilxdl). 

The appeal of condition H(C) does not lie in its aesthetics, but in the fact that  

it is rather easy to check in the case motivated by the situation of the abstract. 

We recall that for a function f a probability space, its Lq,~ norm is given by 

[IfH@2 = i n f  A>O;E\exp\--~// <2 i 

We denote by L,~ the Banach space of functions f for which ]lf]l~= < ~ .  This 

space is no t  2-smooth. However, we have the following. 
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PROPOSITION 1.3: Consider a sequence (xi)i<_n of  functions on a probabil i ty 

space. A s s u m e  that  IIx~lloo _< 1 for i <_ n. Then  the sequence (xi)i<_n satisfies 

condition H ( C )  in L % ,  where C is universal 

The usefulness of condition H ( C )  is demonstrated by the following. 

THEOREM 1.4: Consider an operator U from ~2 n to a Banach space W .  Denote  

by I1 LI the norm on W, and consider another norm I1" II~ on W such that  

I1 II -< LI II~ Assume that the sequence (g(ed)i<~ satisfies condition H(C) in 

(w, II-I1~). Then, with the notation of  Theorem 1, we have 

EI[UI/I[ ~ 

where K is universal. 

The usefulness of considering two different norms is related to rather technical 

reasons. So, in order to compare this statement with Theorem 1, we assume that  

II" I1~ = I1" II. In that case, the main difference is that the hypothesis of Theorem 

A that W is 2-smooth has been replaced in Theorem 1.4 by the hypothesis that 

the vectors xi = U(ei) satisfy condition H ( C ) .  Thus Proposition 1.2 shows that  

Theorem 1.4 is an extension of Theorem 1.1. 

The main motivation at present behind Theorem 1.4 is the following. 

THEOREM 1.5 (J. Bourgain [B2]): Consider a sequence (cfli)i<_n Of orthogonal 

functions on a probabili ty space (f~, P) .  Assume  that II~illoo _< 1, and let a = 

inf~<n n~ilI2. Then there is 5 > 0, depending on ct only, such that  for most 

subsets I of {1 , . . . ,  n}, with card I _< nd, we have for each number  (ai)ier that  

(1.3) E ai~i 
iEI 

> a 
I - K @ o g n l o g l o g n  ieT 

It is known that the term log n is necessary. Whether the term log log n is 

necessary is a rather interesting question. Such terms are usually parasitic. There 

is, however, no readily identifiable place in the arguments we use where an obvious 

weakness would create this term. It seems to me that removing this term if at 

all possible would require a deeper analysis rather than a simple modification of 

the present approach. 
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2. Exploring condition H(C) 

We start with Proposition 1.2. The easy proof helps one to understand the nature 

of condition/-/(C). A basic ingredient of the proof is the fact that  2-smoothness 

implies type 2. Since the proof of [Li-Tz] is somewhat indirect, we will in passing 

give a direct proof. We assume (1.1), that  is 

(2.1) 

where C >_ 1. 

LEMMA 2.1: 

(2.2) 

Proof: Set 

Vy, �9 e w ,  llyll = 1 ~ Ily + ~11 + lly - ~11 ~ 2 + Cflxll 2 

Consider y 6 W, y* 6 W*  with ttY*II  = I lYlt = 1 = y*(y). Then 

vx  e w ,  lly + xll _< 1 + y* (x)  + v i i = l i t  

A = I lY + x l l  - y*(y + ~) = ItY + x l l  - 1 - y * ( x ) ,  

so that  A _> 0. Similarly 

B = [IY - x[] - 1 + y*(x) >_ O. 

Now, hy (2.1), we have A + B < CHx[[ 2, so that A _< C[[xll 2. 

LEMMA 

Then 

Proo~ 

so that  

| 

2.2: Consider y , x  6 W, and a standard normal random variabIe g. 

EllY + g=ll 2 < IlYll = + 6 C l l x t l  =. 

