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Summary. - -  Classical solutions for eonformal invariant fermion-fermion 
interaction in two dimensions are given and their invariance properties 
are discussed. A possible generalization to four dimensions is given and 
corresponding instanton- and meron-like solutions are found. It turns out 
that these arc a natural generalization of two-dimensional ones. 

l .  - I n t r o d u c t i o n .  

Much at tent ion has been paid recently to the properties of classical solutions 

for field systems, in particular when these contain no mass or dimensional 

parameter  (1). The interest of this kind of theories lies in their larger sym- 

met ry  properties as the conformal group or the local gauge group. These in- 

(*) Supported in part by Faculty of Science, Istanbul University, Turkey. On leave 
of absence from Theoretical Physics Institute, Istanbul University, Turkey. 
(**) Supported by an Italian Government Fellowship. 
(1) Any list of references will presumably result not complete. For excellent reviews 
see, for instance, R. JACKIW: .Rev. Mod. Phys., 49, 681 (1977); A. CHAK~ABARTI: 
Introduction to classical solutions el Yang-Mills field equations, in Centre de Physique 
Theorique de t'Ecole Politechnique Plateau de Palaiseau, France, 1968. 
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vest igat ions have  included scalar fields (3), Yang-Mills fields (3) and  grav- 
i tat ion (4). 

An in terpre ta t ion  of classical solutions can be given in the fo rm of 

(~vacuum *) expecta t ion values of q u a n t u m  fields (3), as the manifes ta t ion  

of spontaneous breaking of some symmet ry .  Fur thermore ,  the classical so- 

lution for a boson field is of the  form O(1/g) (where g is some coupling 

constant)  as a consequence of the  nonlinear character  of the  equat ion of 
mot ion;  it then  represents  a large port ion of the  field in the  small coupling 

limit,  while the corrections are of the order O(g ~ and represent  a small por- 
t ion of the field. When  a fermion field ~v(x) is present,  as is the  case for 

instance in a linear g-model with Yukawa  coupling, it is cus tomary  to con- 
sider it  as O(g~ this amounts  to taking equal to zero the  (( v a c u u m  ~ ex- 

pec ta t ion  value of the field ~v(x) (which is obvious) and of its bilinear com- 

binations,  such as v~v (5). 
A different point  of view, however,  can be t aken  where bo th  the  classical 

fermion and  boson fields are of order O(1/g)(6). I t  is easily recognized t ha t  
this leads to problems at  the q u a n t u m  level, since canonical commuta t ion  

relations would contain O(1/g) terms,  also leading to apparen t  violat ion of 

fermion n u m b e r  conservation. A recipe was proposed (7) which overcomes 

these difficulties by  redefining an t icommuta tors ,  bu t  fixes, in the case of the 
linear scalar-fermion a-model,  the rat io of the coupling constants  gF/g~" The 

a im of this paper  is the invest igat ion at  the classical level of simple field-theo- 
retical  models involving only fermions, as a prel iminary s tudy  of future  q u a n t u m  
developments .  

The s tudy  of self-coupled fermion systems in two dimensions has often 

been considered to provide an interesting group for research, since the Thirr ing 
model  (s) up to the  more recent  versions of Gross and  Neveu (9). I n  this work 

we discuss the  simplest fermionic two-dimensional  model  with a (~v) 2 coupling 
as far  as classical solutions are concerned. Both  instanton-  and meron-like 

solutions are found and their  invariance propert ies  sketched. 

The generalization of these results to the four-dimensional  case is possible, 

provided one accepts to work with a Lagrungian and equations of mot ion of 

(2) S. FUBINI: ~OVO Cimento, 34A, 521 (1976). 
(3) .A.. A. BELAVIN, A. M. POLYAKOV, A. S. SCHWARTZ and u S. TYUPKIN: Phys. I~ett., 
59 B, 85 (1975). 
(4) P. G. O. FREUND: Phys. Rev. JOett., 37, 1251 (1976). 
(5) V. DE ALFARO and G. FVRLAN: Nuovo Cimento, 34A, 555 (1976). 
(a) H. INAGAKI: Phys. Lett., 9 B, 448 (1977); V. Jh. FAISBERG and O. K. PAS~AV, v: 
Phys. Lett., 77 B, 208 (1978). 
(7) H. INAGAKI: ICTP, Trieste, preprint IC/77/32. 
(s) W. E. THIRRI~G: Ann. o] Phys., 3, 91 (1958). 
(9) D. J. GRoss and A. N:~v]~u: Phys. Rev. D, 1@, 3235 (1974). 
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th i rd  order in the derivatives of the field yJ(x) (*). Determinat ion of instanton- 
and meron-like classical configurations is then  straightforward,  confirming 
the  analogous situation which occurs for the  purely bosonic nonlinear 
(r-models (11). 

