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Summary. — It is shown that §-vacua exist in two-dimensional non-
Abelian gauge theories, as well as in the Abelian theories.

1. — Introduction.

In the last few years, it has been realized that U, gauge theories in two
dimensions possess not just a single vacuum, but a one-parameter family of
vacua, the « §-vacua » (*). This is true regardless of whether the U, symmetry
is spontaneously broken. When the U, symmetry is not spontaneously broken,
the 0-vacua correspond to the possible presence of a background electric
field (). When the U, symmetry is spontaneously broken, the existence of
f-vacua is connected with the existence of instantons (3).

In this paper it will be shown that an analogous phenomenon, multiple
vacuum states, occurs in non-Abelian gauge theories in two dimensions. How-
ever, instead of a one-parameter family of vacua, there exists in this case only
a finite, discrete set of possible vacuum states.

(*) To speed up publication, the author of this paper has agreed to not receive the
proofs for correction.

(**) Research is supported in part by the National Science Foundation under Grant
No. PHY77-22864, and by the Harvard Society of Fellows.
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When the gauge symmetry is not spontaneously broken, then, as in the
U, case, the 0-vacua are associated with a possible background electric field.
Hawever, as we will see, in the non-Abelian case, a background electric field
must be treated as a g-number, not a c-number.

‘When the gauge symmetry is spontaneously broken, the §-vacua are related
instead, as in the Abelian case, to instantons. Moreover, as in the Abelian case,
the pattern of the §-vacua (how many there are, and certain of their properties
to be discussed) is the same whether the gauge symmetry is spontaneously
broken or not.

2. — Theories with unbroken gauge symmetry.

In this section we will consider, for definiteness, a SUy gauge group. For
definiteness, we will choose all charged fields to be fermions. As for choosing
representations of the gauge group for the fermions y, we will consider several
possibilities, such as the fundamental representation ¢, the antisymmetric
tensor y* and the adjoint representation y:. The Lagrangian is thus

(1) £ =Tr ("Zji('y'D)’P - M'ﬁ'/’ - %G‘”Gﬂv) ’

where the fermion representation has not been specified. The conclusions that
follow would be the same if the fermions were scalar fields.

Perhaps the easiest way to see that f-vacua are possible in (1) is to use the
path integral representation

(2) z =fdwdy'jdA exp [ifdzmy] _

~ [y dpad exp [i([ara Tr(Fi- D)y — Mgy — 16w6,))|

In an Abelian gauge theory, one well-known way to see the existence of
f-vacua is the following. We modify the path integral by inserting into the
integrand an extra factor exp [(i6/2x) § dw»A,], where 6 is an arbitrary angle
and the contour of integration runs at the boundary of our two-dimensional
space-time world (fig. 1). Thus we consider

3) Z(0) = fdw dgda (exp [i f dzwg]) (exp' [@ % § dquu]) .

This modified path integral obviously is still gauge invariant. It is also ob-
viously Lorentz invariant, since a contour at space-time infinity is mapped
by a Lorentz transformation into a contour at space-time infinity. It is alse
true, and will be made obvious below by introduction of a Hamiltgnian for-
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mulation, that the modification of the path integral preserves properties such

as positivity of the metric and cluster decomposition. Thus the new path
integral defines a quantum field theory.
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Fig. 1. — A contour at the boundary of space-time.

This quantum field theory satisfies the same equations of motion as before,
since we have added a surface term that does not change the equations of mo-
tion. Thus (3) describes a new solution of the equations of motion of the theory,
or, differently put, a new vacuum state.

In this form, it is fairly obvious how to construct non-Abelian §-vacua.
Instead of exp [(¢6/2n) § dw»A,], we choose an arbitrary representation U of
the Lie algebra of the gauge group and write Try P exp[¢ § dw#A,], where P
stands for path ordering along a contour at infinity, and Try, stands for taking
the frace in the representation U of the algebra. Thus we write

(4) Z(U) = f dypdpdd, esp [z f d2w$] Try P exp [z $ dqu,,] .

The non-Abelian « §-vacua » are defined by (4). Instead of the continuous
parameter § we have available only the discrete choice of the representation U.