First, by the triangle inequality 

lly+ gxll < llyll + IgllMl 

fly + gxll 2 - llyll ~ + 211yllllxlllgl + g~llxll ~ 

and, taking expectation, and since Etg ~ < 1, Eg 2 = 1, 

(2.3) EIIY + gxll ~ < llYll ~ + II=II ~ [1 + 2 llylII 
- llzllJ" 

Next, using (2.2) and homogeneity 

lly + gxl[ G IMI + ~g I-~ + gy*(x) 



Vol. 108, 1998 SELECTING A PROPORTION OF CHARACTERS 177 

where flY*If = 1 =  Y" (I-~l)" 

Taking squares, taking expectation, and using the fact that  Eg = Eg 3 = O, 
we get 

E[ly + gx[J 2 < Ilyll 2 + l y ' ( x ) f  + 2cIIztl 2 + C2Eg 4 IIzlP 
- i l y l 1 2  

Now ly*(x)l _< Ilzll, so that, since C > 1 and E9 4 = 3, we get 

( 2 . 4 )  Elly + gxl] z <_ Ilyll 2 + 3CIIx[I  2 1 + II--~)  

The result then follows from (2.3) if IlYll __5 Cltxll and from (2.4) if IIYll >- cIIxll. 

Proof of Proposition 1.2: By (2.2), we have 

(2.5) y+ ~ i g i x  i <1 +y*(~-~cqgixi) + C t E ~ i g i x i  2. 
i~_n i~_n i~_n 

By Lemma 2.2 and induction, we have 

E ~ c~g,x, 2 <_ 6C~.~llxil[ 2 
i<_n i<n 

so that 
2 3 

E E  ll ,ll _> 
i<n i<n 

Now by symmetry, 
1 

i<n 

so that, with probability at least �88 we have 

y * ( E ceigixi) <_0; E c~igixi 2 <_ 24C ~-~ 2 2 �9 ~ IIx~ll , 

i<n i<n i<_n 

and thus 

I (zo y + < 1 -t- 24C 2 i sup Ilxil] 2. 
i<_n i<n i<n 

We now turn to the proof of Proposition 1.3. 

The functions in Lq, 2 are defined on a probability space (~, P). For simplicity, 

we write E(z) for f zdP. On the other hand, we consider gaussian r.v. (g,)~<n. 

Expectation and probability with respect to these variables are denoted respec- 

tively by Eg and Pg. 

We start with some simple observations. 



Proo~ 

(2.6) 

so tha t  
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LEMMA 2.3: For any function z, we have 

Ilzll~= _< Eexp(z2) �9 

This follows from the fact tha t  if a _> 1 we have 

t 2 1 
eXPa ~ - 1  < -(expt2a - 1) 

t2 
- -  < 1 + expt 2. exp a2 _ 

Using this for a 2 = Eexp(z  2) we get 

Z 2 

Eexp~--ff _< 2. 

I s r .  J .  M a t h .  

LEMMA 2.4: Consider two functions u, v, with [[v[[~ 2 < 1. Then 

Proof: 

v 2 U 
E e x p ( ~  + v ~) < 2 II l l ~ E e x p  1 _ 1t~117~" 

We use Holder 's  inequality 

U a V 2 ( oxp ) ( ex 7) 
with /3  = Ilvll~,~ = 1 - / 3 .  II 

LEMMA 2.5: Consider functions ( X i ) i <  n with IIx~ll~ < 1 and independent stan- 

dard normal random variables (gi)i<_n. Then for all numbers (ai)i<n, we have 

Proob 

_ > g .  
i < n  i < n  

We observe tha t  Eexp~g2/4 < v/2 for/3 < 1, so tha t  

i ~ n  z 
-- 2 ~ V / 2  E g E e x p  4 ~ ai - 

i < n  
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by inverting the expecta t ions ,  and observing tha t  ~i<,~ CtigiXi(W) is d is t r ibuted 

/3g, for /3 = (Y~.i<,,c/e'rgao~ 2~a /2~ .~ ,  , j <_ 1. Combining with (2.6) for a 2 = 4, we like 

get 
. ( E OZigiXi) 2 

~,j [ ~ c x p  ~ v~-Z-g 1 < < -- 

i<n 

and the result  follows from Chcbyshev ' s  inequality. 1 

We now s ta r t  tile proof  of Proposi t ion 1.3. We consider y with Ilyll,~= = 1, 

functions (xi)i<,~ with IIxil]oo < 1, and numbers  (ai)i<_n. For simplici ty we set 

If we combine L e m m a  2.5 with the tr iangle inequality, 

i<7, 

we see tha t  there is nothing to prove unless r _< 1/8. So we assume r <_ 1/8. 