2. - T h e  t w o - d l m e n s i o n a l  m o d e l  

Let  us consider the two-dimensional fermion-fermion interact ion described 
b y  the conformal invariant  Lagrangian (**) 

(1) 

where the fermion field ~v(x) has scale dimension 1 and the coupling constant  
g is dimensionless and positive (g > 0)(8). No internal  degrees of f reedom 
will be ascribed to V(x) in this paper. 

The equat ion of mot ion which follows from this Lagrangian is 

(2) i r ~  = - 2 g ( ~ )  

and we want  to discuss some of its classical solutions. 
According to well-known arguments,  classical solutions can be related to 

spontaneous symmet ry  breaking of the full conformal group. They  are then  
characterized by  their  being invariant  under  the t ransformations of a sub- 
group, which in tu rn  reflects the final symmet ry  properties of the ground state  
[~9> of the system. This means tha t  in our case we must  concentrate,  a t  this 
stage of the discussion, on the properties of the vacuum expectat ion value 
of a quant i ty  like ~(x)y~(x) (rather  than  of simply y~(x), since <Y21~p(x)[t9 > ~ 0). 

Le t  us define 

(3) ~(x)  = < ~ l ~ ( x )  ~ ( x ) I ~ > ,  

S(x) will be a funct ion of x in order to have spontaneous symmet ry  breaking 
of the conformal group. Following the proposal  of ref. (1), we introduce the 

(*) An interesting alternative possibility has recently been proposed in the framework 
of generally eovariant field theories (lo). I t  is shown there that a bosonic nonlinear 
a-model coupled to gravitation leads to equations of motion with the normal number 
(two) of derivatives. A similar problem for fermionie fields is at present under inves- 
tigation. (Private communication of G. FURLA~.) 
(10) V. DE AL~XRO, S. FUBINI and G. FURLAN: CERN preprint TH. 2584. 
(n) V. D~. ALF~O, S. FUBINI and G. FURLA~: ICTP, Trieste, preprint IC/78/69. 
(**) For simplicity we work in Euclidean space, and continuation to Minkowski metrics 
will be mentioned at the appropriate moment. 
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operator  

(4) 

where a is a parameter  with the dimensions of a length, and require tha t  

(5) R ~ S ( x ) ~ i  [a~2 x~ O#+ (x.~ + 2d)x#] S(x)-~O. 

The relat ion of this condition to the  invariance properties of the ground state 
can be intui t ively understood by  noticing tha t  these are expressed as 

(6) R~[Q> = o .  

Then an admi t ted ly  heuristic use of the commutat ion  relation 

(7) 

gives eq. (5): 

(s) M,,, S(x) ---- i(x~, ~,-- x, ~,) S(x) = O . 

In  the above formulae d ~ �89 is the scale dimension of the field 9, 2d---- 1 
the scale dimension of the ~(x) ~o(x) bilinear as expected from a naive dimensional 
counting. Fur thermore ,  since Mr,,-  M.~, the two-dimensional rota t ion gen- 
erator,  leaves S(x) invariant  too, we find tha t  the solution of the constraints (5) 

and (8) is 

(9) S(x)-- 
const 

(a~ + x~)~ 

The symmet ry  group of the  solution (actually of the  bilinear S(x)) is recognized 

to be the de Sit ter  group 08 of generators (R~, M~,). 
Thus start ing from the conformally invariant  Lagrangian (1) we look now 

for a classical solution of eq. (2) consistent with the residual symmet ry  of the 
system being the de Sitter one, which implies the form (9) for S(x). We shall 
denote such solutions as of the instanton type.  

