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ABSTRACT 

A closed, convex and  bounded  set P in a Banach  space E is called a 

po ly tope  if every f ini te-dimensional  section of P is a polytope.  A Banach  

space E is called polyhedral  if E ha~s an equivalent  no rm such t ha t  its un i t  

ball is a polytope.  We prove here : 

(1) Let  W be an  a rb i t ra ry  closed, convex and  bounded  body  in a 

separable  polyhedra l  Banach  space E and  let e > 0. T h e n  there  exists  

a tangent ia l  e -approx imat ing  polytope P for the  body  W. 

(2) Let P be a poly tope  in a separable  Banach  space E.  Then ,  for 

every e > 0, P can  be e -approx imated  by an  analyt ic ,  closed, convex and  

bounded  body  V. 

We deduce  from these  two resul ts  t ha t  in a polyhedral  Banach  space (for 

ins tance  in c0(N) or in C(K) for K countable  compact ) ,  every equivalent  

n o r m  can be approx imated  by no rms  which are analyt ic  on E \ { 0 } .  

R e c e i v e d  M a r c h  18, 1996 a n d  in  r ev i s ed  f o r m  N o v e m b e r  11, 1996 
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Introduct ion  

Two kinds of approximation of convex bodies in finite-dimensional spaces are the 

mostly used in various areas of mathematics: 

(1) Approximation by polytopes. 

(2) Approximation by smooth (analytic) convex bodies. 

By approximation we mean the following. Let W be a closed convex bounded 

body in a Banach space. For simplicity, let us suppose that 0 E int(W). We 

shall say that the closed, convex and bounded body V E-approximates the body 

W if V C W C (1 + e)V. We say that a closed, convex and bounded body V 

such that  0 E int(V) is analytic if the Minkowski functional fy of this body is 

analytic except at the origin. 

In a finite-dimensional space E, the simplest way to approximate a closed, 

convex and bounded body W by an analytic closed, convex and bounded body 

V is apparently to proceed in two steps. First, we approximate W by a polytope 

P = {x E E: maxf i (x)  _< 1, f, e E*,i = 1,... ,n} 

and then we approximate the polytope P by a closed, convex and bounded body 

n 

V--{xCE:  ~ f , ( x )  v< 1) 
* = ]  

with p even integer big enough. We shall see that this program also works in 

infinite dimensions under suitable assumptions on the space E. 

Let P be a closed convex body subset of l~ n. Then P is called a (finitely di- 

mensional) polytope if there exists a finite set {Pk}~=l such that P = co{pk}~=l. 

A closed, convex and bounded set P in a normed space E is called a polytope (K- 

polytope in [10]) if every finite-dimensional section of P is a finite-dimensional 

polytope (for other definitions of infinite-dimensional polytope see [4] and [17]). 

A Banach space E is called (isomorphically) polyhedral if E admits an equiva- 

lent norm such that  its unit ball is a polytope [16]. As it is proved in [8, 9], a 

separable Banach space is polyhedral if and only if it admits an equivalent norm 

with a countable boundary (a subset B C S(E*) of the unit sphere S(E*) of a 

dual Banach space E* is called a boundary ([9, 12, 13]) if for each x C E there 

exists f e B such that f(x) = ]lxll). For example, each isometric predual of 

61 (in particular C(K) if K is countable compact) is polyhedral. On the other 

hand, polyhedral Banach spaces are saturated with co(N), i.e. if E is a polyhedral 

Banach space, then every infinite-dimensional subspace of E contains a subspace 

isomorphic to c0(N) [9]. 
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We shall show in this paper that the above approximation procedure works 

in polyhedral spaces. On the other hand, it is not difficult to see that  if E is a 

Banach space and if there exist in E a closed, convex and bounded body with non 

empty interior and which is a polytope, then E is an isomorphically polyhedral 

Banach space. So the first step of the above program only works in isomorphically 

polyhedral spaces. The approximation of a closed, convex and bounded body W 

by an analytic closed, convex and bounded body V in Banach spaces which are 

not polyhedral (for instance in Hilbert spaces), is also possible, but new concepts 

need to be introduced. This will be treated elsewhere. 

Let us mention that a polytope with empty interior (in the subspaee that  it 

generates) has also an empty algebraic interior [10]. We do not know if such 

examples do exist. Anyway all the polytopes under consideration through this 

paper are assumed to be closed, convex and bounded bodies with 0 in their 

interior. 