We t ry  to prove tha t  there is a universal constant  K such that ,  if we set 

A = 1 + K r  2, with probabi l i ty  Pg at  least 1/4, we have 

y -1- ~ (.ti.qizi) 2 
i<n 

Eexp  A2 _< 2. 

We appeal  to L e m m a  2.4 for 

= ~ ( y l  2 2 Y E c ,  igixi); v +  = 1 u --~Eoeigix~.  
i<n z<n 

By L e m m a  2.5, we have [Iv[I,2 <_ 4r with probabi l i ty  P~ at  least 7/8. Thus,  it 

suffices to prove tha t  with probabi l i ty  at  least 3/8,  we have 

tt < 21_16r2 
Eexp  I - 16r ~ - 

Set t ing B = A 2 (1 - 16r2), consider the r andom variable 

X = E e x p - ~ e x p  ~ B 1 , 

where for simplici ty we set h = ~ < n  ~ ixi" 
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We observe the crucial fact tha t  X is non-negat ive (since 1 + x < e ~) so t ha t  

7 Pg(X < 8EgX) >_ -~. 

To bound  G~X from above, we pe rmute  the expecta t ions  E and E.q, and we 

observe tha t  Egh = 0 and 

2yh 2y2r 2 
Egexp--~-- < e x p  B2 

Indeed,  h is d is t r ibuted  like (~--]. 2 2,1/2 •2_2 a i x~ ) g, Egexpo~g = e x p a 2 / 2  and y~ i xi <- 
2 < r 2 "  E o~i _ 

Thus ,  when B > 1, with probabi l i ty  P9 a t  least 7/8, we have 

X _ < 8 E  e x p ~ e x p - - - ~ - i  . 

Now, the  r a n d o m  variable E ((2yh/B)exp(y2/B)) is symmetr ic ,  so it is smaller  

t han  or equal to zero with probabi l i ty  P9 at  least 1/2. Thus,  with probabi l i ty  P9 

a t  least 3/8,  we have 

kexp-  ljj   kexp kexp--  

using the  inequali ty 8(e z - 1) < e s* - 1. Thus,  with probabi l i ty  Pg at  least 3/8,  

we have 
E ( e x p Y  2 + 2yh~ _ (1 + 16r 2) 

~/- ] < Eexpy2 B 

Thus,  the  proof  is finished provided the last t e rm is at  most  21-16~2. Now, for 

B > 1 + 16r 2, by Holder ' s  inequality we have 

E e x p  (y2 1 + 16r 2 ~ _ "B- ] < (Eexpy2)(1+16r2)/B < 2(l+16r2)/B'  

Thus ,  it suffices t ha t  

or, equivalently, 

1 + 16r 2 
B >  

- 1 - 16r 2 

1 + 16r 2 A 2 > 
- (1 - 16r2) 2" 

Since (1 - x) -1 _< 1 + 2x for x <_ 1/2, A = 1 + K r  2 will work for K large enough. 
| 
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3. P r o p o r t i o n  o f  c h a r a c t e r s  

In this section we prove Theorem 1.5. On the space of measurable functions, we 

consider the norm It" ]lr and its dual norm ]1 " I]~2" We consider the norm I1" I]* 

given by 

(3.1) Ilyll* = IlYlt2 + lox/g~ltYllta. 

We consider the dual norm 11" II of I1" I1", and the Banach space W with norm 

I1" II- We observe that  

llyll <-Ilyl12, 
(3.2) 1 

Ilyll--- ~ l l y l l ~ .  