We introduce the ans~tz 

r + r" xC2 
(10) yJ(x) a 2 + x  2 , 
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where C~, and C~ are cons tant  spinors (*). Inse r t ing  this in (2) we find t h a t  

(11) ~v(x) = a • i~x  c CC -~ :J: a- , 
a ~-H x ~ ' g 

which indeed gives 

(9') S ( x ) =  • 
a 

g( a ~ -4- x2) " 

A similar a rgumen t  works for the  solution, which we m a y  call of the  meron  
type ,  whose s y m m e t r y  group is t aken  to be  the  0~ • 0~-subgroup of generators  
M ~  again and  D, the  di latat ion operator .  T h e n  the  conditions 

(12) M ~ S ( x )  : O, DS(x )  ~ i (x .  ~ ~- 2d) S(x) = 0 

lead with  2d = 1 to 

const  
(13) S(x) = ~ t  ~ ' x  ~'---~ " 

The form (J3) then  suggests a simple power  ansatz  for ~v(x), i.e. 

(14) 

Solving eq. (2) we find 

C ~  _? yx C~ 
~(x) = (x~)~ (x~)---T~ . 

1 [ i y . x ]  1 
= + c ,  O c  = 

and 

(13') 8(x) = •  
1 1 

4g (x~)~ " 

Hav ing  checked the  s y m m e t r y  propert ies  of the  above  classical solutions, 

we proceed now to a fur ther  character izat ion b y  looking a t  the  energy-mo- 

m e n t u m  tensor.  The Belifante e n e r g y - m o m e n t u m  tensor  corresponding to our 

(*) This ansatz must be compared with the possibility of considering C as a classical 
anticommuting object. Such an alternative is of relevance when scalar fields are 
present, as is the case for the supersymmetrie nonlinear a-model (1~). We hope to 
return to these problems in future work. 
(I:) See, e.g., E. WITTEI~: Phys. Rev. D, 16, 2991 (1977), 
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specific Zagrangian (1) has the form 

(16) 

In  general it  is preferable to work with the so-called improved energy- 
momentum tensor (as), which is connected in a simple way with dilatation and 
conformal currents and hence with the conformal invarianco properties of 
the theory. 

The improved energy-momentum tensor is obtained by adding a super- 
potential  to the Belifante tensor 

(17) 0,,. = 0~. + �89 OoX~o.., 

where the superpotential part  is defined with 

+ + + (~ + 1 O),q O'v O*+ot -[- 1 0~+ (18) Xaou. = Oao%.-- Oat.a. o O~.%Q + ,~ aao-- . 

+ is the symmetric part  of the tensor guy defined as O'/~ v 

(19) V~ = 3~a~u 

and Vu is the field virial 

(20) 

Since, in our case, the field virial vanishes (as can easily be checked), the 
improved energy-momentum tensor is equal to the Belifante. This is diver- 
genceless and traceless (as can be seen from (17)) as required by  the dilatation 
and conformal invariance of the start ing Lagrangian. Inserting the classical 
solution (11) into eq. (16) one can check tha t  the energy-momentum tensor is 
vanishing, 

(21) Ou, = 0 , 

and tha t  the action in Euclidean space is finite: 

(22) S-- f -- =-g 

(la) C. G. CAZ, LAN, S. COL~AN and R. ffACK[W: A~m. o/Phys., 59, 42 (1970). 
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Repeat ing the  argument  for the singular solution (14) we find 

- - 1  
(23) 0~ -- 16g(x2) ~ (x ~ ~,~-- 2x ,  x,) , 

while the action is divergent in Eucl idean space since ~Sf = (-- 1/16gx*). 

We can thus conclude tha t  in the case of the two-dimensional conformal 
invariant  Lagrangian (1) exploiting the Same symmet ry  arguments  as for 

gauge and scalar fields, we have found two types of classical solution in 
Eucl idean space. One of them (11) leads to the vanishing of improved energy- 
momen tum tensor and finite action and is called (( ins tanton solution ~) as 
proposed earlier (~). The fact  tha t  it  has vanishing energy-momentum tensor 
gives it a chance to be a candidate for a vacuum in the quan tum world, since 
we interpret  classical solutions as vacuum expectat ion values of the  field v~.  

