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Summary, — Classical solutions for conformal invariant fermion-fermion
interaction in two dimensions are given and their invariance properties
are discussed. A possible generalization to four dimensions is given and
corresponding instanton- and meron-like solutions are found. It turns out
that these are a natural generalization of two-dimensional ones.

1. — Introduction.

Much attention has been paid recently to the properties of classical solutions
for field systems, in particular when these contain no mass or dimensional
parameter (*). The interest of this kind of theories lies in their larger sym-
metry properties as the conformal group or the local gauge group. These in-

(*) Supported in part by Faculty of Seience, Istanbul University, Turkey. On leave
of absence from Theoretical Physics Institute, Istanbul University, Turkey.

(**) Supported by an Italian Government Fellowship.

(1) Any list of references will presumably result not complete. For excellent reviews
see, for instance, R. JACKIW: Rev. Mod. Phys., 49, 681 (1977); A. CHAKRABARTI:
Introduction to classtcal solutions of Yang-Mills field equations, in Cenire de Physique
Theorique de I'Ecole Politechnique Plateaw de Palaiseau, France, 1968.
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vestigations have included scalar fields (?), Yang-Mills fields (®) and grav-
itation (4).

An interpretation of classical solutions can be given in the form of
«vacuum » expectation values of quantum fields (), as the manifestation
of spontaneous breaking of some symmetry. Furthermore, the classical so-
lution for a boson field is of the form O(1/g) (where g is some ecoupling
constant) as a consequence of the nonlinear character of the equation of
motion; it then represents a large portion of the field in the small coupling
limit, while the corrections are of the order O(g°) and represent a small por-
tion of the field. When a fermion field y(x) is present, as is the case for
ingtance in a linear ¢-model with Yukawa coupling, it is customary to con-
gider it as O(g°): this amounts to taking equal to zero the « vacuum » ex-
pectation value of the field y(x) (which is obvious) and of its bilinear com-
binations, such as gy (°).

A different point of view, however, can be taken where both the classical
fermion and boson fields are of order O(1/g) (¢). It is easily recognized that
this leads to problems at the quantum level, sinee canonical commutation
relations would contain O(1/g) terms, also leading to apparent violation of
fermion number conservation. A recipe was proposed (*) which overcomes
these difficulties by redefining anticommutators, but fixes, in the case of the
linear scalar-fermion ¢-model, the ratio of the coupling constants g,/g,. The
aim of this paper is the investigation at the classical level of simple field-theo-
retical models involving only fermions, as a preliminary study of future quantum
developments.

The study of self-coupled fermion systems in two dimensions has often
been considered to provide an interesting group for research, since the Thirring
model (8) up to the more recent versions of Gross and Neveu (°). In this work
we discuss the simplest fermionic two-dimensional model with a (pyp)? coupling
a8 far as classical solutions are concerned. Both instanton- and meron-like
solutions are found and their invariance properties sketched.

The generalization of these results to the four-dimensional case is possible,
provided one accepts to work with a Lagrangian and equations of motion of

(3) 8. FuBiNI: Nuovo Cimento, 34 A, 521 (1976).

(3) A. A. BELAVIN, A. M. PoLYaKOV, A. 8. Scawarrz and YU. S. TYUPKIN: Phys. Lett.,
59 B, 85 (1975).

(4) P. G. O. FREUND: Phys. Rev. Lett., 37, 1251 (1976).

(®) V. pE Arraro and G. FUrLAN: Nuovo Cimento, 34 A, 555 (1976).

(¢) H. INacaxIi: Phys. Lett., 9 B, 448 (1977); V. JA. FAINBERG and O. K. PASHAEV:
Phys. Lett., 77 B, 208 (1978).

(") H. INaeaki: ICTP, Trieste, preprint IC/77/32.

(8) W. E. THIRRING: Ann. of Phys., 3, 91 (1958).

(*) D. J. Gross and A. NEVEU: Phys. Bev. D, 10, 3235 (1974).
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third order in the derivatives of the field y(x) (*). Determination of instanton-
and meron-like classical configurations is then straightforward, confirming
the analogous situation which occurs for the purely bosonic nonlinear
o-models (11).

2. — The two-dimensional model.