Consider the operator U from g~ to W given U(ei) = 7)~, where (ei)i<n is the 

canonical basis of g2. Thus, by (3.2) and since the functions 7)i are orthogonal, 

we have IlUll ~ 1. 

Consider the norm 
1 

Ilyll~ = lovqT~llyll~. 
By Proposition 1.3, the functions ~oi = U(e~) have property H(K/lox/]-~) in 

(W, []. ]1~), where K is universal. 

It then follows from Theorem 1.4 that, with the notations of that theorem, we 

have 

EIIUI,II <_ K/ ~ I/5 

where K is universal. Thus, we can fix 5 depending on a only such that  El[Ubll < 
a/8. We now show that (1.31) holds under the condition ][U[I[[ < a/4. This will 

finish the proof, since P(card I > an) is about 1/2. 

LEMMA 3.1: Consider a function h, with [Ihl12 < 1 and a = P(Ih[ r 0). Then 
(for a < 1/2), we have 

h *  ~ 1 II IIr < K alog a 

Proof: Consider f with I]fll~2 -< 1. Then, as is well known, for p > 1, we have 

Ilfllp -< Kv~.  Thus, by Holder's inequality 

E(fh) <_ Kv~llh]l q <_ Kv/-Pa 1-q/2 

where 1/p + 1/q = 1. Taking q such that q = 1 + 1 / log( l / a )  finishes the proof. 

I 
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To prove (1.3), we can assume ~-~iel a/2 = 1. 

c~ <_ [I/112 < 1. Consider 
f h = [[~-~2 1A, 

where P(A) = a, and where A will be determined later. 

From (3.1) and Lemma 3.1, we see that 

1 log n Ilhll* _< 1 + / <  alog a 

Thus, ]lh[I * < 2 whenever 

(3.3) K2a log _1 log n _< 1. 
a 

When this occurs, since ]]U]I[] _< a/4, we have 

E 1 A = E(fh) < ]]gl/l[llh[[* ___ fraca2. 

Thus, 

E 1AC = [ [ f [ [ 2 - E  1A _> 

and, if we now take A = {[f[ > b}, we have 

bE([f[) > E(f21AC) > a2/2 

Isr. J. Math. 

Thus, if f = }-~-ie~ ai~i, we have 

4. M a j o r i z i n g  m e a s u r e s  

The aim of this section is to prove Theorem 1.4. We keep the notation and the 

hypothesis of this theorem. First, we observe that if a family (xi)~<n of vectors 

satisfies condition H(C),  for A > 0 the family (Axi)c<n satisfies H(AC). Thus, 

by homogeneity, there is no loss of generality to make the technical assumption 

that C _ 1. 

For x* e W*, i < n, we set hi(x*) = sign (x*(xi))x*(xi) 2, and h(x*) = 

(hi(x*))i< n. We consider the set 

T = {h(x*); x* ~ W }  

and thus E([f])  _> a2/2b. Since P([f]  >_ b) < 1/b 2, this holds provided a = 1/b 2 
satisfies (3.3). | 
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where W~ = {x* E W~'; IIx*ll _<; 1}. 

It is shown in IT2] tha t  to prove Theorem 1.4, it suffices to prove tha t  

(4.1) 71(T, doo) <_ K(IIU}I 2 + C ~ logn) 

where doo denotes the distance induced on ]~n by the supremum norm and where, 

for a metric space (T, d), 

/7 2(1 (T, d) = inf sup log 1 

where the infimum is taken over all (atomic) probabil i ty measm'es on T. 

Given u E T, k > 0, we define 

(4.2) Ck(u )  = {x* �9 WC; IIh(~*) - ~lLoo _< 2~-k}. 

There,  and in the rest of the section, r = 16. We observe tha t  Ck(u) is convex. 

We now define, for u in T,  

i<n 

~o2(u) - i n f { l l x * l [ - ; z *  �9 Ck(u )} ,  

qoa(u) = (1 - r -k)  logn  

It is obvious tha t  

and 

~k(~) = ~L(~) + c ~ log ~ ( ~ )  + ~ (~). 