Solution (14) is singular in Euclidean space and leads to  the  divergent 
action and such a solution is called (~ meron solution ~ (~4). One can improve 

i t  by  shifting its singularities f rom 0, c~ to a rb i t ra ry  points.  Performing a 
suitable conformal t ransformat ion (translation, inversion, translation),  we 
obtain (') 

(24) y~tit(x ) : [(2u)2]ti~ .(x ~- u) {1 ~- 
[(x - u)~]~ [(x § u)~]~ 

Then the bilinear S(x) becomes 

iv" [(2u)~ (x + u) - 2u(x + u)~]~ 

4 0 c  
(25) S(x) -- [(x - u) 2 (x § u)2]~ " 

This solution is continued to Minkowski space taking x4 = iXo and u~ ~ (1, 0). 
We have 

4C~ 
(26) ~(x) = [(1 + t$)(1 + tL)]~' 

where t• = xo~=[x[. This improved solution leads to the  finite action and 
energy in Minkowski space 

f __ 17/: 2 
(27) S =  dxdxo c ~ _  8g ' 

(28) E ~  0o0dx= S-g" 

(14) Y. D]~ ALFARO, S. FUBINI and  G. FURLAN: Phys. ,bett., 5 B ,  163 (1976). 

(*) Transformation of a fermion field under the combined transformations mentioned 
above is given by 

iV" (x + u) 
~tit(x)  = ~ ( t i t  x)  . 

(x  + u)~ 
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To conclude this section, we consider it useful to recall the way the above 
results influence the possible subsequent quantum developments. The idea 
is to separate the field into a classical part, which is big in the weak-coupling 
limit, and a small quantum fluctuation 

(29) V = Vo, + V'" 

Since we ask that, consistent with our interpretation, 

(30) ~ = s(x) + (r 

one must assume that  combinations of the form @clV', ~'~)cl c an  be dropped. 
With this recipe it is easy to obtain from eq. (2) the equations of motion for the 
quantum field ~', which read 

2a 
(31)  i 7 3 ~ ' =  a 2 _~_ x 2 V' 

and 

1 
(32) i7~v'-~ 2(x~)~ v/ 

for the instanton and meron configurations, respectively. 
We thus see that  the effect of the classical background solutions amounts 

to producing the analogue of an external potential which determines the quantum 
aspects. One further recognizes that  eqs. (31) and (32) are identical to the ease 
in which the instanton or meron external field is due to an independent scalar 
particle. Some of these solutions are already known and we devote the appendix 
to a short summary of some properties. Internal degrees of freedom for a field 
V~ could be introduced trivially through a constant spinor C, i.e. CC ---- ~ C~, C~,, 
but space dependence and internal symmetry would still be separated. A non- 
trivial way would be mixing internal and space degrees, which is not dis- 
cussed here. 

3 .  - T h e  f o u r - d i m e n s i o n a l  m o d e l .  

A conventional generalization of the Lagrangian (1) to four dimensions 
would be based on fermion fields of scale dimension ~. This fact, together 
with a (gV)' coupling, introduces a dimensional constant and hence violates 
conform~I invari~nce. We rather propose to keep the scale dimension of the 
spinor field fixed to the value 1. Fermion coupling constants are then dimen- 
sionless, but one must introduce higher derivatives in the Lagrangian density: 
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the  analogue of eq. (1) will now be 

(33) 

Such kind of theories has often been considered as a specimen of models 

where ul traviolet  divergences might  be cured b y  the improved asymptot ic  
behaviour  of propagators  (~s). On the other  hand,  it is well known tha t  these 
theories are affected by  the problem of ghost states. In  spite of this fact,  these 
theories have again become interesting in connection with the confinement 
problem: the strong infra-red singularities can give rise to an interaction in- 
creasing with distance (le). Also conformal supergravi ty  leads to higher-de- 

r ivat ive Lagrangians (~7). 
Thus we consider it  instructive to consider the theory  (33) from the point  of 

view of classical solutions. The equation of motion is 

(3~) ( i ~ )  3 ~ = -- 4g(v~) 3 ~o. 

Since the field has canonical dimension ~ as before, symmet ry  requirements 
remain the  same and we can use the same ansatz to solve eq. (34). The instanton 
solution is 

(35) ~ f ( x ) -  a :J:iT.x (~C) 3 = ~ 1 2  a 3 
a 2 + x  2 C ,  g , 

while the meron solution is 

1 [ 
(36) ~,(x) = (x2)-~ :l :t: (x2)jj C ,  (2CC)a : ~ 3 2 g "  

We see tha t  the classical solutions are the same in form as the two-dimensional 
o n e s .  