Let us now describe the content of this paper. 

In section 1, we give the characterization of separable polytopes in terms of 

convex bodies with countable boundary. Then we prove that each closed, convex 

and bounded body in a separable isomorphically polyhedral Banach space can 

be approximated by polytopes (even by tangential polytopes). Construction of 

approximating polytope uses some ideas from [1] and [18]. 

In section 2, we show that each closed, convex and bounded body in a vector 

normed space with countable algebraic basis can be approximated by polytopes. 

In section 3, we prove that  each closed, convex and bounded body with count- 

able boundary can be approximated by analytic closed, convex and bounded 

bodies. Here we use some ideas from [6]. Together with the results of sec- 

tion 1 this yields that each closed, convex and bounded body in a separable poly- 

hedral Banach space can be approximated by analytic closed convex and 

bounded bodies. 

Since the approximation of a given closed, convex and bounded body W such 

that 0 E int(W), by some closed, convex and bounded body V such that 0 E 

int(V) is equivalent to the approximation of the Minkowski functional fw by 

fv (uniformly on bounded sets), we have shown that each equivalent norm on 

a separable polyhedral Banach space can be approximated by norms which are 

analytic on all the space except at the origin. This result answers the following 

question from [2]: find a Banach space such that each equivalent norm on it can 

be approximated by norms possessing smoothness of order higher than one. 
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1. P o l y h e d r a l  a p p r o x i m a t i o n  in B a n a c h  spaces  

Recall that  all the closed, convex and bounded bodies W under consideration 

possess the property 0 E int(W). We say that a polytope P is a tangential 

polytope for the body W if P D W and each maximal face of P is tangent to 

the body W. Recall that a polytope P is e-approximating for the body W if 

W c P c (I + e)W. 

The main purpose of this section is to prove the following: 

THEOREM 1.1: Let W be an arbitrary dosed, convex and bounded body in a 

separable polyhedral Banach space E and e > 0. Then there exists a tangential 

e-approximating polytope P for body W.  

Before proving Theorem 1.1, we give some preliminary results. We say that  a 

subset B C W ~ of the polar W ~ of W is a boundary (for the set W) if for each 

x E OW there exists a functional f E B such that f ( x )  = 1 = m a x f ( W ) .  Of 

course w*-cl co(B) = W ~ We say that the space E has a countable boundary if 

its unit ball admits a countable boundary. The following theorem (see [9, 10, 11]) 

summarizes some properties of polyhedral Banach spaces that we will use. In its 

statement, S(E*) denotes the unit sphere of the space E* and (e,) a decreasing 

sequence of real numbers converging to 0. 

THEOREM A: Let E be a Banach space of weight c~ such that its unit ball is a 

polytope. Then there exists a boundary B C S(E*) of cardinality ~ such that 

for every I E B, the face {x E S(E): f ( z )  = 1} has non-empty interior in the 

hyperplane {z E E: f ( x )  = 1}. 

Conversely, if  a separable Banach space E has a countable 

boundary {f~}, then the unit ball U of the equivalent norm [[[xll I = sup{(1 + 

e~)f(x~): i = 1, 2 , . . .  } is a polytope. U also admits a countable boundary B = 

{h~} (actually h~ = (1 + e~)f~) with the following 

property: every w*-limit point f of the set B such that Ill/Ill = 1 does not 

attain its norm. Each functional f E E* attaining its supremum on U belongs 

to the set lin{h~}, (lin{h,} is the linear span of the set {h~}). 

The proof of the following proposition is based on Theorem A and uses some 

ideas from [7, 8, 11]. Its first part shows that the structure of the topological 

boundary of an infinite-dimensional separable polytope P (with non-empty in- 

terior) is similar to the structure of boundary of symetrie one (see Theorem A), 

i.e. the boundary OP of P consists of countably many maximal faces that are 

solid parts of the corresponding hyperplanes. 
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PROPOSITION 1.2: Let P be a polytope in a separable Banach space E. Then 

P admits a countable boundary B C po. 

Conversely, let A be a dosed, convex and bounded body with countable 

boundary and ~ > O. Then there exists a polytope P with the following 

properties: 

(1) A c P c ( I + c ) A .  

(2) There exists a countable boundary {h~} C po such that each w*-limit point 

h of the set {h~} with the property h COP ~ does not attain its supremum 

on P. 