In the Abelian theory, a nonzero § corresponds, as COLEMAN has shown (2),
to a world with a fractional charge of strength e0/2z at the right-hand end of
the world, # = - &0, and one of strength — ¢6/2x at the left-hand end, # = — oco.
By the same token, in the non-Abelian theory, a nontrivial choice of U corre-
sponds to a world with a charge in the representation U of the gauge group
at £ = 4 oo and one in the complex conjugate representation U at © = — oo.
In fact, our way of modifying the basic path integral (2) has been to introduce
a path-ordered exponential with a contour at the ends of the world. Such
path-ordered exponentials are often used (4) (with contours that are ordinarily

() K. WiLsoN: Phys. Rev. D, 10, 2445 (1974).
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at finite distances) to represent the effects of externally introduced, static
charges, and in particular we are dealing here with static charges at ¥ = 4 oo.

In a non-Abelian gauge theory, even a static (that is, nonmoving) charge
cannot be regarded as a ¢-number, because it has color degrees of freedom and
it can exchange color with the other charges in the system. In facf, for non-
trivial choices of U, it is necessary to work not with the usual Hilbert space V°
of the theory in the ordinary vacuum, but with an enlarged space. Let Vy
and V- be finite-dimensional vector spaces of dimension equal to the dimension
of U and U. These spaces will represent the color degrees of freedom of charges
at the right- and left-hand ends of the world. Then the Hilbert space of this
theory in a vacuum with nontrivial U will turn out to be V® V & V.

To explain those facts, and also to understand the physical properties
of the nontrivial vacua, it is useful to introduce a Hamiltonian formulation.
This can be done directly from (4), by following the standard procedure for
going from a path integral to a Hamiltonian, via the transfer matrix (5). How-
ever, we will follow a simpler procedure, i.e. the canonical gquantization in
the gauge 4, = 0.

In this gauge 4, is a dependent variable. Before quantization A4, should
be eliminated by means of Gauss’s law (%)

d
(5) < B =i,

where E* is the « electric field », in this gauge E° = (0/or)A;, and where J§
is the charge density, which is, of course, a quantum field operator, J; = 9y, A*y.
The general solution of (5) is

(6) Be(o) = 3o dy el — ) Tiw) + 907,

where e(x — y)= 41 for « greater or smaller than y, and where gC° is a constant
of integration, to be discussed later. (The factor of ¢ is included for conve-
nience.) Finally, we write the Hamiltonian, including the energy of the electric
field:

(7) H=d4ﬁ@W%w+MwyfﬂWﬂ~

The usual vacuum corresponds to (¢ = 0 in (6); now we must discuss what
nonzero choices of C¢ are allowed.

() K. G. WiLson and J. Kogur: Phys. Rep., 12 C (1974), Chapter 10.
(8) For a related discussion, see I. Bars and M. B. GREEN: Phys. Rev. D, 17, 537 (1978).
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First, we should realize that (< is, in general, an operator, not a ¢-number.
In fact, all quantities in (6) are operators: Ji is the quantum field operator
for the charge density and FE¢ is the electric-field operator. Thus we must ex-
pect also C* to be an operator.

Second, we must realize that, for an arbifrary choice of C¢, we will not obtain
a Lorentz-invariant theory. We are working in a non-Lorentz-invariant gauge
A, = 0, and choices for C* will lead to Lorentz-invariant theories only if they
can be derived from some Lorentz-invariant and gauge-invariant starting point.

Taking the path integral as our Lorentz-invariant, gauge-invariant starting
point, we must choose a nonzero (¢ that corresponds to an invariant modifi-
cation of the basic path integral (2). The only such modification is (4), thus
we must determine which C° corresponds to (4).

As has already been noted, (4) describes a world with an external charge
in the representation U at # = 4 oo and one in the representation U at
& = — oo. The appropriate choice of C* is simply that (* must represent the
contribution to the charge density coming from these boundary charges. The
appropriate formula is

®) B(@) = 1g[dy @ — 9) T2, 0)

where J{, = Jy + Jg arsd Josos includes the contribution J¢ to the charge density
coming from the quantum fields and also the contribution Joay, from the
boundary charges.