(4.3) ~k+l(u) _> ~k(~), 

(4.4) 
~k(u) < IIUII 2 + C 2 logn  + logn  

IIuII 2 + 2c  2 logn, 

since Ilx*][~ < ILx*ll ~ 1 for x* E W~', and since C _> 1. 

It is shown in IT2], Section 4 tha t  to prove (4.1), it suffices to prove the 

following. 
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PROPOSITION 4.1: Consider k 6 N,u  E T, points U l , . . .  ,u  N o f t  such that  

(4.5) ge <_ N,  I[u - ue[l~ <_ r -k ,  

(4.6) gg, e', I < g < e '  < N ,  ][ue-ue,  l l oo>r  - k -1 .  

Then 

(4.7) 
7 , - k  

e~_~m-~"~k+2(ug) > 9~k(u) + ~ logN,  

where M is a universal constant. 

We now observe that  we can assume without  loss of generali ty tha t  M > 4; 

using the contr ibut ion of ~o3k, we see tha t  (4.7) holds if N _< n 2. We can hence 

assume in the rest of the proof  tha t  N > n 2. 

LEMMA 4.2: / f t  k r - k - l ~ 4 ,  we have 

(4.8) 

Proof: 

since r = 16. 

reduces to 

Is - t I < r -k => s - min(s, 2r -k )  + r - k - l ~ 8  <_ t -- rain(t, 2 r -k -2 ) .  

The  r ight-hand side is 

r -k -1  r -k -1  
t - 2 r  - k - 2  > - -  2 r  - k - 2  > - -  

4 8 

Thus the claim is proved if s < 2r -k .  If s > 2r -k ,  the claim 

r - k - I  
s -  2r -k  + -  < t -  2r - k -1  

8 - 

which is t rue  since Is - t I <<_ r -k ,  r - k - l ~ 8  + 2r - k - 2  < r -k .  | 

We now star t  the proof  of (4.7). Since lui - u e , d  <_ r -k ,  Lemma 4.2 shows tha t  

r-k-I 
(4.9) 1 ~+~(u~) _> ~(~) + ~ card{/< ,~; lu~,il _> r-k-i/4}. 

Consider a parameter  K1 to be determined later. 

CASE 1: For s o m e g < N ,  w e h a v e  

r -k -1  } log N 
card i < n ; l u t , i [ > - -  > 

- - 4 - K 1  

In this case, by (4.9) we have 

r - k  
~+=(~) _> ~(~) + ~ logN. 
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Also, since Ck+2(ue) C Ck(u), we have 

>_ 

so that 
r - k  

Wk+e(u,) >_ ~k(u) + ~ logN 

and (4.7) holds provided M >_ 8Kit .  

CASE 2: We have 

185 

r -k-1 } log N 
(4.10) Y ~ < N ,  card i < n ,  l u e , ~ I > ~  < K1 

This is the main case; the purpose of the functional ~o 1 was actually to create 

this condition. 

Consider the interval D = [ - r  - k - I / 4 ,  r -k-~/4].  For a number q e Z, we set 

D(q) = DU (D + q~)r-k-l" . 

LEMMA 4.3 (Separation): If  N > n 2 and i lK1 is chosen appropriateJy, we can 

find a subset L of{l,... ,N} such that cardL >_ ~ and integers (q,),<_,~ such 

that 

(4.11) Vi <_ n, V~ e L, ut,i E D(qi). 

Proof: For each i < n, consider the set Q, of integers q such that 

r _ k _  1 . 

D + q - - - - ~ )  A [ui - r - k ,u i  + r -k] # O. 

Thus card Qi <_ 4r + 4. Consider the set Q = IIi<,~Qi, provided with the 
normalized counting measure P.  

The key point is that, for any ~ <_ N, we have 

(4.12) P ({(ql)i<~ e Q;Vi < n, ut,i e D(qi)}) >_ 1 / v ~ .  

Indeed, once (4.12) is proved, (4.11) follows by the lhlbini theorem. 