(3) For every sequence {%} of positive numbers, there exists a sequence {t,} 

of linear functionals such that: 

(a) ILh, - t ,  II < 
(b) Every sequence {l,} such that Hl, - t,[[ < 7i/4 satisfies w*-cl co{l,} D 

po. 

(c) The set P1 = {x E E: l,(x) <_ 1} is a polytope. 

Proof." Let y E int P. We define an affine mapping Ay: P --+ E by the formula 

Ay(x) = Zy - x (x �9 P). 

Write Py = Ay(P)  and Vy = PNPy.  Of course Vy is a symetric polytope, and, by 

Theorem A, there exists a countable boundary By = {fJ} for Vy. It  is obvious 

that  OV~ C OPUOPy.  Let x �9 O V y n O P  be such a point that  there exists 

5 > 0 with the property (x + 5U(E)) N OP C OVy. If f~ �9 By is a supporting 

functional at the point x, i.e. f~(x) = 1 = supfy3(Vy), then it is easily verified 

that  f~(x) = 1 = supfy3(P). Let {y,} be a dense subset in inta(P) .  Simple 

consideration shows that  for each x �9 OP there exist y, and 5 > 0 such that  
3 " (x + 5U(E) )N  OF C 0Vy. Thus the countable set B = (.J,=l{f~,;3 = 1 . - .  ~ }  is 

a boundary for the polytope P.  

Now let A C E be a closed, convex and bounded body with a countable 

boundary {f,} and r > 0. Without  loss of generality we can assume that  0 �9 

int(A). Let {e,} be a decreasing sequence of positive numbers tending to zero, 

sl  < e. Write 

h, - 1 + e, f~, K = w*-cl co{h,} 
l + e  

and 

P = {x e E: hi(x) <_ 1,i = 1 ,2 , . . . } .  

I t  is clear that  

A c P c ( I + ~ ) A ,  po = K, A ~ D K D (I + ~)-I  A~ 
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Let ho C OK be a w*-limit point of the sequence {h~} (ho = w*-l imh~)  and 

let xo E OP be such that ho(xo) = maxh0(P)  = 1. Since r -+ 0 we have 

h0 = w* l imf i / (1  + r and therefore h0 e (1 + e ) - l A  ~ Since x0 E (1 + E)A we 

have supz0((1 + E)- IA  ~ _< 1 and so ho(xo) = 1 = maxx0((1 § r176 Since 

{(1 § r163  is a boundary for (1 + r there exists a functional (1 + r  3 

such that  (t + r  = 1. Thus ( l + e ~ ) ( l + ~ ) - l f 3 ( x 0 )  = l §  > 1 = 

maxxo(K) .  This contradiction shows that each w*-limit point h0 of the set ~hj} 

such that  ho E OK does not attain its supremum on the set P. Let L C E 

be a finite-dimensional subspace. Then from the compactness of the set L N P, 

there exist a positive number ~ and an integer m such that for every j > m, 

sup{hi(x): x E L N P} < 1 - a. This proves both that P is a polytope and that  

{h,} is a boundary. To prove (3), it is enough to put tj = (1 + %)h,, i = 1, 2 . . . .  

and to observe that the property 

(1) w'-cl coIl~} D w*-cl co{hi} 

is equivalent to the following one: for each x G E 

maxx(w*-cl co{l,}) > maxx(w*-cl co{hi}). 

Since % --+ 0, it follows that  each w*-limit point of the set {t,} belongs to the set 

w*-cl{h,}. Thus P1 is a polytope by the same reason that P is a polytope. The 

proof is completed. | 

The following lemma is similar to lemma 4.1 [18] and to the first part of 

Theorem 1 [1]. We give a proof that is very similar to the consideration in [1]. 

LEMMA 1.3: Let E be a Banach space with separable dual E* and {x~} C S(E)  

be an M-basis of E such that the linear span of the biorthogonal system {x~} 

is dense in E*. Let W C E be a dosed, convex and bounded body such that 

0 E int(W) and 0 < e < 1/2. Then there exists a w*-compact subset F C W ~ 

such that: 

(1) (1 + 4~)-1W ~ C w*-cl coF C (1 + E ) - I W  ~ 

(2) For each integer i, the set xi(F)  is finite. 

Proof: Write d = inf{ilgi]: g e OW ~ and T, = {/(x,) :  f E W~ i = 1 , 2 , . . . .  