In general, the charge density operator at a point is the operator that
generates gauge fransformations at that point. In partiecular, the contribution
of the boundary charges to the charge density is Jopary(®) = 0(@ = + o0) T +
- 0(w = — o0) T3, where T'? and T2 are the generators of the gauge group acting
on the boundary charges in the U and U representations. Inserting this infor-

mation in (8), we learn

(9) Be@) = bg[dys@ — ) Ti) + ba(Ts— T5).

The Hamiltonian is found by inserting (9) in the general formula (7).

In summary, the passage from the usual vacuum to a nontrivial « §-vacuum »
is obtained by a substitution V - V® V,® V- on the Hilbert space, to rep-
resent the degrees of freedom of boundary charges, and a substitution Ee« —
~> B 4 39(T% — T%) in the electric-field operator, to represent the physical
effects of such charges.

Now we must discuss more tangible properties of these new vacua.

First, let us calculate, in the weak-coupling regime, the energy of the 6-vacua.
We should consider only states that are overall color singlet states—states
in which all of the charges present, including the charges at infinity, are coupled
to total color zero. In rough terms, the reason is that this is a confining theory.
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Formally, in writing down (9) and (5), we have dropped from the Hamiltonian
a term which is zero for overall color singlet states and infinite for other states.
This occurs as follows. The world with charges at infinity must be regarded
as the limit #, — oo of a world with charges at ¥ =4wx,. For any finite (but
large) «, one must consider in the Hamiltonian a potentially infinite term, the
electric-field energy in the infinite region x>, or # << — x,. The electric
field for « > &, or ¥ << — @, is E* = 4}¢0Q°, Q° being the total color of the world.
If the total Q¢ is not zero, the electric field is nonzero for z > x, and for x < — x,
and the total field energy in this infinite region is infinite. Therefore, we must
now use (9) and (5) only in color singlet states.

Now, to calculate the energy difference between a 0-vacuum and the or-
dinary vacuum in the leading weak-coupling approximation, we ignore vacuum
polarization, and thus ignore the J;-term in (9). Thus we take I* = %g(Tg— T;)
and the vacuum energy is W = (E°)* = (¢*/4)(T3 — T'7)®. This is to be eval-
uated in a state with U and U coupled to total color zero, which means 72 4 T';
annihilates the vacuum. For such states,

2

o

W =% (e 4 (o)~ L1+ 1 =

Lol

((T3)* + (T7)) -

b

But (T7;)* and (T2)* are a c-number, a Casimir operator of the representation U
and in terms of this Casimir, which we will call C(U), the vacuum energy,
relative to the energy of the ordinary vacuum, is W = ¢g2C(U).

Now we can see that not all of the §-vacua are stable. The reasoning pro-
ceeds by analogy with Coleman’s argument that in the Abelian case the physics
is a periodic function of 6. For, whenever it is energetically favorable, the vac-
uum will emit a charged particle-antiparticle pair, which will travel to
& = 4 oo, in order to screen the boundary charges. This will occur whenever,
by coupling in an appropﬁate way to some of the physical charged particles,
it is possible to reduce C(U), the total Casimir operator of the charges at
& = 4 oo. As a result of this mechanism, there is always only a finite number
of stable 8-vacua. How many there are depends on the group representations
of the charged matter fields. For a SU, gauge group, the number of stable
vacua is never larger than N.

For example, suppose that there are charged fields in the fundamental
(N-dimensional) representation ¢?. Then the only stable vacuum is the ordinary
vacuum, because any representation of SUy can be formed by combining the
fundamental representation with itself enough times, so that any boundary
charge can be screened.

On the other hand, suppose that all charged particles are in the adjoint
representation of the group. In this case it turns out that there are in all N
stable vacua. Apart from the ordinary vacuum, these correspond to choosing
for U the fundamental representation v¢, the second-rank antisymmetric tensor
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v, the third-rank antisymmetric tensor »¥*, and so on up to the (N — 1)-
rank antisymmetric tensor v/*-?,

These are all stable because they transform differently under the.center
of the group, while the adjoint representation is invariant under the center.
Under a transformation by an element exp [2ni/N] of the center of SUy, any
representation of S Uy transforms by a factor exp [2nik/N], where k is an integer
modulo N that is sometimes called the N-ality. Since the adjoint representation
has N-ality zero, the N-ality cannot be changed by coupling to particles in
the adjoint representation, and, therefore, there are at least N stable vacua,
one for each N-ality. The k-th rank antisymmetric tensor has N-ality %, and
these are the stable vacua.

