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Abstract 

A theory is developed for the aggregation rate of cells in uniform shear flow 
when the cell-cell adhesion is mediated by bonds between specific molecules on 
the Cell surfaces such as antigen and antibody or lectin and carbohydrate. The 
theory is based on estimates of the frequency and duration of cell-cell collisions 
and of the number of bonds formed and required to hold the cells together. For high 
shear rates, the sticking probability is a function of a single dimensionless parame- 
ter, A, that is proportional to G -2, with G the shear rate. For low shear rates, the 
sticking probability is a function of a second dimensionless parameter, A' - G-  1. 
In either case the rate of cell-cell sticking is a maximum when A (or A') = 1.0. For 
small values of A (or A') the cells collide frequently, but do not stick, whereas for 
large values of A (or A') the cells collide infrequently, but stick with larger proba- 
bility. Studies in a Couette viscometer or other flow having approximately uniform 
shear can test these models. 

Index Entries: Sticking probability, of specifically bonded cells; probability, 
sticking, of specifically bonded cells; cell sticking probability, of specifically 
bonded cells; bonds between cells, and sticking probability; flow, uniform shear, 
cell sticking probability in; shear flow, uniform, cell sticking probability in; 
Couette viscometer, in cell sticking probability studies; viscometer, in cell sticking 
probability studies; adhesion, cell-cell; aggregation, of cells. 
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Introduction 

For many reasons, biologists are interested in the sticking together of cells, me- 
diated either by interactions between specific complementary cell surface mole- 
cules or by soluble multivalent ligands that can form intercellular bridges. For 
example, in immunology, the agglutination of red cells is often used as a sensi- 
tive assay for the presence of some agglutinating antibody and aggregates be- 
tween lymphocytes and red cells are often used to indicate the presence of cer- 
tain kinds of lymphocytes in a rosette assay. Agglutination of cells by lectins has 
also been much studied, partly because of the finding that normal and trans- 
formed cells differ in their agglutinability and partly because of a general feeling 
that transformed ceils may have altered adhesive properties compared to normal 
cells. 

In all of these cases one deals with the interaction between cells mediated by 
specific molecules rather than by nonspecific electrical forces. I have recently 
developed a theoretical framework (1, 2) for treating such interactions when the 
surface molecules on at least one of the cells can move about, by diffusion, on 
the membrane in such a way as to locate a reactive partner on the other cell. 

In this paper, I apply these considerations to estimate the rate of cell aggrega- 
tion in a particular experimental system, namely when the cells are in a solution 
subject to uniform shear. This situation may be closely approached in the 
Couette viscometer, a device in which a solution is placed between two closely 
spaced cylinders, one of which is rotating. Indeed, several investigators have al- 
ready applied such techniques to the measurement of cell adhesion (3, 4). How- 
ever, they were mainly concerned with interactions caused by nonspecific van 
der Waals forces rather than by specific molecular interactions. 

The basic problem is to estimate the sticking probability for two cells 
colliding with relative velocity Vr and impact parameter b (see Fig. 1). I do this 
by estimating a collision duration and contact area, which together with the rate 
of bond formation discussed earlier (1, 2), gives the expected number of bonds 
formed during the collision. If this exceeds a critical number of bonds required 
to hold the cells together, sticking is achieved. If not, the cells separate after the 
collision. 

Analysis 

Estimate of the Sticking Probability for Cells in Uniform Shear Flow 

Consider spherical cells of radius R in a fluid where the velocity exhibits uni- 
form shear. In particular, let us choose a rectangular coordinate system (x, y, z) 
such that the fluid velocity is 

V = (Vo + Gx)y [1] 
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where the shear rate is G and y is a unit vector in the y direction. Assume that an 
individual cell moves with the velocity characteristic of the x coordinate of its 
center. Thus two cells can collide with velocity difference of magnitude -< 2GR. 