Each set T, is bounded and thus there exists an (a/(2 i+2 IIx* II)-net C / i n  T,. Pu t  

A =  a , x ~ E 1 / ( l + e ) W ~  a ~ e C i  , F = w * - c l ( A ) .  
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It is obvious that  x,(F) = x~(A) C C,, i -- 1, 2 , . . . .  Thus condition (2) is satisfied. 

Of course w*-cl co(F) C ( I+e) - IW ~ To check that  ( I + 4 E ) - I w  ~ C w*-cl co(F),  

take f E (1 + 2E ) - IW ~ and, using the density of the set lin{x*} in E*, find 

n 

g = b,x; c (1 + 2 )-1w ~ 
z-~- i 

such that  Ill - g]I < ag/6. It  is clear that  bi C T,, so there exists a, C C, such 

that  ]b, - a~ I < ~d/(62'lix*ll), i = 1, 2 , . . . n .  Hence 

n 

IIg - < ed/6, 

n 
and now a straight verification shows that  h = ~1 ar E (1 + c ) - l W  ~ Thus, 

by definition, h E F and obviously I[f - gll < ed/3. From the last inequality, 

taking into account 0 < e < 1/2, one can deduce that  (1 + 4e)- IW ~ C w*-cl 

co(F). The proof is completed. I 

The following Lemma 1.4 is also similar to some results from [18]. But because 

of our purpose, our formulation is slightly different and our proof is simpler. In 

Lemma 1.4, we use the notations of Lemma 1.3. In addition, we put Mn = [x,]~ • , 

n = 1, 2 , . . .  

LEMMA 1.4: For arbitrary e > 0, there exist a sequence of points {gk} in the 

set F, a sequence of integers {nk}, nk ~ cx3, and a decreasing sequence {F~} of 
w*-closed subsets of F such that: 

(1) Ul( (gk  + M n k ) n F k ) = F ,  
(2) diam((gk + Mnk) n Fk) < c. 

Proof: Since F is w*-compact in the separable dual space E*, we have, according 

to the Baire category theorem: for every ~ :> 0, there exist a point g E F and a 

w*-neighborhood G of g such that  G n F ~ O and diam (G n F)  < ~. 

In view of the structure of the set F,  the sets (h § M~) N F,  for h ~ F and 

n E N, form a base of w*-topology on F and each such set is both a closed and 

open subset of (F,w*). Moreover, the family ~ = {h + Mn: h E F,n E N} 
contains countably many (different) sets and obviously each w*-compact subset 

of F has the same structure as F.  

By transfinite induction, we define, for each ordinal a,  the sets F ,  and 

(g~ + Mn(~)) as follows: F0 = F,  F~+~ = F~ \ ( g ~  + M~(~)), where (g~ + M~(~)) 

is a member of the family -~ chosen so that  (ga + Mn(a)) n Fa ~ 0 and 
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diam((h~ + Mn(~)) N F~) < e; if ~ is a limit ordinal, then put F~ = NZ<~ FZ. 

Since the family ~ is countable and each set F~ is w*-compact, there exists a 

countable ordinal r / such that  F v 5~ ID and Fv+I = ~. It  is clear that  

U + n = F. 

Let us enumerate the countable family {g~ + M~(~)}~_<~ in the following way: 

{gk + Mnk }~--1' Since for each integer q there exist only finitely many members 

g + / l In  of the fanfily ~ such that  n _<_ q, we have nk --+ co as k tends to oo. The 

lemma is proved. | 

The following lemma was proved in [7] (see Theorem 2.2.3) and in [5] when 

the boundary B is equal to the set of extreme points of the dual unit ball of E. 

For the general case, see [14]. 

LEMMA 1.5: Let X be a Banach space that admits a boundary that can be 

covered by a countable union of [I.[[-compacts. Then for every e > 0, there exists 

an e-isometric norm on X with a countable boundary. 

L~;MMA 1.6: Let E be a separable polyhedral Banach space with a norm 

possessing the properties of the second part of Theorem A. Let L C E be a 

finite-dimensional subspace of E, M = L • and let x C E, h C S (M)  be such 

that h(z) = maxx (U(M) ) .  Then there exists ho E lin{h~} n S (M)  ({h~} come 

from Theorem A) such that ho(x) = maxx (U(M)) .  