To see that other possible vacua are unstable, consider for instance a
boundary charge in the symmetric-tensor representation s¥. A symmetric
tensor can combine with a particle in the adjoint representation ¢} to make
an antisymmetric tensor s*¢! — s’*@i. This lowers the energy, because the
Casimir operator C(U) is less for the antisymmetric tensor than for the sym-
metric tensor and, therefore, a world with a symmetric-tensor charge at in-
finity will decay, via creation of a pair of particles in the adjoint representation,
into a world in which the total charge at infinity is in the antisymmetric-tensor
representation.

As another example of a possible choice of the gauge group representation
of the charged fields, let us suppose that all charged fields are second-rank
antisymmetric tensors ¢”. In this case the physics depends very much on
whether N is even or odd.

If N is odd, the only stable vacuum is the ordinary vacuum, because for
odd N every representation can be made by combining antisymmetric tensors.
For instance, the fundamental representati/on, from which everything else can be
built, can be constructed for N=3 as ¢ ¢*'¢,;,, and for N=5 as ¢ ¢* 9" £,551m.

But for even N, there are two stable vacua—the ordinary vacuum and
also a world with a charge v»* in the fundamental representation at infinity.
The latter possibility exists because for even N the fundamental representation
does not arise in combining second-rank tensors.

We are finally ready to discuss the physical properties of the new vacua.
Here we will find some surprising results, somewhat analogous to some results
of Coleman in the Abelian problem.

Let us consider first the case in which the physical charged fields are in the
adjoint representation y:.

In the ordinary vacuum, in theories of the type considered here with un-
broken gauge symmetry, these ¢ particles are confined. However, in the non-
trivial 6-vacua, the y particles are not confined—but color is still confined, the
physical y particles being color singlets.

Consider, for instance, the first nontrivial §-vacuum with a charge v in
the N representation at # = + oo and a charge %, in the N representation at
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x = — oo. If we ignore vacuum polarization (which is negligible in the weak-
coupling regime), this f-vacuum can be described by simply coupling »* and 7,
to total color zero, v‘®,. There is in this world, as we have discussed, a back-
ground non-Abelian electric field and an energy density greater by %g¢2C(U)
than the energy of the ordinary vacuum, but the field cannot decay and the
vacuum is stable. The §-vacuum is indicated in line one of fig. 2.
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Fig. 2. — 0-vacua in a theory with quarks in the adjoint representation.

In the ordinary vacuum, the yi particles are confined, and introducing a
single y; particle would increase the total energy by an infinite amount. The
surprise we now encounter is that in the 6-vacuum the y; particles are not
confined.

In fact, it is possible in the 6-vacuum to introduce a single ¢ particle and
obtain a state of total color zero by coupling to the charges at infinity in the
form v'y}%,. This is indicated in line two of fig. 2. This state differs in energy
from the §-vacuum by a finite amount, which in weak coupling is just the bare
mass of the ¢! particle.

To see that there is only a finite energy difference between the states shown
in lines one and two of fig. 2, note that the potentially infinite term is the electric-
field energy to the left or right of the vy particle. But this field energy has the
same value in line two as in line one. Consider, for instance, the electric field
at the point # in the diagram, which is to the left of the ¢ particle. The electric-
field energy at this point depends only on the representation of SUy to which
the total charge to the left of # (or to the right of ) is coupled. To the left
of # there is in each case a single charge in the N representation, and to the right
of # there is a single charge in the N representation (line one) or a pair of charges
coupled to the N representation (line two), which leads to the same energy.

In a similar fashion, there exist finite energy excitations of the 6-vacuum
with an arbitrary number of ¢ particles. For instance, in the last line of fig. 2
there is sketched a state with three particles, coupled with the charges at in-
finity to total color zero, in the pattern v’y v, v,!%,. The energy of this state
remains finite even as one separates the three y-particles from each other.