Consider a collision between cells of impact parameter b; that is, b would be 
the distance of closest approach of the cell centers if the cells were to move with- 
out interacting with each other. Let the difference in x coordinates of the cells be 
2tx = b cos 0 (0 -< 0 -< 2"rr); Fig. 1. Then the relative velocity difference, Vr, is 
in magnitude, 

Vr = Gb l cos O I [2] 

If the average number of cells per unit volume is n, then the expected number of 
collisions, dC, that a particular cell will make per unit time with other cells hav- 
ing impact parameters within db about b and angle within dO about 0 is 

dC = Vrn b db dO 
= nG I cos 0 I b2db dO [3] 

The collision rate, C, can now be obtained (4, 5) by integrating Eq. [3] over 0 
(0 <- 0 -< 2"rr) and b (0 -< b <- 2R). The result is 

C = 32/3 Gn R 3 [4] 

as found by von Smoluchowski (5). C represents the collision rate of other cells 
with a give cell. To obtain the collision rate, c, per unit volume, we must multi- 
ply C by n and divide by 2 since each collision is counted twice, thus 

C = n/2 C = 32/6 Gn2R 3 [5] 

In order to estimate the probability that two cells colliding with b and 0 stick 
together by the formation of specific intermolecular bonds, I assume that each 

Y 
Fig. 1. Coordinate system showing two cells with impact parameter b. The cells 

move in the y direction and the difference in the x coordinates of their centers is b cos 0. 
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Fig. 2. Two colliding cells. ~ is a direction in the x,z plane such that x~ = cos 0. D is 
a cell diameter and b is the impact parameter. Evidently the difference in y coordinates 
of the cell centers is (D 2 - b2) 1/2. 

collision can be characterized by a number of quantities, namely, the duration of  
the collision, the area of  intercellular contact, the rate of  intercellular bond for- 
mation per unit area of interface, and the number of bonds that must form in or- 
der to hold the cells together. 

(a) Duration of Collision Referring to Fig. 2, we see that when spherical 
cells make contact, the difference in y coordinates of  their centers is 
(D 2 - b2) v2 where D = 2R is a cell diameter. I assume that the collision dura- 
tion is twice this distance divided by the relative cell velocity 

Collision duration ~ 2 ~ / D  2 - b2/Vr [6] 

(b) Contact Area The area on one cell that is in contact with the other will 
vary during the course of  the collision, depending on how deformable the cells 
are, whether they have surface projections such as microvilli, and so on. For de- 
formable cells, we might expect the maximum contact area during the collision 
to be proportional to D 2 - b 2 and I assume that the average contact area can be 
represented as a constant "q times this quantity. Thus 

Contact area -~ ~] (D 2 - b 2) [7] 

(c) Rate of Bond Formation It is assumed tha.t when two cells are in contact, 
specific intercellular bonds can form at a rate B per unit area. B can in turn 
be related to the number of complementary receptors per unit area on each cell, 
their diffusion constants for motion in the membranes and intrinsic reaction rates 
as described in refs. (1) and (6). If  for example, the colliding cells have nl and 
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n2 complementary receptors per unit area with diffusion constants D~ and D2 

for motion in the plane of the membrane, we may write 

1~ ~-- n l n 2  2"rr r (D1 + D2) [8] 

where r is a constant by which the reaction rate falls short of its diffusion limit. If 
the intercellular bonds are mediated by soluble ligands,/3 will depend on the 
ligand concentration, ligand-cell binding constants, and other considerations 
discussed in ref. (2). 

By multiplying the collision duration, contact area, and bond formation rate, 
we obtain an estimate of the number, N, of bonds formed in a collision, 

2-q/~ ( D  2 - b2) 3/2 
N~-  

Vr [9] 

(d) Number of Bonds Required to Hold Two Cells Together In ref. (1) I es- 
timated the force that is required in order to break intermolecular bonds such as 
those between antigen and antibody. In particular, I estimated that the number 
of uniformly stressed bonds required in order to hold a cell in a fluid stream of 
velocity V against Stokes drag is ncV with nc a constant (nc = 67r'qR/fo where 
rl is here the fluid viscosity andf~ is the critical force per bond). For the particu- 
lar case of lymphocytes held in water by antigen-antibody bonds, R - 4txm, "q 

10 -2 g/cm-s,fc ~ 4 x 10 -6  dynes/bond, we have nc -~ 19 with Vin cm/s. 
I assume that the colliding cells will stick together if the expected number of 
bonds formed exceeds ncVr and not otherwise. Thus, the sticking probability, P 
is 

P = 1 if N > ncVr 
= 0 i f N  < ncVr [10] 

It is probably not possible to take numerical values of nc directly from the 
considerations of ref. (1) since the complex dynamics of the collision are not 
such that the bonds between the cells will be uniformly stressed when the cells 
begin to separate during the latter half of the collision. 