Proof: If m a x x ( U ( M ) )  = 0, then let h0 be an arbitrary functional from 

(lin{h~}) N S(M) .  In the case h(x) r 0, we can assume (without loss of 

generality) that  ho(xo) = 1. Let q: E ~ E / L  be the quotient map. Of course 

Ilq(x0) [I = 1, and, since L is a finite-dimensional subspace, there exists an element 

x~ E S(E)  n (xo + L). It  is clear that  h(x~) = h(xo) = 1. Thus the functional h 

at tains its norm, and, using Theorem A, h E lin {h~}. To complete the proof it 

is enough to put h0 -- h. | 

LEMMA 1.7: Let W be a closed, convex and bounded body in a Banach space 

E such that 0 E int(W), e > 0 and A be a polytope possessing the property 

(2) W C A C (1 + e)W. 

Then for every el > e, there exists a tangential polytope P1 for the body W such 

that W C P1 C (1 + e l )W.  

Proof: Let e2 > 0 be such that  (1 + e)(1 + e2) < (1 + 61). By Proposition 

1, there exists a polytope P possessing the properties (1), (2), (3) with e = e2. 
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From property (1) of Proposition 1 and assumption (2), we have W C P C 

(1 + e2)(1 + e)W. Thus 

W ~ D p ~ ~ ( (1 - / -C2) (1 - ] -~ ) ) - Iw  ~ 

and hence 

W ~ D (1 +r  + ~2)(1 +r ~ D (1 "~- ~ ' I ) - I w  ~ 

Write A = (1 + E)(1 + e2)(1 + el) -1 < 1. Since AP ~ C AW ~ using the notation 

of Proposition 1, we can assert that: 

(2 ~ {Ah,} is a boundary for A-1P such that each w*-limit point h of the set 

{Ah,} belonging to O(;~P ~ does not attain its supremum on the set A-~P. 

(3 ~ For every a > 0, there exists a sequence of linear functionals {t,} 

possessing the properties: 

(a) lIAh~ -ti][ < ~/2  ~. 

(b) For every sequence {l,} such that lilt - t~ll < a/2 ~+2, the following holds: 

w*-cl co{l~} D AP ~ 

(c) The set P1 = {x E E: l,(x) _< 1, i = 1, 2 , . . .  } is a polytope. 

We fix a > 0 small enough in order to have every sequence {/,} (from property 

(b)) inside int(W~ Let {fi} C S(E*) be an arbitrary sequence w*-tending to 

zero. Denote by T, the straight line containing the functionals l, and l, + ft. Let 

u~ and u~ be the points of intersection of the line T, with the boundary OW ~ 

(recall that l, E int(W~ Using the Bishop Phelps Theorem about the density 

of the set of flmctionals that attain their supremum on the set W, it is not 

difficult to establish the existence of the functionals l, (ill, -t N < and 

1 and 2 attain their supremum g* (llf, - g, II < 2 - ' )  such that both functionals u, u, 

on the set W. It is clear that  

(3) w*-lim(ul - Ah,) = w*-lim(u~ - Ah,) = 0. 

Since the point l~ is in the segment [u~, u~], i = 1, 2 , . . . ,  we get 

w*-cl co{u~, 2 oo u, }1 D w*-cl co{li} D AP ~ 

1 _< 1,u~ < 1,i 1,2, . .},  we have /='1 C A- tP .  Denoting P1 -- {x E E: u, _ = �9 
Let h be a w*-limit point of the set 1 2 oo {%,ui} i=l  such that h E OPt. From 

equality (3) and from the fact that  P~ D AP ~ it follows that  h E O(AP~ Thus 

by (2 ~ the functional h does not attain its supremum on "the set A-1P. But 
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suph(P1) = suph(A-aP)  = 1 and P1 C A-1P, hence the functional h does 

not at tain its supremum on the set P1. Thus P1 is a polytope with boundary 
~1 2 oo co{u:, .~,~}~' c P f  D { ~, u~ }~=1' Since Pa ~ = w*-cl W ~ and AP ~ ( l + e a ) - x W  ~ 

we have 

W c P1 c (1 + el)W. 

It  is clear from the construction that  Pa is a tangential polytope for W. The 

proof is completed. | 

We are now ready to prove the following: 

THEOREM 1: Let W be an arbitrary closed, convex and bounded body in a 

separable polyhedral Banaeh space E. Then, for every (~ > 0, there exists a 

tangential 5-approximating polytope P for the body W. 