Thus, in this world y particles are not confined. If, for instance, there is
a conserved quantum number—baryon number or quark number—and the
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y field has fractional baryon number, then the state shown in the second line
of fig. 1 is a finite-energy physical state of fractional baryon number.

Although v particles are not confined, color is still confined, and anyone
living in this world would regard the physical ¢ particles as color singlet states.
This can easily be seen from the lack of degeneracy of the states shown in
fig. 2. There is only one finite-energy excitation of the -vacuum with a single
y particle present, because there is only one way to couple y with the charges
at infinity to get total color zero. Because there is only one state with a single
1 particle, the physical y particle, as opposed to the y field, has no internal
degrees of freedom—it is a singlet.

These results are rather reminiscent of some results of Coleman (2) con-
cerning the Abelian problem at 6 = . Even closer analogies with Coleman’s
results appear if we choose the y particles to be, not in the adjoint represen-
tation 4%, but in the antisymmetric-tensor representation y*. In this case,
a8 has been mentioned, if the gauge group is SUy for even N, there is a single
stable 0-vacuum. As in the previous problem, this vacuum can be considered
to have a charge v’ at + = - co and a charge 7, at ¥ = — oo,

Unlike the previous example, there do not now exist finite-energy states
with a single ¢/ particle, because it is impossible to couple y* with the surface
charges v* and ¥, to make a color singlet,.

On the other hand, there certainly exist finite-energy states with one ¥
particle and one ¢,; antiparticle. In fact, y,  and the boundary charges can
be coupled to total color zero in more than one way.

One particularly interesting coupling is v*¥,,»* v, (lines two and three
of fig. 3). States with a particle and an antiparticle coupled in this way cer-
tainly have finite energy, at least as long as we do not try to separate the
particle and the antiparticle. What happens, however, when we try to sepa-
rate them?

i i 71—\: k
v Y

— - X

i j i ij 't
B v

i ij ik ki im m

*——>—0—>»—0—>r—O0—>—0—>—@

v ] v v

Fig. 3. — O-vacua in a theory with quarks in the second-rank tensor representation.

It turns out that the energy remains finite if we take the particle to the left
and the antiparticle to the right (line two of fig. 3), but it diverges if we take
the particle to the right and the antiparticle to the left (line three). The dif-
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ference between the two cases stems from the electric field in the region be-
tween y and 9, indicated as « in the diagram. The electric-field energy
at x depends, of course, only on the total SUy representation of all the charges
to the left (or to the right) of z. In line two there are two charges, y and v,
to the left of «, coupled as p¥; to the N representation. This is the smallest
nontrivial representation of SUy and corresponds to an electric-field energy
density equal to the energy density of the f-vacuum. Therefore, even as
and ¢ are pulled apart, the configuration in line two is & finite-energy excita-
tion of the (-vacuum.

On the other hand, in line three the charges to the left of x are v and 7,
which cannot combine to the N or N representation of SUy, but combine to
form larger (third-rank tensor) representations. In this case, the electric-field
energy density is larger than in the §-vacuum, and the energy, relative to the
energy of the f-vacuum, would diverge as one tried to separate y and 9.

Thus y and ¢ can be separated, but only if one removes y to the left andyp
to the right. They are half-asymptotic particles, like the states found by
CoLEMAN 'in the Abelian case at 0 = 7.

As in the previous example, because the multiplicity of states in line two
is one, the physical half-asymptotic states are color singlets.

It is possible (line four of fig. 3) to have an arbitrary number of y and
particles, which can be separated arbitrarily far from each other at only a
finite cost in energy, but only if the y and ¢ particles alternate and the left-
most particle is a y particle.

3. — Non-Abelian Higgs theories in two dimensions.

In this section we will change orientation and consider Higgs theories in
which the gauge symmetry is spontaneously broken. For simplicity, we will
consider only theories in which there are no unbroken gauge symmetries.

Our purpose is to show that §-vacua still exist in this case, that they are
associated with instantons and that certain qualitative properties of the
0-vacua depend only on the representations of the gauge group in which one
places the charged particles, and not on whether or not the gauge symmetries
are spontaneously broken.