To prove (4.12) we fix ~, and we observe that there is a sequence (q~,i) E Q 

such that ut,i E D(qe,i) whenever i < n. Consider the set 

I = {i _< n; lu~,,I > r -k- I~4} .  
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l:or i r I, we have lue#l ~ r-k-a~4, so tha~ ue,i ~_ D(qi) whatever the value of 

qi. Thus 

Vi ff I, qi = qe,i -~ Vi < n, ue,i ~- D(qi). 

Thereby the left-hand side of (4.12) is at lea~st 

n card Qi = (4r + >_ 1 / v ~  
iEI 

by (4.10) and provided K~ - 2 log(4 + 4r). II 

In the rest of the proof, we fix (qi)i<n as provided by Lemma 4.3, and we set 

,] = {i ~ ,z; Iq~l ~ 2}. 

For f. E L, we consider the set 

1 - k - I  R(~) = {i E J; u,e,i E D + :~qir }. 

Thus, ue,i E D for i ~ R(g). 

By (4.6), if • r ~7, there is i < n such that lue,~- ue,,,I _> r -k-1.  Since 

!v.e,~-ue,, i!  < r - k - 2 / 2  when i r J,  when i E R(g) n R ( g ' ) ,  or when i E 

d\(R(g.)  U R(g')) ,  we nmst have R(g) / R(g'). 

There exists at least card L different sets of the type R(f). Since we assume 

N _> n 2.. we have card L _> x / ~  _> n. Consider then t, he largest integer p such 

that card L > (p). Then p > 1, and 

cardL < ( n 
- k , p +  

so that 

1) -< nP+l 

p + 1 log card L log N 
(4.13) P-> 2 > 21ogn -> 41ogn 

We now appeal to the Sauer-Shelah lemma [Sa], [Sh] and we see that there 

is a subset I of J with c a rd /  >_ p that is shattered by the family of sets R(g), 

g. E L. This means that for every subset B of I, we can find e(B) in L such that 

B = I N R ( e ( B ) ) .  

For each such subset B we consider a vector x~ in Ck,-2(ue(B)) such that 

(4.14) IIx;~ll = ~ + 2 ( u t ( m ) -  

W e  n o w  c o n s i d e r  s t a n d a r d  n o r m a l  r.v. ( g i ) , ex .  
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(4.15) Esupx~z(~-~gix i )  > 1 _ k / 2 c a r d I "  
BCI iEI -- K r  

Proof: Consider the random variable YB = Y~'-ieI giX*B(Xi)" 

STEP 1: We prove that 

r-k/2 v/eard(BAB, ) (4.16) (EIYB-  YB'12)1/2 >- T "  " 

Indeed, the left-hand side is 

\ 1 / 2  

iEI 

Observe now that  we have 

I h ( x S ( . i ) )  - u~(.),~l _< 2~ - - ~ - 2 .  

If i r B, we have ue(u),i E D, and thus 

r -k-1 3r-k-1 
1 .5 (x~ ) l  ~ < _ _  + 2~ - ~ - ~  < _ _  

- 4 - 8 

so that  
12g~(Xi)l ~ (3)1/2T--(k-l-l)/2. 

I f i  E B, then ue(B),i E D+qir-k-1/2,  so that lUe(u),il > 3r-k-1/4 since ]q~l -> 2, 

and 
3F -k-1  5r_k_  1 I z S ( x i ) l  2 > 2 r - k - 2  > 

- 4 - 8  

and 
IxS(xdl > (5) 1/2T-(k+l)/2. 

The same holds for B' rather than B. Thus 

i ~ B A B '  ~ Ix~(xd - X~B(Xdl ~ r - k / 2 1 g  

and this implies (4.16). 
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STEP 2: A simple counting argument shows that there is a family B of subsets 

of I such that  

1 
log card B > ~ card I,  

1 card / .  B, B'  E B, B r B '  ~ card(BAB')  _> g 

Then, by Sudakov minoration (L-T, Th. 3.18) we have 

1 
E sup YB >_ -~x/ logcardBinf{(E[YB -YB'[2) t /2;B,  B' e B , B  r B'}. 

BE8  

Consider e > 0. Since Ck(u) is convex and weak* closed, we can find y in W 

with [IY[[~ = 1 and 

(4.17) Vy* e Ck(u), y*(y) >_ ~ ( u )  -- e. 