Proof: We assume that  the norm on the space E possesses all the properties 

of Theorem A. In view of Lemma 1.7, it is sufficient to prove the existence 

of a &approximating polytope. Let e > 0 and let the w*-compact F C W ~ 

the sequence of functionals {gk} and the subspaces Mnk, k = 1, 2 , . . . .  be from 

Lemmas 1.3 and 1.4. It is clear that  

(4) U(9,~ + eU(M~)) ~ F. 
1 

By Lemmas 1.5 and 1.6, there exists, on the quotient-space Xk = E/[x~]~ k, an 

e-isometric norm II1-[[I possessing a countable boundary. Let Y(Mnk) be the unit 

ball of the space (Mar, [[[.[[[) and {%k}~=1oo C V(M,~) be a countable boundary. 

Of course we can assume that  

(I-e)V(Mnk)cU(M~k)cV(Mn~), k =  1 ,2 , . . . .  

From (4), we have 

Write 

o o  

c = U(gk +~V(M, , , ) )  D ~'. 
1 

o o  

B =  U { g k + v / k , i : l , . . . , ~ 1 7 6  and Q = { x E E : f ( x )  ~ 1, f E B } .  
k=l  

We claim that  B is a boundary for the body Q. First, we show that  C is w*- 

closed. Let {hm} C C be a sequence tending to ho in the w*-topology. If 
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infinitely many of hm are in one of the sets gk + eV(Mnk), then of course h0 E C. 

So assume that  hm E gkm + :V(Mnkm) for m = 1 , 2 , . . . ,  with k m --+ oo as 

m ~ ec. Write hm = gkm +:Um, with Um C V(Mnkm ) for m = 1 , 2 , . . . .  Since 

km --~ co, we have nk,,~ --+ oc (see Lemma 1.4) and therefore w*-lim u m =  0. 

Thus h0 = w*-limgk,,  C F C C. This proves that  the set C is w*-closed. 

Certainly 

QO = w*-cl co(C) = w*-cl co(B) 

and hence C is a boundary for Q. Let x c OQ and h E C such that  h(x) = 1 = 

maxx(Q~ Since h E C, there exists an integer k such that  h E gk + :V(M~k). 

If gk(x) = 1, then x(V(J~f[nk)) = 0 and, for each i, 

If gk(x) < 1, then 

supx(V(ink)) = (1 - 9 k ( x ) ) / :  # o 

and, using the fact that  the set {v k} is a boundary, there exists a functional v~ 

such that  @(x) = supx(V(Mnk)). Thus we have proved that  O has a countable 

boundary and we can apply Proposition 1. It is clear that  for e small enough, 

we will be able to make 5-approximation. Theorem 1 is proved. | 

2. P o l y h e d r a l  a p p r o x i m a t i o n  in n o r m e d  spaces  w i t h  countable  

a l g e b r a i c  bas i s  

In this section, we prove that  in normed spaces with countable algebraic basis, 

every closed convex body set can be approximated by polytopes, and that  in such 

spaces, polytopes have countable boundary. 

The following are some elementary properties of finite-dimensional polytopes: 

(*) Every finite-dimensional polytope containing () as an interior point has a 

finite boundary (namely the set of the extremal points of the dual polytope). 

(**) Suppose P is a convex body in N u, containing 0 as an interior point, e > 0. 

Then there exists a polytope Q such that  P C Q c (1 + : )P .  

(***) Suppose P,  Q are polytopes in N n, e > 0 such that  P N spanQ c Q, 

6 E intQ. Then ext((1 + :)Q) c ext(co(P u (1 + :)Q)) .  

PROPOSITION 2.1: In a normed space with countable algebraic basis, each 

polytope admits a countable boundary. 

Proof: A polytope K on X has a countable boundary. Indeed, let (Xn) 

be a sequence of finite-dimensional subspaces of X such that  X -- ~J~eN Xn. 
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According to (*), each K n Xn has a finite boundary ( f~ , f~ , . . . , ]~) .  Let 

b~ E X be a Hahn Banaeh extension of f~ (i.e. sup~-nx,, fnk = sup,(b~.). The 

set B := {b~; 1 5 k < Pn, n E N} is a countable boundary of K. | 

THEOREM 2.2: Let (X, I[ ' II) be a normed linear space with countable algebraic 
basis.  Then every closed convex body set B, 0 E int(B), can be approximated 
by polytopes. 