Let us consider the two-dimensional fermion-fermion inferaction deseribed
by the conformal invariant Lagrangian (**)

«—

1) & =5 Py + g,

where the fermion field y(x) has scale dimension } and the coupling constant
g is dimensionless and positive (g > 0) (°). No internal degrees of freedom
will be ascribed to y(x) in this paper. :

The equation of motion which follows from this Lagrangian is

(2) iyoyp = — 29(Py)y

and we want to discuss some of its classical solutions.

According to well-known arguments, classical solutions can be related to
spontaneous symmetry breaking of the full conformal group. They are then
characterized by their being invariant under the transformations of a sub-
group, which in turn reflects the final symmetry properties of the ground state
[£2> of the system. This means that in our case we must concentrate, at this
stage of the discussion, on the properties of the vacuum expectation value
of a quantity like ¢(x)y(x) (rather than of simply y(x), since {2|yp(x)|2> = 0).

Let us define

(3) 8(w) = {Q[p(@) ()| ,

S(x) will be a function of x in order to have spontaneous symmetry breaking
of the conformal group. Following the proposal of ref. (1), we introduce the

(*) An interesting alternative possibility has recently been proposed in the framework
of generally covariant field theories (°). It is shown there that a bosonic nonlinear
g-model coupled to gravitation leads to equations of motion with the normal number
(two) of derivatives. A similar problem for fermioniec fields is at present under inves-
tigation. (Private communication of G. FURLAN.)

(9 V. pe Arraro, 8. FusiNi and G. FurLan: CERN preprint TH. 2584.

(*) V. pE ALFARO, S. FueiNT and G. FUrLAN: ICTP, Trieste, preprint I1C/78/69.
(**) For simplicity we work in Euclidean space, and continuation to Minkowski metrics
will be mentioned at the appropriate moment.
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operator

1

(4) R, 2(“Pu+%Ka)s

where a is a parameter with the dimensions of a length, and require that

(5) R”S(m)zg [“2‘””2 - (x-a+2d)w,,] S(w)=0.

2

The relation of this condition to the invariance properties of the ground state
can be intuitively understood by noticing that these are expressed as

Then an admittedly heuristic use of the commutation relation

) twie), Bl =2 [“5Z tut @8-+ D)t Zoss| yio
gives eq. (H):
(8) M S(@) = i(2, 0, — 2, 04) S() = 0.

In the above formulae & = } is the scale dimension of the field y, 2d =1
the gcale dimension of the {(x) y(x) bilinear as expected from a naive dimensional
counting. Furthermore, since M, = M,,, the two-dimensional rotation gen-
erator, leaves S(x) invariant too, we find that the solution of the constraints (5)
and (8) is

const

¥ O =

The syminetry group of the solution (actually of the bilinear S(z)) is recognized
to be the de Sitter group O, of generators (Ru, Mu»).

Thus starting from the conformally invariant Lagrangian (1) we look now
for a classical solution of eq. (2) consistent with the residual symmetry of the
system being the de Sitter one, which implies the form (9) for S(x). We shall
denote such solutions ag of the instanton type.

We introduce the ansatz

O+ 7y =C,

(10) po) = =,
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where C,, and C, are constant spinors (*). Inserting this in (2) we find that

a +iyx - a
(11) ~zp(w)=a2+w20, O’Gzig,

which indeed gives

s . a
(9" S(z) = + prok

A similar argument works for the solution, which we may call of the meron
type, whose symmetry group is taken to be the O, X O,-subgroup of generators
M,y again and D, the dilatation operator. Then the conditions
(12) My Sz) =0, DS(x) =i(x-0 + 2d)8(x) =0

lead with 2d =1 to

(13) () = const .

The form (13) then suggests a simple power ansatz for p(x), i.e.

G Yy

(14) Y = o+ i e
Solving eq. (2) we find

1 Yo Aoy L
(15) v = [12 280, o=l
and

: _ 11

(13") S(x) = 4 1g @)}

Having checked the symmetry properties of the above classical solutions,
we proceed now to a further characterization by looking at the energy-mo-
mentum tensor. The Belifante energy-momentum tensor corresponding to our

(*) This ansatz must be compared with the possibility of considering C as a classical
anticommuting object. Such an alternative is of relevance when scalar fields are
present, as is the case for the supersymmetric nonlinear o-model (*2). We hope to
return to these problems in future work.

(12) See, e.g., E. WitTEN: Phys. Rev. D, 16, 2991 (1977).



