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The problem of understanding the way in which turbulence (or chaos, or stochas-
ticity) blows up in dynamical systems constitutes one of the main present themes of
research in the field of pure dynamics. Quite naturally one is then led to take into
consideration the possibility that the key concepts dominating the dynamical aspects
of the problem should have their counterpart in statistical mechanics, in as much as
the latter has indeed to be founded, at least partially, on dynamics.

Thus, for example, just in this spirit RUELLE and TAKENS (1) proposed to understand
turbulence in fluids in terms of strange attractors, which indeed dominate the dynamics
of dissipative systems, and could not be imagined before the mathematical work of
Smale (?) and the numerical work of Lorenz (3).

Something analogous is proposed here for conservative systems, on the basis of the
present general understanding suggested by the mathematical work of Siegel, Kolmo-
gorov, Moser and Arnol'd (*), who were able to master the problem of small denomi-
nators, and the numerical work of the distinguished astronomers ConToPOULOS, HENON
and FrOESCHLE (°), Indeed, taking into account, for definiteness, Hamiltonian systems
of weakly coupled oscillators (such as typically the vibration modes of a solid or of
a black body), the present knowledge on dynamics may be considered to suggest that,
instead of the formerly usual hypothesis of metrical ergodicity (or of mixing), one

(*) D. RUELLE and F. TAKENS: Commun. Math. Phys., 20, 167 (1971); 23, 343 (1971); 64, 35 (1978).
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should put forward the hypothesis that a transition to stochasticity oceurs through
sharp energy thresholds. The latter hypothesis is shown here to lead in classical statis-
tical mechanics to a possible removal of the so-called ultraviolet catastrophe, by following
a line of thought which can quite naturally be attributed to Borrzmann himself (%).

Let us consider a system of a large number N of harmonic oscillators of the same
frequency », and take I.ebesgue measure as defining the a priori probability in the phase
space of the system. If total energy is the only known quantity, standard considera-
tions (i.e. the law of large numbers) then show that in the so-called thermodynamic
limit the initial data are distributed in phase space according to Gibb’s law; thus, in
particular, the energy K of any single oscillators is a positive random variable distributed
according to the Maxwell-Boltzmann law, namely with probability density p(#) given by

1
(1) p(H) = wr %P [— E/kT],

k and T being positive parameters interpreted as Boltzmann’s constant and absolute
temperature, respectively. One has then

(2) [pman—1,
0

(3) EEpr(E)dE:kT,
0

so that for the initial data one has equipartition of energy (i.e. the average energy
E(v, T) is independent of frequency).

Equipartition of energy was considered in a first approximation as a good result
because it explained the observed specific heats for some material bodies at large enough
temperatures (law of Dulong and Petit for solids, and the analogous one for some gases).
On the other hand, difficulties occured for low temperatures and for high frequencies,
as the average energy was then found not to be proportional to temperature. In par-
ticular, BoLrzMaNN was particularly acute in pointing out a difficulty of principle,
remarking (%) that the molecules of a gas should be conceived not as rigid bodies, but
rather as systems with internal motions of high frequencies (as is well known today);
the problem was then that of understanding why the high-frequency motions did not
contribute to the specific heat, behaving as if they had no internal energy at all and
were, 80 to say, frozen. This difficulty was enhanced in the case of a continuous system
such as a black body (*®), where oscillators of arbitrary high frequencies are involved,

(*) L. BOLTZMANN: Nature (London), 51, 413 (1895); quoted in A. BARAcca: Manuale eritico di
meccanica statistica (Catania, 1981).

(*) J. W. RAYLEIGH: Philos. Mag., V, 49, 539 (1900); J.-H. JEANS: Philos. Mag., VI, 10, 91 (1905);
H. A. LORENTZ Nuovo Cimento 5, 16 (1908).

(®) P. LANGEVIN and M. DE BROGLIE (Editors): La théorie du rayonnement et les quania, reports and
discussions of the 1911 Solvay Conference (Paris, 1912).
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and one would have in principle an infinite contribution to the specific heat (ultraviolet
catastrophe).