We will thus consider Lagrangians of the general type

(10) & = Tr (Dug* Dugp— Vig* 9) — 165,)

where ¢ and ¢* are scalar fields and V(g*, ¢) is a potential chosen so that the
gauge symmetries are completely broken. The scalar multiplets may be several
in number, if this is needed in order to completely break the gauge symmetries,
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The gauge group we will still take to be SUy. Moreover, we will assume that
there are no accidental degeneracies in the vacuum state—any two possible
vacua can be obtained from each other by a gauge transformation.

What does it mean to say that the gauge symmetries are completely broken?
Letting ¢, be a typical minimum of the Higgs potential, one would usually
say that this means that the only element ¢ of SUy which leaves ¢, invariant
is g = 1. Actually, however, a refinement in the definition is necessary.

Suppose that all of the ¢-fields are in the adjoint representation of the
group. Then any transformation g — exp [2x=ik/N] in the center of the group
leaves the charged fields invariant—for arbitrary values of ¢, not just p = ¢,.
Such a « transformation » cannot be regarded as a symmetry of Lagrangian (10),
since it is not really a transformation at all—it is the identity operation on
all the fields.

As another example, suppose that all charged fields are in the tensor rep-
resentation ¢/, and that the N of SUy is even. Then, in addition to g = 1,
also g = — 1 leaves the ¢¥ invariant. But if there are fields in the fundamental
representation ¢, only g =— 1 leaves them invariant.

In saying that the gauge symmetries are completely broken, what one really
means is that the only elements g of SUy that leave a typical vacuum ¢, in-
variant are elements of the center of SU,; that have a trivial action on all of
the charged fields.

Now, let us ask whether our theory has instantons, (For a related dis-
cussion, see ref. (*).)

Any finite-action field configuration must, as  -» oo, approach some gauge
transform of the typical vacuum p = ¢,, A, = 0. Thus at large x we have
plx) = U(@) @y, Ap==(0.U)U-t. U(z) is defined essentially on a large circle
at the boundary of the world (fig. 1). Because this contour is a eircle, we are
dealing with maps from a cirele into the gauge group SUy. Because these maps
are all topologicaliy trivial (a'(SUy) = 0) it seems at first sight that arbitrary
boundary conditions. can be deformed into the standard conditions ¢ == ¢,,
A, = 0, s0 that there would be no instantons.

If U were completely well defined by the formulae ¢(x) = U(x)g,, 4, =
= (¢, U) U, this ¢onclusion would be correct—there would be no instantons.
However, it may happen that, even when ¢(x) and A, are given, there is more
than one solution for U(x)—more than one branch in the definition of U. In
this case, it might happen that on going around a large circle at infinity one
would, on returning to the starting point, arrive at a different branch in the
definition of U. This change in branch of U on travelling around a large circle
would then be a topological invariant classifying the instanton.

(") For analogous comments on classification of instantons and vortices, see
G. 't Hoorr: Nucl. Phys., 138 B, 1 (1978).
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An ambiguity in the formula ¢(2) = U(x)g,, once ¢ is given, corresponds
to U — Uy, where g leaves ¢, invariant. In view of the comments above about
what it means to have the gauge symmetries completely broken, g must be
an element of the center of the group that leaves all of the charged fields in-
variant. Therefore, g = exp [27ik/N] for some k, the allowed values of %
depending on what charged fields are present. It is this k¥ that will label the
different topological classes.

If there are matter fields in the fundamental representation of the gauge
group, they are not invariant under any element of the center of the group
except g = 1. Therefore, there are no nontrivial topological classes, no in-
stantons and no nontrivial 6-vacua. This is reminiscent of the conclusion in
the previous section that theories with unbroken gauge symmetry, and with
some of the matter fields in the fundamental representation, have no nontrivial
6-vacua.

On the other hand, suppose all charged fields are in the adjoint representation
of the gauge group. Since this representation is invariant under the center
of the group, it is possible for U(x), on going around a large circle, to change
by an arbitrary factor exp [27ik/N], for an arbitrary integer k, which is de-
fined only modulo N.