For sufficiently small relative velocities, ncVr will be less than one. In this 
case it is a better approximation to let the required number of bonds be a constant 
such as one. A theory for this case is given in the following section. Of course, a 
single bond has only a finite lifetime, but it may be likely that a single bond will 
hold the cells together sufficiently long that further bonds form, creating a stable 
aggregate. 

From the foregoing assumptions, the sticking probability may be related to 
experimental parameters and its average value computed. By introducing Eqs. 
[9] and [2] and in Eq. [10] we find 

P = 1 if 2"q/~(D 2 - b2) 3/2 > ncG2b2cos20 
= 0 otherwise [11 ] 
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For finite values of all parameters, P will be one for cos 0 sufficiently small, or 0 
sufficiently near to 'rr/2 and 37r/2. For very small values of b, which correspond 
to nearly head-on collisions, P --- 1 for all values of 0. 

Defining the constant A by 

2~qBO 
A - [12] 

nc G2 

and the variable 13 by b = 13D, we have 

(1 __ 132)3/2 
P = 1 if cos20 < A  [13] 

132 
Moreover, let 13m be the value of 13 in Eq. [13], corresponding to equality with 
cos 0 -- 1, i.e., 

132 = A(1 - [32) 3/2 [14] 

This equation has a unique solution in the interval 0 < 13m < 1 for any finite A. 
For [3 > 13m, let the value of 0, 0 < 0 < rr/2, which gives the equality in Eq. 
[13] be 0m, i.e., 

132)3/2 
cos 0 = A (1 - 13 > 13m [15] 

132 
i 

We are now in a position to compute the expected number of collisions, PC 
per unit time, that result in sticking. We proceed as before in computing the col- 
lision rate, i.e., 

-tiC = 4Gnf~ b2db f~o/2 P cos 0 dO [16] 

where we have considered only one quadrant in 0 and multiplied by 4, since the 
other quadrants are identical. 

For small values of b (0 < b < [3,,-,/9) all values of 0 give P = 1, while for 
larger b only those values, 0 > 0m, have P = 1. Thus 

PO = 4Gn fo m~ b2db f~/2 cos 0 dO + f~mobedb fOWm/2 COS 0 dO [17] 

and, on working out the integrals and using Eq. [4] for C we find 

P = 1 - 3 f~m sin (0m)132d13 = 

1 - 3f~ m X/1 - A13-2(1 - 132) 3/2 132d13 [18] 

This integral has been evaluated numerically and results are shown in Fig. 3. 
An approximate value is derived in the appendix. 

The sticking probability is a monotonically increasing function of A and 
hence decreases with increasing shear rate G. The collision rate given by Eq. [4] 
increases with increasing shear rate. Their product, PC, which is the rate at 
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Fig. 3. Sticking probabilities P(A) as given by Eq. [18] for high shear rates and 

P'(A') as given by Eq. [24] for low shear rates. The curves represent the results of nu- 
merical integration, whereas approximate values given by Eqs. [A2] and [A5] are repre- 
sented by the points. It is indicated in Appendix 2 that whichever is the smaller of the 
two quantities P(A) and P'(A') should be used for the sticking probability. 

which a given cell sticks to other cells, has a unique maximum as a function of 
G, as shown in Fig. 4. To see this, note that for small G, (largeA), P approaches 
one, so PC - G. For large G (small A), P - A - G -2 (Appendix 1), so PC 
G -1. From Fig. 4 we see that the maximum sticking rate occurs for A near 
unity. 