In the same very vivid paper BoLTZMANN envisaged the possibility of a solution by
exploiting a dynamical hypothesis, namely that the high-frequency oscillators perform
motions of a very stable character, with respect to the very unstable motions of the low-
frequency oscillators, thus distinguishing between an « ideal internal energy », to with all
oscillators equally contribute, and what can be called an effective thermodynamic en-
ergy, to which only the low-frequency oscillators should contribute. In his words (°):
«... the vis viva of the internal (i.e. high frequency) vibrations is transformed into
progressive and rotatory (i.e. low frequency) motion so slowly, that when a gas is brought
to a lower temperature the molecules may retain for days, or even for years, the higher
vis vira of their internal vibrations corresponding to the original temperature. This
transference of energy, in fact, takes place so slowly that it cannot be perceived amid
the fluctuations of temperature of the surrounding bodies ».

However, this distinction between stable high-frequency motions and unstable
low-frequency motions had no clear dynamical basis and could be considered as rather
artificial. These ideas were somehow pushed forward by Jeaxs (?), without sueceess.

The Boltzmann idea of identifying with the thermodynamic internal energy only
a fraction of the «ideal internal energy » Nk7, on the basis of suitable stability proper-
ties of the corresponding motions, can instead be implemented in a quite clear way
if one makes use of a hypothesis of dynamical character which can be explicitly
found in a paper of Nernst (19). This was probably suggested to him by a combination
of Planck’s conception of zero-point energy ('), of his personal understanding of it
as ordered energy in virtue of his « new heat theorem » (1°), and of a remembrance of
Boltzmann’s idea (12).

Hypothesis (by NErRNST): There exists a critical energy e(v) such that oscillators of
frequency » perform ordered (i.e. highly stable) motions, if they have energy H < &(v)
and disordered (¢.e. chaotic or highly unstable) motions, if they have energy F > s(»).

In other words, if one looks at a single oscillator of frequency » in its phase space, it
would rotate uniformly on a circle if it were isolated; the interaction with the other
ones can then be described (possibly in the thermodynamie limit) as having on the single
oscillator the effect of perturbing its motion in a quite different way according as to
whether it is inside or outside the circle corresponding to the energy z(»). In the first
case the oscillator should be conceived as still performing essentially uniform rotations
with very small amplitude fluetuations, while in the latter case enormous amplitude
fluctuations should oceur, any trace of a regular rotation being lost.

Such a kind of behaviour is indeed observed in dynamical systems. For mappings
this wasg first clearly seen by FrorscHLE (°), who extended to systems of more than
two degrees of freedom the observations of a sharp transition to stochasticity first made
by HEw~oxN (3) for two oscillators. For oscillators, some observations almost exactly

(®*) J.-H. JEANS: Philos. Mag., VI, 17, 229, 773 (1909); VI, 18, 209 (1909); and ref. (*), p. 53.

(3®) W. NERNST: Verh. Disch. Phys. Ges., 18, 83 (1916), especially pages 87 and 91. See also
W. NERNST: Die theoretischen und experimentelle Grundlagen des neuen TWirmesalz (Halle, 1924)
(English translation: The New Heal Theorem (New York, N. Y., 1969)).

(') M. PLANCK: Ann. Phys. (Leipzig), 37, 642 (1912).

(1*) See ref. (*), p. 51.
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as described above were made by Carorra, FERRARIO and Lo VEccHIO (13) several
years ago; some indications ean also be found in ref. (14).

Remarks that the stochasticity threshold e(») should not be conceived as a barrier;
as a consequence of the fluctuations described above, any oscillator could indeed go
everywhere in its phase space, and at any temperature a statistical equilibrium should
be reached for a distribution of the N oscillators below and above threshold.

Leaving aside any attempts at understanding why NErNst deviated from the line
of thought pursued here, we can now implement Boltzmann’s idea through the dynam-
ical assumption of Nernst. Indeed, through it we have a well-defined criterion to
introduce a partition of the oscillators of any frequency » into two disjoint ensembles,
the stable one (with the oscillators below threshold) and the unstable one (with the
oscillators above threshold), only the second one contributing to the thermodynamic
internal energy. The analogy with the familiar two-fluid theory of superfluidity should
be noted.

Precigsely, making use of the Maxwell-Boltzmann probability density (1) for a given

temperature 7, in virtue of the relation fp(E) dF = exp [—¢/kT], we find (35} that,

-2
among the N oscillators of the considered frequency, exactly Nn, and Nn, are below
and above threshold respectively, where

(4) g = 1—exp [—e(»)/kT], Ny = exp [—e(v)/kT], Ng+ ny=1.