We must  next  investigate the properties of the energy-momentum tensor 
and of the action. In  order to handle a higher-order derivative La~ang ian ,  
the idea is to express it as an equivalent first-order derivative Lagrangian 
by introducing auxiliary fields. In  our case, the Lagrangian which leads to 

the same equation of motion is 

(15) tI. P. DURR and C. C. CIIIANO: preprint MPI-PAE/PTh 2, Max-Planck-Institut 
fiir Physik und Astrophysik, Miinchen, B.D.R. (1975). 
(16) ]I. NARNHOF~.I~ and W. THIR~ING: The taming el the dipole ghost, Institut fiir 
Theoretische Physik, Wien, preprint (1978). 
(17) S. F~:RR.~.~A and B. ZuMI~'O: Structure o/ con]ormal supergravity, CERN preprint 
TII. 2418 (1977). 
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where D = i7. ~ and v2x , ~2 are auxiliary fields satisfying the equations of 
motion 

( 3 8 )  D ~ I  : '~2 , 

D~.~ = - -  4 g ( ~ ) ~ .  

These coupled equations of motion are obviously equivalent to (34), bu t  they 
are of the first order, thus the problem is reduced to the s tandard one. 

Consider now the Belifante energy-momentum tensor. For  the La- 

grangian (34) we obtain 

(39) 0~  i ~ *~ 

Since the dimensions of the fields vA, -12, ~2, ~- arc not  the canonical ones of 
the four-dimensional fermion fields, the field virial (20) does not  vanish now 

and is given by  

(40) V~ = i ( f ~ - -  ~27,~) 

and also by  

(41) a,,, = i [ ( ~ ) ~ , ~ - -  ~ , ~ , v / ] .  

Using the solution (35) we get 

(42) + - -  2 a C C  O'/jv - -  
Ca~ + x~)~' 

so tha t  the improved energy-momentum tensor (17) vanishes, 

(43) Or, = 0,  

as can easily be checked. T h e  action is correspondingly 

(44) 

Again, as in the two-dimensional case, solution (35) can really be considered 
as the analogue of the instanton solution. 

For  the solution (35) we obtain 

15 ~ c  
(45) 0~, ,  - - -  ( 4 x ~ , x ,  - x ' -  & v )  , 

16 (x2) ~ 
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while the action is divergent in Euclidean space. Thus we can again think 
of it as of an analogue of tho meron configuration. 

We are grateful to Prof. G. FU~LA~ for indicating the problem and for 
his advice. One of us (KGA) wishes to thank  Professor G. F u ~ ) . w  for hospital i ty 
a t  the Is t i tu to  di Fisica Teorica dell 'Universit~ di Trieste, and also Prof.  
AnDvs SALAd, the In te rna t iona l  Atomic Energy  Agency and UNESCO for 
hospi tal i ty  at  the In ternat ional  Centre for Theoretical  Physics, Trieste. 

A P P E N D I X  

The aim of this appendix is to formulate  in a compact  way the quan tum 
corrections for the models presented.  We shall discuss only the two- 
dimensional case since the four-dimensional  has the problem of ghost  states. 
As discussed in the text ,  the idea is to divide the field into a classical pa r t  
O(1/g), which is big in a small coupling limit,  and a small quan tum correction 

(A.1) ~y~ = (~y~)r ~- (~y~)' ~- O(g~) . 

The next  step is to find an equation of motion for the quan tum correction ~v', 
which leads to eqs. (31) and (32). In  order to carry this out  in an intrinsic 
way, we project  our Lagrangian (1) onto the surface of a three-dimensional  
sphere, as proposed in ref. (5); the new co-ordinates ~ are defined by  

2axe, a2- -  x2 ~2 = 1 
(A.2) ~, -- a2 _[_ x~, ~:3 -- a2 ~_ x~, �9 

In t roduce  the (~ rat ionalized )) field (dimensionless) 

a t 
(A.3) y~(x) --  a 2 +  x-------- ~ (a Jr i y . x )  z(~) , 

where ~ is the  co-ordinate on the sphere. The 03-invariant Lagrangian takes 
the form 

(A.4) ~ , =  - 4 2 ( t . ~  + ~) z + g(Zx) ~ , 

where 1.S is the operator  in three-dimensional  space defined by  

(A.5) I. ~ = �89 [~a~-- (F~)(]%)] 
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and F~ are generalizations of y~ in the three-dimensional  space defined as 

(A.6) F~ = iy57~, , I"3 = Us. 