350 K. G. AKDENIZ and A, SMAILAGIC

specific Lagrangian (1) has the form
1: D d «>
(16) Bﬁv = Z ('/)Vu avw + Yy» a/ﬂ/)) — 6/11' Z

In general it is preferable to work with the so-called improved energy-
momentum tensor (12), which is connected in a simple way with dilatation and
conformal currents and hence with the conformal invariance properties of
the theory.

The improved energy-momentum tensor is obtained by adding a super-
potential to the Belifante tensor

(17) e/w = 027 + % aﬁ- aQXlQM’ H

where the superpotential part is defined with

(18) Xﬂ@”" - 6/190‘74-7— 6}./40':-9 /Iv 1o + 6,” gi.g Zg ,uv Ope + 6}./4 ov mx’
o}, is the symmetric part of the tensor oy, defined as

(19) Vu = avo'yu

and V, is the field virial
(20) V/l = nv[d(sm’— Z;w} Y.

Since, in our case, the field virial vanishes (as can easily be checked), the
improved energy-momentum tensor is equal to the Belifante. This is diver-
genceless and traceless (as can be seen from (17 )) as required by the dilatation
and conformal invariance of the starting Lagrangian. Inserting the classical
solution (11) into eq. (16) one can check that the energy-momentum tensor is
vanishing,

(21) em’ =0 ’

and that the action in Euclidean space is finite:

(22) Szfd2m$=—§

(*3) C. G. Carraw, 8. CoLeMaN and R. Jackrw: Amn. of Phys., 59, 42 (1970).
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Repeating the argument for the singular solution (14) we find

(23) O = ﬁ%l?)z (0 Buy — 20ty) |
while the action is divergent in Euclidean space since & = (— 1/16gx?).

‘We can thus conclude that in the case of the two-dimensional conformal
invariant Lagrangian (1) exploiting the same symmetry arguments as for
gauge and scalar fields, we have found two types of classical solution in
Euclidean space. One of them (11) leads to the vanishing of improved energy-
momentum tensor and finite action and is called «instanton solution» as
proposed earlier (1). The fact that it has vanishing energy-momentum tensor
gives it a chance to be a candidate for a vacuum in the quantum world, since
we interpret classical solutions as vacuum expectation values of the field yy.

Solution (14) is singular in Euclidean space and leads to the divergent
action and such a solution is called « meron solution » (*¢). One can improve
it by shifting its singularities from 0, oo to arbitrary points. Performing a
suitable conformal transformation (translation, inversion, translation), we
obtain (%)

e [(2u)*]tiy - (@ + u) { iy - [(2u)* (@ + u) — 2ulw + u)zl}
24 — + C.
VO S TR et (G — w0

Then the bilinear S(z) becomes
B 4CcC
S e — w4 )t

(25) S(x)
This solution is continued to Minkowski space taking #, = ix, and u, = (1, 0).
We have

4CC
2 -
(26) St (1 4 ) (1 4 2)¥’

where t, = ®;14-|x|. This improved solution leads to the finite action and
energy in Minkowski space

(27) Szfdwdxogz%;t—,

JT
2 = = .
(28) E J-Gm,dw Y

('#) V. pE ALFARO, S. ¥UBINI and G. FUrLAN: Phys. Lett., 5B, 163 (1976).
(*) Transformation of a fermion field under the combined transformations mentioned
above is given by
- (x+u)
) = L —— " y(tit z) .
phi(x) @t ) p(tit z)
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To conclude this section, we consider it useful to recall the way the above
results influence the possible subsequent quantum developments. The idea
is to separate the field into a classical part, which is big in the weak-coupling
limit, and a small quantum fluctuation

(29) y=vatv.
Since we ask that, consistent with our interpretation,
(30) Py = S(@) + (Fy),
one must assume that combinations of the form ¢ y', 'y, can be dropped.

With this recipe it is easy to obtfain from eq. (2) the equations of motion for the
quantum field ¢', which read

: ! 2“ !
(31) W'=Y
and

for the instanton and meron configurations, respectively.

We thus see that the effect of the classical background solutions amounts
to producing the analogue of an external potential which determines the quantum
aspects. Omne further recognizes that eqs. (31) and (32) are identical to the case
in which the instanton or meron external field is due to an independent scalar
particle. Some of these solutions are already known and we devote the appendix
to a short summary of some properties. Internal degrees of freedom for a field
v, could be introduced trivially through a constant spinor C, <.e. 00 = > CoCs,
but space dependence and internal symmetry would still be separated. A non-
trivial way would be mixing internal and space degrees, which is not dis-
cussed here.