Moreover, while NkT is, in the sense of Boltzmann, the «ideal internal energy », only
the quantity NU,, with

kT
(®) v, - pr(E)dE= o) +

exp [e(»)/kT]’

&(v)

constitutes the thermodynamic internal energy, which, in virtue of the instability of
the corresponding motions, is the one which is « perceived amid the fluctuations of tem-
perature of the surrounding bodies ». To such thermodynamic internal energy, each
of the ¥ oscillators is thus seen to contribute with an ¢ effective energy per oscillator »
given by U,.

For the sake of completeness, some further useful formulae are added here (1%).
The energy of the whole stable ensemble (the whole « frozen energy », of oscillators
belowe threshold) is evidently given by NU,, where

(6) Upy=kT—T,.

(1%) M. C. CAROTTA, C. FERRARIO, G, Lo VECCHIO and L. GALGANI: unpublished; see however Phys.
Rev, 4, 17, 786 (1978).

(") L. GALGANI and G. Lo VECCHIO: Nuovo Cimento B, 52, 1 (1979); B. CALLEGARI, M. C. CAROTTA,
C. FERRARIO, G. Lo VEccHIO and L. GALGANI: Nuovo Cimento B, 54, 463 (1979); P. BUTERA, L. GAL-
GANI, A. GIORGILLI, A. TAGLIANI and H. SABATA: Nuovo Cimenio B, 59, 81 (1980). Clearer effects
are exhibited in G. BENETTIN, G. Lo VEcCcHIO and A. TENENBAUM, Phys. Rev. 4, 22, 1709 (1980);
and in G. BENETTIN and L. GALGANI: Transition to stochasticily in a one-dimensional model of a radiant
cavity, preprint,

(1%) L. GALGANI: Nuovo Cimento B, 62, 306 (1981).



STATISTICAL MECHANICS OF WEAKLY COUPLED OSCILLATORS ETC. 69
One can also introduce conditional expectations of energy E, and E,, defined by

{7) Up=nolls , Uy=mE,

with #n,E, + ny B, = kT, and one finds

&(v)

®) Ho= kT — exp [e(v)/kT]1— 1’

BE,= () + kT.

Let us now come in particular to the consideration of a black body. In such a case
the number of oscillators per unit volume with frequency between » and » -+ dv is well
known (*®) to be given by N(v)d», where

8ny?
) N = —,

¢ being the light velocity. Moreover, as a consequence of the second law of thermo-
dynamics one has the general Wien’s law (16), according to which the thermodynamic
internal energy per unit volume between » and » 4 dv is given by wu(v, T)dv, where

8mvikT

3

(10) wly, Ty = F/T)

and F is an unknown universal function. In virtue of the Boltzmann-like identification
u(v, T) = N(v) Uy(v, T), one then deduces from (5), (9) and (10) that for a black body
the energy threshold e(v) is a homogeneous linear function of »; thus

(11) ev) =,
where £ i8 a universal constant, with the dimensions of an action, which can be possibly

identified with Planck’s constant.
In such a way, instead of the familiar Planck’s form for the radiation law

8?2 hy 8z [kT\® z8
(12) TR YL R ..J (.l W —
¢ exp[w/kT]—1 h®\e¢ ) explz]—1
where
hw
13 =,
(13) 7=

the theory envisaged here gives the possible form

2 3 p2 3
(14) oo, T) = 8ﬂ hv + kT 87 (IcT) x4 x .
exp [x]

e exp[w/kT] h \¢

(**) M. PLANCK: Vorlesungen iiber die Theorie der Warmestrahlung (Leipzig, 1923) (English translation:
The Theory of Heat Radiation (New York, N. Y., 1959)).
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By this law, which provides, so to say, a classical analog of Planck’s law, the ultra-
violet catastrophe is thus removed. As a matter of fact, to quite a surprise it also turns
out that it is not easy to discriminate between these two formulae on this basis of the
available experimental data. Some comments in this connection are deferred to a
forthcoming note (17).