]n  a small coupling l imit  g - + 0  we get the equation of motion 

(~.7) (1,~ + ~-) X = 0 .  

Using the definition of the J2-operator in 08 given by  

(A.8) J~:=~J~Jo~,  J~b=l~b'~-S~b (a, b = 1 , 2 , 3 ) ,  

where 

i 
(A.9) l.b ---- i(~, ~b-- ~b 0~), S~=:-~[F~,I 'b],  

we t ransform (A.7) into the eigenvalue problem of J '  

(Aa0) (J~+�88 

To find the quan tum corrections for the field ~X, we use expansion (A.1) 
and get 

1 
(A.11) 7~Z = (7~Z)o,-~- (gZ) ' ,  (~Z)r = - -  g 

After  the shift Z = Zoz~-Z' we have 

(A.12) 1S x' =: 0 . 

This can again be wri t ten as the eigenvalue problem in 0a as 

(A.13) (J~-- ~) Z ' =  0 .  

I f  we compare expressions for Z~ and ~(x) ,  we see tha t  we can go from 
one space to another  just  by  changing Z - ~  and --4(1S ~ �89 ~ to get 
eqs. (31) and (32). Equat ions  (31) and (32) c2.n also be wri t ten as the eigen- 
value problem in 01.~. Using the definitions of the operator  J~ for the 
de Si t ter  (M,~, R~) group and 02•  (M~,  D) group given by  

(A.14) 

we have 

(A.15) 

o~D = M 2 ~- D 2 . . . .  x2D -- (y.x)(y.  0), 

j ~ = M ~ . ~ _ R 2  - 1 (a"+x2~2 D a 2 + x  2 
4 \ 2a ] 2a 2 (Y'x)(Y'~) '  

( J g -  �88 v~ =-o, ( J ~ -  -~) v,'= o . 
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We conclude tha t  the problem of solving eq. (31) reduces simply to the 
eigenvalue problem of the operator J-" in three-dimensional space. Shifting the 
field y)(x) in 0~ corresponds to shifting the eigenvalue of J~ from --�88 to ~. 
Similarly for J~ eigenvalue 0 goes to eigenvalue 1. We should note t ha t  the 
g-dependence in (A.15) disappears natural ly,  while the same is achieved in 
ref. (5) by  fixing the ratio of fermion and boson coupling constants.  

�9 R I A S S U N T O  (*) 

Si danno soluzioni classiche per l'interazione fermione-fermione eonforme invariante 
in due dimensioni e si diseutono le loro proprieth d'invarianza. Si d~ una possibile gene- 
ralizzazione a quattro dimensioni e si trovano eorrispondenti soluzioni del tipo istantone 
e del tipo merone. Ne risulta che queste sono una generalizzazione naturalo di quelle 
a due dimensioni. 

(*) Traduzione a cura della Redazione. 

Is pemeHH~ ~H~ t~epMHOHHblX Mo~e~[efi. 

Pe3mMe (*). - -  IIpaBO~aTC~ xaaccr~ecKne pemeHrm )~na XOHdpOpMHOrO m~napHaHTHOrO 
qbepMnort-qbepMHOHHOrO n3anMo~eifcrm~ B ~ByX H3MepeHH.qX. O6cyxx~amTca cnoRcTBa 
HHBapHaHTHOCTH 3rHX pelIIeHHl~. O6cy~laeTc~ BO3MO~HOe o6o6meHae Ha cny~afi 
aeTbipex H 3 M e p e ~ .  IIony~eHbI COOTBeTCTBylOIIlHe pelUeHl4$l HItCTaHTOHHOrO H MepoH- 

HOrO THnOB. OKa3~maeTc~, ~TO nony~eHnbm pemeana npe~craBnamT ecTecreenHoe 
OSO6~enHe ~IByMepr~IX pemeHrr~. 

(*) HepeseOeno pec)aKque~. 

24 - I I  N u o v o  C i m . e n t o  A .  