3. ~ The four-dimensional model.

A conventional generalization of the Lagrangian (1) to four dimensions
would be based on fermion fields of scale dimension §. This fact, together
with a ($y)? coupling, introduces a dimensional constant and hence violates
conformal invariance. We rather propose to keep the scale dimension of the
spinor field fixed to the value 1. Fermion coupling constants are then dimen-
sionless, but one must introduce higher derivatives in the Lagrangian density:
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the analogue of eq. (1) will now be

(33) £ = p(1y0)°y + g(Py)*.

Such kind of theories has often been considered as a specimen of models
where ultraviolet divergences might be cured by the improved asymptotic
behaviour of propagators (¥). On the other hand, it is well known that these
theories are affected by the problem of ghost states. In spitoe of this fact, these
theories have again become interesting in connection with the confinement
problem: the strong infra-red singularities can give rise to an interaction in-
creasing with distance (*%). Also conformal supergravity leads to higher-de-
rivative Lagrangians (7).

Thus we consider it instructive to consider the theory (33) from the point of
view of classical solutions. The equation of motion is

(34) (1y0)*y = — 4g(Py)°y .

Since the field has canonical dimension } as before, symmetry requirements
remain the same and we can use the same ansatz to solve eq. (34). The instanton
solution is

_aFiyw

= 12
(35) plz) = s c, (CCp» = i? as,

while the meron golution is

(36) plo) = [1 +

iy ~ 15
3 c, 2003 = 4,
= |o,  oop-+

(a2) 32¢°
We see that the classical solutions are the same in form as the two-dimensional
ones.

We must next investigate the properties of the energy-momentum tensor
and of the action. In order to handle a higher-order derivative Lagrangian,
the idea is to express it as an equivalent first-order derivative Lagrangian
by introducing auxiliary fields. In our case, the Lagrangian which leads to
the same equation of motion is

(37) £ = 3 (5, Dyy + pDvs + 5, DY) — (rys + Fa)) + glHw)*

(**) H. P. Durr and C. C. CHiaNG: preprint MPI-PAE/PTh 2, Max-Planck-Institut
fir Physik und Astrophysik, Miinchen, B.D.R. (1975).

(*®) 1. NarvmorEk and W. THIRRING: The taming of the dipole ghost, Institut fiir
"Theoretische Physik, Wien, preprint (1978).

(*7) 8. FERrRARA and B. ZuMiNo: Structure of conformal supergravity, CERN preprint
TH. 2418 (1977).
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where D = iy-0 and v,, y, are auxiliary fields satisfying the equations of
motion

Dy =y,
(38) Dy, = oy,

Dy, = — 49(Fy)°y .
These coupled equations of motion are obviously equivalent to (34), but they
are of the first order, thus the problem is reduced to the standard one.

Consider now the Belifante energy-momentum tensor. For the La-
grangian (34) we obtain

1: - Ang _ “— - “—
(39) oﬁv =1 [P1Yu Oy + Poyu Oy + Pru Oyt (p <>9)] — 0w £ .

Since the dimensions of the fields y,, 4, ., § arc not the canonical ones of
the four-dimensional fermion fields, the field virial (20) does not vanish now
and is given by

(40) V= i("/_«'ylt"l)z_ PaYu?p)
and also by
(41) Ouy = l[(all'(/-))va— "/_)}’vauy)] .

Using the solution (35) wo get

O

+ __ ¢ 2 —_
(42) Ty = 2aCC (az+ xz)z’

so that the improved energy-momentum tensor (17) vanishes,
(43) Ouv =0 s

as can eagsily be checked. The action is correspondingly
12\}
(44) S= d‘m$=—6n2? .

Again, as in the two-dimensional case, solution (35) can really be considered
as the analogue of the instanton solution.
For the solution (35) we obtain

3 15 C¢
(40) euy _— 1—6' (wz)s

(4% Ty — 3% Ops)
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while the action is divergent in Euclidean space. Thus we can again think
of it as of an analogue of the meron configuration.

* %k ¥
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APPENDIX

The aim of this appendix is to formulate in a compact way the quantum
corrections for the models presented. We shall discuss only the two-
dimensional case since the four-dimensional has the problem of ghost states.
As discussed in the text, the idea is to divide the field into a classical part
O(1/g), which is big in a small coupling limit, and a small quantum correction

(A1) Py = (Pp)a+ (Pp) + O(g?) .