Some remarks follow.

a) In a first approximation, the subdivision of the oscillators of frequency » into
two ensembles may be described by saying that any oscillator can lay only on two
energy levels, namely E,< hv and K, > hy, where E,=%kT —hv/(exp[z]—1) and
E,=hv + kT (where x = hv/kT), withpopulations n,= 1 — exp [— ] and », = exp [— ],
respectively. It is from the present point of view a rather curious fact that k7 — E,
just equals the average emergy of one oscillator according to PLaxck. Moreover, the
« gap » between the two energy levels is given by

hv

15 B—EBy=h= o,
(1) ! 0 4 exp [#]—1

so that Planck’s formula appears from this point of view as defining the addition of
a thermal noise to the unperturbed gap hv. Finally, as was known to NERNsT (19),
in virtue of the fact that hy/(exp [w]— 1) ~kT — }he for m = hy/kT < 1, one has in
that limit also F, ~ 4 hv; this fact could be of interest in connection with the problem
of the value of the zero-point energy, which is typically observed in the Casimir effect (18).

b) Coming back to the problem of the freezing of the high-frequency oscillators
as foreseen by BorTzMaNN, this is well understood for the black body on the basis of
the relation &(») = hp. Indeed this freezing is described by the fact that, at a fixed
temperature T, the fraction of frozen oscillators as a function of » is just given by
g = 1—exp [—hw/kT], which tends to one with increasing ». The freezing, however,
clearly also oceurs for any frequency with decreasing temperature.

¢) The fact that kT — F; equals the average energy of one oscillator according
to Planck, pointed out in a), was well known since the year 1916 to NErNST (1%), who
tried to understand Planck’s law on such a basis (1%), thus deviating from Boltzmann’s
line of thought. Moreover, while Nernst’s deduction of formula (8) for E, was really
ununderstandable to everybody, it is a further curious fact that a deduction of it, exactly
equal to that given here, was also known to Pranck himself (*?) in the year 1921, as I came
to know quite recently. Apparently, however, PLaxcK did not share Nernst’s concep-
tion of Ay as a stochasticity threshold, nor did he mention Nernst’s work. Finally, it
ig difficult to understand how NErNST himself did not follow the line of thought of
Boltzmann pursued here, if one takes into consideration the theoretical objections
he raised (2°) in the year 1919 to the 1917 Einstein deduction of Planck’s law (2!), and

(*") L. GALGANI: in preparation.

(**) H. B. G. CasMIR: Konin. Ned. Akad., Wet., 31, 793 (1949); J. Chem. Phys., 46, 407 (1949):
C. P. EN%Z: Is the zero-point energy real?, in Physical Reality and Mathematical Description, edited by
Exz MEHRA (Dordrecht, 1974).,

(**) M. PLANCK: Acfa Math., 38, 387 (1921).

(2°) W. NERNST and T. WuULF: Verh. Disch. Phys. Ges., 21, 294 (1919).

(*Y) A. EINSTEIN: Phys. Z., 18, 121 (1917).
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the fact that he was the first to raise serious doubts on the experimental validity of
Planck’s law (20),

d) The first consideration of the problem of the partition of energy for oscillators on
the basis of dynamics was given by FErMI, PAsTa and ULaM (22), in the same year (1954)
in which KoLM0oGOROV (¢) announced his theorem on small denominators. These authors
found, by numerical computations, no trend towards equipartition. A correct qualita-
tive interpretation of such startling result in terms of energy thresholds of stochasticity
for the oscillators (in the sense that only initial data below thresholds had been con-
sidered) was first given by IzraiLeEv and CHIRIEOV (23). These authors gave some
interesting contributions and, together with Forp (?%), made this subject popular in
the scientific community. The possible relevance of this kind of problems for a removal
of the ultraviolet catastrophe was first envisaged among researchers in the theoreticay
group around CAarprirora. In this framework, the conception of an energy threshold &(»)
characteristic for each frequency and proportional to it was introduced by CERCIGNANT
on the basis of an analogy of Nernst’s type between zero-point energy and ordered mo-
tions, independently rediscovered by him under the suggestion of some numerical results
I had previously obtained with ScoTtI (*¥). The basic idea underlying the present note
was thus completely clear to the three of us almost ten years ago (2¢), and we even knew
the formula for F,, to which only the population factor n, had to be added here in order
to obtain the formula for the effective energy per oscillator U;. In fact I was lead to
such formula after my interpretation (%) of Nernst’s deduction of Planck’s law, just
because of a dissatisfaction for his lack of consideration of the populations. However,
it is possible that in the meantime a deeper appreciation of Froexchlé’s results at a
dynamical level, together with a greater familiarity with several technical aspects of
the problem, acquired through many works with Benettin, Casartelli, Giorgilli, Lo
Vecchio and Strelcyn (¥), turned out to be essential for this step. Finally, a relevant
role towards the present statistical interpretation was played by a recognition of the
circumstance, particularly emphasized by CasaRTELLI, that the invariant Kolmogorov
tori appeared to have vanishing measure in the termodynamic limit.