Treatment for Small Shear Rates 

For small collision velocities, which are always to be found for low shear rates, 
ncVr may be small compared to one bond. In particular, if the maximum colli- 
sion velocity, DG, is such that DG nc < 1, the model predicts that even one, or 
only a few bonds will hold the cells together. In this case, a better approximation 
is to let the required number of bonds for sticking be some fixed number, n'r of 
order unity. The criterion [11] is then replaced by 

P = 1 if 2"q/7(O 2 - h2) 3/2 > n "Gb I cos 0 I 
= 0 otherwise [19] 

As before we may define a new parameter A' by 
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Fig. 4. Rate of cell sticking PC, as a function ofA. The shear rate is assumed to be the 
only parameter being varied. Units of  PC are arbitrary and the actual quantity plotted is 
P A -  u2 ~ PG.  

so that 

A' = 2rl/~D2 
? 

nc G 

[20] 

(1 - 132) 3/2 
e = 1 if l cos 0 I < A' [21] 

[3 

Let the maximum value of [3 for which Eq. [21] is satisfied for cos 0 = 1, be 

[3m, i.e.,  

[3" = A'[1 - ([3,)2] 3/2 [22] 

and for 13 > [3", let (0 < 0" < 'rr/2) 

cos 0m A' (1 - [32)3/2 ' = [ 2 3 1  

[3 

With these definitions of  A' ,  [3" and 0" ,  and  O" Eq. [17] holds with the primed 
quantities replacing unprimed, and 
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P ' =  1 - 3 f k  sin 0" [32d[3 = 

1 - 3 f ~  m ~ / 1  - ( A ' ) 2 [ ~ - 2 ( 1  - [~2)3 d[3 [24] 

This expression has been evaluated numerically and the results are shown in 
Figs. 3 and 5. An approximate expression is also derived in Appendix 1. 

Refinements 

Two further refinements may be considered. First of all, one might let the re- 
quired number of bonds be the greater of n" and ncVr, to include both slow and 
fast collisions. Unfortunately, the integrals over 13 and 0 then become some- 
times partitioned into a number of pieces depending on both A and A'. The treat- 
ment is given in the Appendix 2, where it is shown that a good approximation is 
to use whichever of the quantities, ff (A) or P'  (A'),  is the smaller. 

The other feature is to note that even when the average rate of bond formation 
is too small to produce a single bond, so that we would have set P = 0, there is a 
finite probability that any number of bonds would form. If N is the expected 
number of bonds formed in a particular collision, the actual number will pre- 
sumably have a Poisson distribution about N, such that the probability, p (n), of 
forming n bonds is 

.3" 

PfC 2 

. 1  �84 

0.001 0:01 0:1 1:0 10 160 1,000 
A j 

Fig. 5. Rate of cell sticking for the low shear rates, P'C as a function of A'. The shear 
rate is assumed to be the only parameter being varied. Units of P'C are arbitrary and the 
actual quantity plotted is P'/A ~ P'G. 
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Nne-N 
p ( n )  - [25] 

n! 

Thus, the probability of forming at least one bond is 

p ( n  >- 1) = 1 - e - N  [26] 

If Eq. [9] were used for N in this expression, it does not seem possible to do even 
the first quadrature explicity. In effect we have above approximated the quantity 
1 - e - N  by a step function, namely 0 for N < 1 and 1 for N > 1. 

Discussion 

For high shear rates we have derived an estimate of the average sticking proba- 
bility, P, shown in Fig. 3, that depends only on the single dimensionless param 
eter, A. The parameter A, Eq. [12], is proportional to the rate of intercellular 
bond formation,/~, (1, 2) and to the cell diameter, D, and inversely propor- 
tional to the square of the shear rate, G, and to a critical number of bonds. Some 
of these parameters are under the experimenter's control so that the predicted 
dependence onA could be checked in many ways. The sticking rate as a function 
of shear rate, Fig. 4, is predicted to have a maximum near A = 1; for smaller 
values of G the collision rate is low and the sticking probability is near unity, 
while for larger values of G, the sticking probability is low. 

For small shear rates, an alternative model is presented in which the required 
number of bonds is a fixed number, such as one, rather than being proportional 
to the relative cell velocity. In this case the sticking probability, P '  in Fig. 3, de- 
pends on another dimensionless parameter, A', given by Eq. [20], and the 
sticking rate as a function of shear rate has a maximum near A' = 1 as shown in 
Fig. 5. It is argued in Appendix 2 that a reasonable approximation for all shear 
rates is to use the smaller of P (A) and P-(A'). 