The next step is to find an equation of motion for the quantum correction y’,
which leads to eqs. (31) and (32). In order to carry this out in an intrinsic
way, we project our Lagrangian (1) onto the surface of a three-dimensional
sphere, as proposed in ref. (°); the new co-ordinates & are defined by

2azx a?— x?
&2 bt bTare S5

Introduce the «rationalized » field (dimensionless)

at
- at -+ x?

(A.3) 269) (@ +iy-2)2(6)

where £ is the co-ordinate on the sphere. The O,-invariant Lagrangian takes
the form

(A.4) Lo=—47(1-8+ 3) 2 + 9(Z0*,
where [-8 is the operator in three-dimensional space defined by

(A.5) -8 = §[60:— (I€)(1'9¢)]
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and I', are generalizations of y, in the three-dimensional space defined as
(A.6) Ly=1ysyu, T3=1s.

In a small coupling limit g -0 we get the equation of motion

(A7) WS+ 8 yx=0.

Using the definition of the J2-operator in O, given by

(A.8) 2==tdudw, Jap = lap - S (ayb=1,2,3),
where
(A.9) o= iEat— 62, Sw=7 [T 1],

we transform (A.7) into the eigenvalue problem of J2
(A.10) @+ hHz=0.

To find the quantum corrections for the field jy, we use expansion (A.l)
and get

(A.11) o= (It @', (W=

After the shift y = y.+ x' we have

(A.12) 18y =:0.

This can again be written as the eigenvalue problem in 0, as
(A.13) (J*—3) x'=0.

If we compare expressions for Lo and #(x), we see that we can go from
one space to another just by changing y —v and —4(18+4) —>iy-2 to get
egs. (31) and (32). Equations (31) and (32) can also be written as the eigen-
value problem in O,,. Using the definitions of the operator J* for the
de Sitter (M, Bu) group and 0, X0, (M, D) group given by

Jp= M4 D = — a0 (y-2)y-9),

(A'14) 1 (a2+ 3?2)2[:' B a2+ 2

2 __ 2 ] 2 — .
Ji— M24- Rt = > 5

1 (Vm)(Va) y

we have

(A.15) 2—Dy'=0, (JTi—Hy'=0.
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We conclude that the problem of solving eq. (31) reduces simply to the
eigenvalue problem of the operator J2 in three-dimensional space. Shifting the
field y(x) in O; corresponds to shifting the eigenvalue of J® from — 1 to 3.
Similarly for J} eigenvalue 0 goes to eigenvalue ;. We should note that the
g-dependence in (A.15) disappears naturally, while the same is achieved in
ref. (°) by fixing the ratio of fermion and boson coupling constants.

® RIASSUNTO ()

Si danno soluzioni classiche per l'interazione fermione-fermione conforme invariante
in due dimensioni e si discutono le loro proprietd d’invarianza. Si dd una possibile gene-
ralizzazione a quattro dimensioni e si trovano corrispondenti soluzioni del tipo istantone
e del tipo merone. Ne risulta che queste sono una generalizzazione naturale di quelle
a due dimensioni.

(*) Traduzione a cura della Redazione.

KnaccHueckue pellenus A8 GepMHOHHLIX MopeTeH.

Peaziome (*). — IIpuBOOATCA KNACCHYSCKHE pEIUCHHs /I KOHGOPMHOIO HHBAPHAHTHOTO
¢hepMUOR-GEepMHOHHOTO B3aMMOIEHCTBHA B JBYX M3MepeHuax. OO6CyxaaloTcs CBORCTBA
MHBADHAHTHOCTH JTHX pemeHmii. OOCyxaaeTcs BO3MOXHOE 0000meHHe HA Ciydai
yeThIpeX uaMepeHmii. I1oNyYeHBI COOTBETCTBYIOINHE PELIEHHS HHCTAHTOHHOTO M MEpOH-
Horo Tumos. OKxa3plBaeTcd, 4TO NOJYYEHHBIE PEUICHHA TPEACTABIAIOT €CTECTBEHHOC
060011IeHHe OBYMEPHBIX pPEIICHHM.

(*) ITepegedeHo pedaxyueil.

24 — Il Nuorvo Cimento A.