LEMMA 4.5: If  card/>_ K, then for each a > 0 we have 

(4.18) 

Proos 

P( sup x~(y + a E gixi) > ~2(u) - ~ + - -  
\ BCI  iEl  

Using (4.17) we have 

3 c~r-k/2 ca rd I  > - .  
K 4 

sup z (y + .  Z g,z,) -> + " z  
BCI  iEI 

where Z = supuc l  x*s(~iel  g ix i ) .  

l claim that  ix~(xi)i < 2r -k/2 for i E I , B  C I. To see this, we first observe 

that  if/~o = g(0), then Uto,i E D for i ~ R(g0); but R(t~o) A I  = 0, so [Uto,i i _< r -k. 

Now, for any B, we have x* B E Ck(u), so that [h~(x*B) - u i t  <_ r -k.  Since 

lueo,i - ui] <_ r -k,  we have [hi(x'B) l <_ 3r -k,  and IZ*B(Xi)[ <_ 2r -k/2. 

Consider 

a 2 = sup E x*B(xi)~" 
BC1 

Thus a < 2r-k/2~/card I. Now, the concentration of the measure phenomenon 

for tile gaussian measure (such as in [L-T], Section 1.1) shows that  

P ( Z  >_ E Z -  Ka) > 3. 

The result follows. | 
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We observe that  the condition card I > K is not restrictive; indeed by (4.13), 

card I > log N/4 log n, so that  card I >_ K provided log N _> M log n and M is 

large enough. On the other hand, if log N < M log n, to prove (4.7) it suffices to 

see that  for every g, we have ~k+2(ue) > pk(u). We have already observed that  
2 2 _ ~k(u). Also,  k+2(ue) > 

(4.19) _> 

follows from the elementary fact that, for s, t _> 0, 

Is - t I <_ r -k ~ s - min(s, 2r -k) _< t - min(t, 2r-k-2).  

We now prove (4.7). The first part of the proof is somewhat secondary. It is 

to establish that  

(4.20) r -k card I < KC 2. 

To see this, we observe that, for any a > 0, 

a Z g i x i  ~ <_1+ y + Z a g i x i  ~. 
iEI  iCI 

Thus, by condition H(C), 

1 

iGl 

and thus, by optimization over a, 

1 
P (  Z g ,  x, ~ < 2 x / 2 C ~ )  > 

iGI 

and 

( z P y + a  gixi ~<-1+2v/2C~ >-4" 
iGI 

Combining with (4.18), we get 

~ ( u )  - E + K r - k / 2 ~  <_ 1 + 2x/2Cav~cardI. 

This holds for each a > 0, so that  (4.20) holds. 
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The main argument starts now. Combining (4.18) with condition H ( C ) ,  we 

find that,  given a, there exists a vector z (= y + ~ i e I  c~igi) such that  

a r - k l 2  
sup x*B(z ) k ~2(u) - e + 
BCI K 

c a r d /  

while 

IIzll~ ~ 1 + C2o~2 cardI. 

Thus, there exists B C I such that  

IIx~ll~ > ~Z(~) - ~  + ~T-k/~  c a r d I / K  
- 1 + C2c~ 2 card I 

a r  -k /2  card I /  K - C2a 2 card I 
: ~ ( ~ )  - ~ + 

1 + C2a 2 card I 

We see that  a good choice for a is r - k / 2 / g c  2. Using (4.20), we get 

�9 2 IIx.ll~ _> ~k(u) - ~+ 
r -k  card I 

K C  2 

Since e is arbitrary, this implies that  there exists g < N for which 

~L2(u~)  _> ~ ( u )  + 
r - k  card I 

K C  2 

Thus, using (4.13) and (4.19), 

r - k  
qak+z(u~) _> qak(U) + ~ - -  logN. 
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