Proof of Theorem 2.2: Fix e > 0 and choose a sequence ek "N 0, e I < 1/10 so 

that 1-ik~__~ (1 + ek) < 1 +e.  Suppose {xk}ke~ is the algebraic basis of X. Denote 

by X,~ = span{xk}[!=l, B= = Xn riB. (We have B,~+I NXn = B~.) We construct 

by induction a sequence {Kn},~EN of polytopes in X= satisfying 

B~ C Kn C 12I (1 + ek)BT~ and Kr~+l K1Xn = (1 + en+l)Kn 
k=l 

as tbllows: first define KI = (1 + el)B1. 

INDUCTIVE STEP: If K~ has been constructed, denote by D~+I a polytope, 

given by (**), such that 

f en4_ 1 x 
Bn+l C Dn+l C /1 + Bn+l. -T-J k 

So we have 

Consequently 

f en+l  "~ 
D n + l  n Xn C ,,/1 + --~--] Bn Cn+l "~ 

C (1 + T ]  Kn. 

cn+l "~ (Dn+l l--I Xn) C ( l  + 3e4+----..-~l ) Kn. (1 + ---~-/  

Put  

K,~+I = eo(D,~+l U (1 + en+l)Kn). 

By (***), we have Kn+l n Xn = (1 + ~n+l)Kn. Define/~n = [Ik=n(~176 1 + ek)K,~. 
Then Bn C / ~  C (1 + e)B~ a n d / ~ + 1  n X~ = R~. 

This allows us to define a new polytope R in X such t h a t / ~  N Xn = / ~ .  The 
approximation condition obviously holds. | 
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3. Analytic approximation 

Let G C E be  an open subset  of a Banach  space E.  A real  or complex  funct ion 

defined on a set U is said to be  ana ly t ic  if, for every x E G, there  exists  a 

ne ighborhood  V of x such t ha t  the  Taylor  expans ion  of p at  x converges un i formly  

to ~ on V. 

THEOREM 3.1: Let E be a Banach  space. Then every equivalent norm on X 

with countable boundary is a uniform limit (on bounded sets)  of  a sequence of 

analytic norms.  

Proof: Let us denote  II" II an equivalent  norm on E with  a countab le  b o u n d a r y  

B. Since B is countable ,  we can wri te  B = {bn; n E N}. We recall  t h a t  B is a 

b o u n d a r y  of E means  t ha t  B is a subset  of the  uni t  sphere of E* such tha t ,  for 

each x ~ E,  there  exists  no = no(x) such t ha t  b~o(X ) = Ilx]l . Let  ~ > 0 and let 

(hn) be a sequence of posi t ive  real numbers  such tha t  5o = e, 5~+1 < 5~ for each 

n E N and l i m n ~ 6 n  = O. We denote  hn :=  ( l + 6 r ~ ) b ~  and we define a n e w  

n o r m N o n  E b y  

N(x) = sup{]h~(x)l; n e N}. 

It  is clear t ha t  N is a no rm on E - t h a t  satisfies ]lxl] <__ g ( x )  <_ (1 + e)llxll. Of 

course, N is not  ana ly t ic ,  bu t  satisfies the  following p roper ty :  for each x C E 

with  g ( x )  < 1, there  exists  no = no(x) e N and a ( x )  > 0 such t ha t  

Ihn(x)l < 1 - c ~ ( x )  

whenever  n > no. Indeed,  B is a boundary ,  so for each x E E,  there  exists  no 

such t h a t  for every n C N, bn(x) <_ bno(X). For n > no 

(1 + 5n)lb~(x)l < (1 -t- 6no+l)lbno(x)l = (1 - (~)(1 + 6no)bno(X) <_ 1 - c~(x) 

where 

We now set 

a(z) := Go -Go+l  
1 + 6no 

-~-oo 

(tg(X) = E hn(x)2n+P' 
n = l  

where  p is an even integer to be fixed later .  Final ly ,  define 

C :=  {x c E ; ~ ( x )  <__ 1}. 