It is clear from the derivation of the equations that our model of the collision 
between two cells is highly simplified. We hope that by including the parameter 
"q/nc we have allowed sufficient flexibility in the model to permit it to be a useful 
way of treating real collisions, but only comparison with experiments can test 
this. 

In addition, the treatment of bond formation by an average rate,/~ neglects 
several considerations. For one thing, the number of bonds formed in a pre- 
scribed collision is really a random variable with some distribution, probably 
Poisson, about its average value. This means that the sticking probability that 
we treated as a step function, for example, in Eq. [10] should be a smoothly var- 
ying function. However, since we average over a wide range of collisions, we 
may expect that the neglect of fluctuations in the number of bonds formed is not 
a serious approximation. If all collisions were the same, it would be important to 
consider fluctuations. If for example, we wanted to compute an aggregation rate 
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for.cells due to Browian motion, it might be important to account for random 
fluctuations both in the number of bonds formed and in the collision duration. 

We have also neglected the tendency of receptors to accumulate in an area of 
cell-cell contact during a collision (7). So long as there are many more receptors 
in the contact area than are required to form the critical number of bonds, this 
should not be a serious limitation. If the receptors were very sparse and the cells 
were coming together at very low shear rates, hence long collisions, receptor re- 
distribution might become important. 

As noted in the introduction, there are many biological contexts in which it is 
clear that cell-cell interactions and agglutination are mediated by bonds be- 
tween specific known molecules. In other contexts, including the adhesion of 
blood cells--lymphocytes,  granulocytes, and platelets--to endothelial cells, tu- 
mor cells to endothelial cells, or in many situations in developmental biology, 
the nature of the cell-  cell-interactions is less clear, but their specificity suggests 
that adhesion is caused by the interaction between specific molecules. Some of 
these examples might be fruitfully studied using approaches suggested by this 
paper. 

For experimental tests of this model, the exclusive use of red cells is undesira- 
ble because they have relatively immobile receptors and rather odd shapes. Ro- 
sette assays, in particular the sticking of red cells to lymphocytes might be good 
candidates because the lymphocytes have mobile receptors and one can vary the 
number of complementary surface molecules on the red cells in a controlled 
manner. Alternatively, one might consider the agglutination of lymphocytes by 
multivalent ligands such as lectins or antibodies. In this case some care might be 
required in order to prevent receptor redistribution (capping) by the multivalent 
ligand. Some preliminary experiments relating to these questions will be re- 
ported in a subsequent manuscript (8). 

The rate of sticking of suspended cells such as leukocytes to a layer of cells 
such as endothelial cells could be studied in a viscometer having one surface 
composed of the layer of cells. 

Appendix 1 

Approximate Value for Sticking Probability 

An approximate value for P, Eq. [ 18] may be derived in the following way. Re- 
write P as 

P = [33 + 3f~,, [1 - ~/1 - A[3-2(1 - [32) 3/2] 13 2d[3 [A1] 

Let us expand the square root Vq- -f l [3)  ~ 1 - fl[3)/2. Since 0 -<fl[3) <_ 1,0 -< 
1 - %/1 - f l [3)  -< 1, while 0 < f([3)/2 < 1/2, so that the approximate integrand 
and if, will never be off by more than a factor two. Writing the approximate 
value for P as/5, 
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/5 = [33 + 3A/2 f ~  (1 - 132) 3/2 d[3 
= [33 + 3A/2 {3w/16 - ~A [[3m (1 - [32)3/2 + 3/2 [3,,, (1 - [32) 1/2 

+ 3/2 sin-l[3m]} [A2] 

For small values of [3m, A = [32 and 

/5 ~ 9"trA/32 - 1/2 A 3/2 [A3] 

For values of 13 close to 1, the first term in Eq. (A2) is dominant and 

/5 __ [33 ~ 1 - 3/2 A -3/2 [A4] 

The comparison between these approximate values and the numerical solution 
to Eq. [18] is shown in Fig. 3. 