I have thus accomplished the task of describing how the existence of stochasticity
thresholds in the dynamics of weakly coupled oscillators leads in classical statistical
mechanics to a possible removal of the ultraviolet catastrophe. Being well aware of
the completely heuristic character of the considerations reported here, I like to close
then with a further quotation from the already mentioned paper of Boltzmann (°):
« It may be objected that the above is nothing more than a series of imperfectly proved

(") E. Ferml, J. Pagra and S. ULaM: Los Alamos Report (1954), reprinted in E. FErM1: Collecled
Works (Roma, and Chicago, Iil., 1965), p. 978.

() F. M. IzrRAILEY and B. V. CHIRIKOV: Dokl. dked. Nauk SSSR, 166, 57 (1966).

(3%} B, V. CHIRIROV: Phys. Rep., 52, 263 (1979); J. ForD: Adv. Chem. Phys., 24, 155 {1973); J. Forp:
in Fundamenial Problems in Stalistical Mechanics, edited by B. G. D. CoHEN, Vol.3 (Amsterdam, 1975).
(3%) L. GArnGaNnNI and A. ScoTtI: Phys. Rev. Lell., 28, 1173 (1972).

(3¢) C. CERCIGNANI, L. GALGANT and A. Scorri: Phys. Leti. 4, 38, 403 (1972); L. GALGANI and
A. ScoTTi: Riv. Nuovo Cimenio, 2, 189 (1972).

(*") M. CASARTELLI, E. DIANA, L. GALGANT and A. ScorTi: Phys. Rev. 4,13, 1921 (1976); G, BENETTIN,
L. GALGANI and J.-M. STRELCYN: Phys. Rev. 4, 14, 2338 (1976); G. BENETTIN, L. GALGANI, A. GIOR-
GILLI and J.-M. STRELOYN: C. R. Acad. Sci. Ser. 4, 268, 431 (1978); Meccanica, 15, 9, 21 (1981);
A GIORGILLI and L. GALGANTI: Cel. Mech., 17, 287 (1978); G. BENETTIN, M. CASARTELLI, L. GALGANT,
A. GIORGILLI and J.-M. STRELCYN: Nuovo Cimenio B, 44, 183 (1978); 50, 211 (1979); L. GALGANT,
A. GIoRGILLI and J.-M. STRELCYN: Nuovo Cimenfo B, 61, 1 (1981).
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hypotheses. But granting its improbability, it suffices here that this explanation is
not impossible. For then I have shown that the problem is not insolvable and nature
will have found a better solution than mine ».

K k¥

I want to thank here my closest collaborators and dearest friends, namely Cerci-
aNANT amd ScoTTi, who conceived with me essentially everything can be found here,
and BENETTIN, CASARTELLI, D1ANA, GIORGILLI, .0 VECcCHIO and STRELCYN, who deci-
sively contributed in producing many technical results in a joint work of almost ten
years. I also thank my colleagues Lanz, ProsPERI, RaMELLA, CIRELLI, MONTALDI,
GORINI, FRIGERIO, BUTERA, CasaTi and NARDELLI for discussions on the theoretical
aspects, TAGLIAFERRI and Berroni for their interest in the historical aspects, and
BaLping, DogrLia, StroNI, TaNzI and Missaxa for comments on the experimental part;
futhermore, GALLAVOTTI, GUERRA, DOPLICHER, DELL’ANTONIO, PaRisi, MISTURA,
Accarpi, VITIELLO, BARACCA, DANESE, DE ZoTTl and LOCHAK.