The  Minkowski  funct ional  Ill.l I] of C is clearly the  unit  bal l  of an  equivalent  

no rm on E.  Let  us show tha t  III.LII is ana ly t ic  in a ne ighborhood  of each po in t  
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x E E such tha t  IIIxlll = 1. The  Minkowski functional II1.111 of C is given by the 

equat ion  (x/lllxlrf) = 1, so  ; 1. Let us denote by E ~ the complexified 

space of E ,  /V the extension of N to E ~ and define the extension ~5 of p to E ~ 

by ~(z) = ~-]~=1 h~(z) 2n+p" Since ~(x) = 1, there exists n such tha t  hn(x) r O. 
So, we have ~'(x).x +oo = 2~=1(2n +p)hn(x) 2~+p > 0 and @'(x) r O. We claim 

tha t  ~5 is well defined and holomorphic  in a ne ighbourhood of x in E ~. Indeed, 

since IIIxlll _< 1, we also have N(x)  < 1 (see the proof  below). If y C E ~ satisfies 

N ( y  - x) < c~(x)/2 and n > no(x), then 

Ih~(y)l _< IhT,(y - x)l + Ihn(x)l <_ ]V(y - x) + 1 - a(x) < 1 - a(x)/2.  

So the series defining ~5 converges uniformly on the set 

{u e < 

According to the Implici t  Function Theorem ([3]), the function A: E c -+ C 

defined by ~((z /A(z ) )  = 1 is holomorphic.  Hence Ill.Ill, which is the restr ict ion 

of A to E, is analytic.  

It  remains  to prove tha t  for p large enough one has 

(1 - e)i[Ixll [ < N(x) < [llx[ll. 

Indeed,  assume first tha t  Ilixlll < 1. Since }-]~n~__] hn(x/lllxll]) 2n+p -- 1, we 

have ~ n=lh~(x) 2n+p < 1. Hence for each n, hn(x) _< 1 and N(x)  < 1. So 

N ( x )  _< ]ilxl]l .  

On the other  hand,  let us assume tha t  N(x)  < 1 - e. Then  hn(x ) <_ 1 -- e 
(N3 OO 1 - -  for all n. Hence ~-],~=1 hn(x) 2n+p <- ~-~n=l( C) 2n+p < 1 if p is large enough. 

Consequently,  ]llxlll < 1. This proves tha t  (1 - e)lilxlll < N(x)  and completes  

the proof  of the Theorem.  g 

The  following Corol lary is a consequence of Theorems  1.1 and 3.1. 

COROLLARY 3.2: Each equivalent norm on a separable polyhedral Banach space 

can be approximated by analytic norms. 

The  following Corol lary improves a result of R. Haydon [15] who showed the 

existence of an equivalent C ~ - s m o o t h  norm on the space C(K)  where K is a 

countable  compact .  

COROLLARY 3.3: Let E be a Banach space predual to ~1. Then each equivalent 

norm on E can be approximated by analytic norms. 
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Remark 3.4: It is not clear from the above results that in vector normed spaces 

with countable algebraic basis, every equivalent norm can be approximated by 

analytic norms. Indeed, the application of the Implicit Function Theorem in the 

proof of Theorem 3.1 requires that the space is complete. 

We conclude this section with a variant of Theorem 3.1 in the non-symmetric 

c a s e .  

THEOREM 3.1 (bis): Let P be a polytope in a separable Banach space E. Then 

for every e > O, there exists an e-approximating, analytic, closed, convex and 

bounded body V; 

Proof: In view of Proposition 1.2, we can assume without loss of generality that 

the polytope P satisfies property (2) of Proposition 1.2. It is easily verified that 

the boundary {h,} (coming from property (2)) has the following property: for 

each x E OP, there exists an integer n such that 

(5) sup{hi(x): i > n} < 1. 

Of course, inequality (5) holds in some neighborhood of the point x and so the 

series 
c ~  

$~-~1 

converges uniformly in some neighborhood G(x) of x for each ,~ >_ 1 and for each 

integer p. Therefore ~(x, ~) is analytic for x belonging to some neighbourhood 

of OP and for ~ >_ 1. As in the proof of Theorem 3.1, we deduce from the 

Implicit Function Theorem that the function ~ = ~(x) defined by the equation 

~(x, ,~) = 1 is analytic. The function/~ is the Minkowski functional of the set 

v =  (x eFt: 1}. 

Moreover, one can prove as in Theorem 3.1 that if p large enough, we have 

(1 - < y . ( x )  < 

where fp  is Minkowski functional of the set P. | 
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