In this case, there are N topological classes, corresponding to N possible
values of k. We may regard % as the «instanton number». But, because k
is only defined modulo ¥, the instanton number is well defined (is a topological
invariant) only modulo N. We may now define §-vacua by modifying the usunal
Feynman path integral prescription to weight all fields with an extra factor
exp [¢0%]. Since k is defined only modulo N, the permitted values of 0, to make
exp [i0k] well defined, are

2n(n — 1)

Thus there are N possible 6-vacua.

This may be reminiscent of the conclusion in sect. 2 that, when the gauge
symmetry is not spontaneously broken, and the charged barticles are all in
the adjoint representation of the gauge group, there are N 6-vacua.

As a final example, let us consider theories in which all charged matter
fields are in the second-rank tensor representation ¢®. In this case, if N is
even, the change in U in going around a large circle must be a multiplicative
factor 4 1, since 1 and — 1 are the only elements of §Uy that leave the second-
rank tensors invariant. Thus, there are two topological classes of fields. And
there are also two vacua: apart from the usual vacuum, there is an additional
vacuum in which fields in the nontrivial topological clags are weighted with
a factor — 1.

On the other hand, if N is odd, only the identily element of SUy leaves
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the representation ¢ invariant. Therefore, for odd N there are no nontrivial
topological classes and no nontrivial vacua.

These results mirror the claim in the last section that, in theories with un-
broken gauge symmetry and with the charged fields in the ¢! representation,
a single nontrivial §-vacuum exists if and only if N is even.

These examples show that the number of -vacua depends only on the
representations of the charged fields, and not on whether the gauge symmetries
are spontaneously broken. However, the interpretation of the vacua—in terms
of a background field, or instantons—is different in the two cases.

Additional similarities between the 0-vacua in theories with unbroken gauge
symmetry and those in Higgs theories can be found by considering the ex-
pectation value of Tr, Pexp[i § A,dx#] for large but finite contours and
various choices of the S Uy representation V. Whether one finds area law decay
depends on the choice of V and the f-vacuum. As in the Abelian case, in-
stantons give area decay for the same choices of V (and the same 0-vacua)
for which one finds area decay in theories in which the §-vacua are interpreted
in terms of a background electric field.

In theories with unbroken gauge symmetry, we defined the O-vacua by
including a factor Try P exp [i § Ayda#], with a contour at the boundary of
the world, in the definition of the path integral. For various choices of U one
obtains the various vacuum states. Actually, the same formal procedure yields
the 0-vacua in Higgs theories. Indeed, Try P exp[¢ § Audx#] will, in gauge
fields that are pure gauges at infinity, simply measure the topological class, and
assign a phase factor to each topological class. If k is the topological class, as
defined above, and » is the N-ality (discussed in sect. 2) of the representation
U, this phase factor is exp [2mink/N]. To obtain the n-th §-vacuum, one picks U
to have N-ality n. Thus, despite their different physical interpretations, the
6-vacua can formally be defined the same way, whether or not the gauge sym-
metry is spontaneously broken.

4. — Conclusions.

Several aspects of this subject seem to be worthy of some note.

First, the correct treatment of the 0-vacua in theories with unbroken gauge
symmetry requires that one takes seriously the fact that a background Yang-
Mills field is an operator, not a ¢-number.

Second, it is interesting to see that many formal properties of the §-vacua
do not depend on whether the theory has symmetry breaking and instantons.

Finally, it is interesting to see, in some of the cases treated above, explicit
oxamples in which color is confined, but quarks are not confined.
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@ RIASSTUNTO (%)

Si mostra che esistong vuoti 6 in teoric di gauge bidimensionali non abeliane, cosi
come in teorie abeliane.

(") Traduzione a cura della Redazione.

6 BaKYyMbl B JBYMEPHOH KBAHTOBOH XPOMOAHHAMHKE.

Pesiome (*). — IToka3pIBaeTcs, YTO 0 BAKYYMbI CYIUECTBYIOT B OBYMEPHBIX HeabeneBbIX
KanuOpOBOYHEIX TEOPHsAX, a4 TakXke B abelleBBIX TCOPHIX.

(*) IIepesedeno pedaryueil.