For small shear rates, such that ncGD < 1, Eq. [24] is a better approximation 
for/5. In this case, approximating the square root gives 

/5, = [33 + 3/2 A '2 f~- (1 - [32)3d[3 

= [3m 3 + 3/2 (A') 2 (0.4571 - 13,; + [3-3 _ 3/5 [3-5 + 1/7 [3-7) [A5] 

This approximate value of/5 is compared with the numerical solution to Eq. 
[24] in Fig. 3, and seen to be in good agreement. In this case, for small [3", A' -~ 
[3" so that 

/5' = 0.69(A') 2 (A6) 

Appendix 2 

Uniform Treatment fo r  High and Lo w  Shear Rates 

Let the required number of bonds be the greater of n" and ncGb ] cos 0 1. That is, 
we assume that the actual number of bonds must exceed the greater of these 
quantities before sticking will take place. This means that P = 1 if both Eqs. 
[13] and [21] are satisfied: 

P = 1 if A [3-2(1 - [32)3/2 > c o s  2 0 [A6] 

and A'[3- l(1 - [32)3/2 > i cos 0 l  [A6'] 

For prescribed values of A and A',  we must now consider for what values of 
([3,0) (0 ~< [3 < 1 ,0  < 0 < rr/2) one orthe other of these inequalities is limit- 
ing. 

Let 

P 

= A/A'  - nc [A7] 
ncGD 
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If-y > 1, we have already argued that the low shear rate (primed) approxima- 
tion applies, and inequality [A6'] must be limiting. To see this, chose any pair of 
[3,0 values satisfying [A6']. To obtain the left side of [A6] we multiply that in 
[A6'] by ~//[3 (>  1) and to get the right side of [A6] we multiply the right side of 
[A6'] by cos 0 (-< 1). Hence if [A6'] is satisfied, so also is [A6], and [A6'] is lim- 
iting if ~ />  1. 

For ~ < 1, consider [3,, and 13;" as defined in Eqs. [14] and [22] 

A(1 - [32)3/2 = [32 

which using [A7] may be written as 

A'(1 - [32m)3/2 = [32/.y [A8] 

and 

A'(1 - [3"2) 3/2 =[3" [A8'] 

Note that if [3m = "~, the two equations are the same so that [3,. = [3". If 
[3m > ~/, then letting "r = R, Eq. [A8] may be written 

RAt (1  ~ [32)3/2 = 13m [m9]  

which is the same as Eq. [A8'] except that RA' < A'  replaces A'. Since [3;. is a 
monotonically increasing function of A',  it follows that [3;. > 13m. Conversely 
if [3m < "r so that R > 1, [3m > [3;.. We thus have two cases to consider 

I. [3;. > [3m > y 
II. 13;. < 13m < "u 

as sketched in Fig. 6. If [3 < max ([3m, [3;.) the region where P = 1 is clearly 
determined by the smaller of [3,,, 13;.. However, when 13 > max (13m, [3") will 

1 

rS'rn 

13m 

Y 

Case:]:= [3" >13rn >Y 

1 

13m 

- -  - [~1 m 

Case ]I: 13" < [Jrn <Y 

I I 
0 e n/2 0 e n/2 

Fig. 6. Domains of (0,13) where P = 1 are cross hatched. The curves 0m(13 ) and 
0"(13) are schematic and indicate that in case I there is a crossing of the curves while in 
case II there is not. 
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the two curves 0m(13) and 0m(13) ever cross? 0 m and 0m are defined by Eqs. [15] 
and [23], here written as 

cos 0" = A'(1 - 132)3/213 -1 [A10'] 

~/A'(1 - [ 3 2 ) 3 / 2 [ 3 - 2  
COS 0 m ~- [ A 1 0 ]  

COS 0 m 

The right-hand sides are equal and 0m = 0", if COS 0m = "//13. Let the corre- 
sponding value of [3 be denoted by [3c, which satisfies 

~/ = A'(1 - [32)3 /2  [A11] 

This equation will have a solution (0 < [3c < 1) only ifA' > -,/. By comparing 
Eqs. [Al l ]  and [AS'], it is seen that if [3" > -/(case I), then [3c > 13m, while if 
13" < % then [3~ < 13',,. Hence, [3~ lies in the required range only for case I. 
We conclude that only for case I and for A' > ~ will there be solutions of Eqs. 
[A10] and [A10'] with 0m = 0" in the range 0 ~< 0m ~< rr/2, max (13m[3") ~< 13 
~<1. 

Note that since 13m < 1 and [3m < A', the condition [3m > "Y includes both 
conditions A' > ~/and 1 > ~. We have thus partitioned the positive A', A quad- 
rant into two parts by the curve [3m = % as sketched in Fig. 7. For [3m ~< "Y the 
previous P'  treatment is correct while for 13m > ~/we need a new treatment, in 
which unprimed quantities are used for 0 ~< 13 ~< ~c and primed quantities for 

13 < [3 1. 
Hence the new treatment gives, for 13m > 

~L 

y =  ~m - -  
f-  

I I I I I I  
Unif ied 

Treatment 

Required 

- -  P' Valid 

A 

Fig. 7. Regions of A', A space where unified treatment, Eq. [A12],is required. 
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TABLE 1 
Values of/3,, From Numerical 

Integration of Eq. [A12] '~ 

[~m A 31 [3c P "  

0.99 349 0.5 0.996 0.978 
0.98 122 0.5 0.992 0.956 
0.95 29.6 0.5 0.979 0.892 

0.25 0.992 0.893 
0.90 9.78 0.5 0.956 0.791 

0.25 0.983 0.793 
0.80 2.96 0.5 0.899 0.608 

0.25 0.961 0.614 
0.10 0.989 0.615 

0.70 1.34 0.50 0.821 0.451 
0.25 0.933 0.461 
0.10 0.981 0.462 

0.60 0.703 0.50 0.706 0.316 
0.25 0.895 0.333 
0.10 0.970 0.334 

0.50 0.385 0.25 0.838 0.227 
0.10 0.955 0.229 

0.40 0.208 0.25 0.742 0.141 
0.10 0.931 0.145 

0.30 0.104 0.25 0.535 0.0743 
0.10 0.889 0.0809 
0.05 0.957 0.0810 
0.025 0.983 0.0812 

0.20 0.0425 0.10 0.787 0.0358 
0.05 0.921 0.0361 
0.025 0.970 0.0362 

0.10 0.0102 0.10 0.100 6.89 
0.05 0.779 8.3 
0.025 0.919 8.71 
0.010 0.977 8.84 

0.04 1.6 X 10 - 3  0.025 0.683 1.37 
0.010 0.918 1.41 

0.02 4.00 x 10 -4 O.OI 0.777 3.548 
0.005 0.918 3.53 

0.01 1.00 • 10 -4 0.01 0.100 6.85 
0.005 0.777 8.70 
0.0025 0.918 8.82 
0.001 0.977 8.83 

• 10 -3 
x 10 -3 
X 10 -3 
• 10 -3 
• 10 -3 
X 10 -3 
• 10 -4 
X 10 -4 
x 10 -5 
• 10 -5 

• 10 -s  
x 10 -5 

aCalculations were done for the listed values of 13m and various choices of 
~<13,,. The underlined values do not change, to three significant figures, as 
is further decreased. That is, they represent P. Note that the deviations from 
P are slight. 
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p,---r = 1 - 3 fls~ sin 0m132d[3 - 3 f~c sin 0~132d[3 [A12] 

where [~m, ~c, 0m, and 0" are defined by Eqs. [A8], [Al l ] ,  [A10], and [A10'], 
respectively. 

Note that there is no region of parameter space for which P is valid. This is be 
cause there are always collisions at large 13, but small relative velocities (cos 0 
< <  1) for which there are less than n'c bonds formed but for which the sticking 
criterion [10] is satisfied. For such collisions n~ > n'~Gb cos 0 and n" is the lim- 
iting number of bonds. 

The sticking probability as computed from Eq. [A12] is shown in Table 1. 
The results show that except for a small region near 13m = % the new Eq. [A12] 
gives results very close to P. From Fig. 6 it appears reasonable to a/ways use the 
smaller of P (A) as P '  (A') and the results in Table 1 show that this is 
a good approximation. 
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