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S u m m a r y .  - -  I t  is shown that 0-vacua exist in two-dimensional non- 
Abelian gauge theories, as welt as in the Abelian theories. 

1 .  - I n t r o d u c t i o n .  

I n  the  last  few years,  i t  has been realized t ha t  U1 gauge theories in two 
dimensions possess not  just  a single vacuum,  bu t  a one-parameter  family of 

vacua,  the (~ 0-vacua ~> (1). This is t rue regardless of whether  the  U1 s y m m e t r y  
is spontaneously broken.  When  the U1 s y m m e t r y  is not  spontaneously broken,  
the 0-vacua correspond to the possible presence of a background  electric 
field (3). When  the U1 s y m m e t r y  is spontaneously  broken,  the  existence of 
0-vacua is connected with the existence of instantons (s). 

I n  this pape r  it will be shown tha t  an analogous phenomenon,  mult iple  

v a c u u m  states,  occurs in non-Abelian gauge theories in two dimensions. How- 
ever, instead of a one-parameter  family  of vacua,  there exists in this case only 
a finite, discrete set of possible v a c u u m  states.  

(*) To speed up publication, the author of this paper has agreed to not receive the 
proofs for correction. 
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When the gauge symmet ry  is not  spontaneously broken, then, as in the 
U1 case, the 0-vacua are associated with a possible background electric field. 
H ~ e v e r ,  as we will see, in the non-Abelian case, a background electric field 
must  be t rea ted  as a q-number, not  a c-number. 

When  tim gauge symmet ry  is spontaneously broken,  the 0-vacua are related 
instead, as in the Abelian case, to instantons. Moreover, as in the Abelian case, 

the pa t te rn  of the 0-vacua (how many  there are, and certain of their  properties 
to be discussed) is the same whether  the gauge symmet ry  is spontaneously 
broken or not. 

2. - Theor ies  w i th  u n b r o k e n  gauge  s y m m e t r y .  

In  this section we will consider, for definiteness, a SU~r gauge group. For  
definiteness, we will choose all charged fields to be fcrmions. As for choosing 
representat ions of the gauge group for the fermions y, we will consider several 
possibilities, such as the fundamenta l  representat ion ~o ~, the ant i symmetr ic  
tensor  v/ii and the adjoint  representat ion ~0~. The Lagrangian is thus 

(1) s --~ Tr  (~,i(y.D)v 2 --  M ~ v  2 --  1G~G~,,) , 

where the fermion representat ion has not  been specified. The conclusions tha t  
follow would be the same if the fermions were scalar fields. 

Perhaps  the easiest way to see tha t  0-vacua are possible in (1) is to use the 
pa th  integral representat ion 

(2) z =fa d aAexp[ fd x ] : 

:fdv2 d dA exp [i(fd x Tr( i(y.D)y - �88 

In  an Abelian gauge theory,  one well-known way to see the existence of 

0-vacua is the following. We modify the pa th  integral b y  inserting into the  
integrand an extra  factor  exp [(i0/2~) ~ dx~,A~,], where 0 is an a rb i t ra ry  angle 
and the contour of integration runs at  the boundary  of our two-dimensional 
space-time world (fig. 1). Thus we consider 

(3) 

This modified pa th  integral obviously is still gauge invariant .  I t  is also ob- 
viously Lorentz  invariant ,  since a contour  a t  space-time infinity is mapped 
by  a Lorentz  t ransformat ion into a contour  a t  space-time infinity. I t  is alsr 
true,  and will be made  obvious below by  in t roduc t ion  of a Hami l toJ l ian  for- 
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mulat ion,  t ha t  the modification of the pa th  integral  preserves propert ies  such 
as posi t iv i ty  of the  metr ic  and  cluster decomposit ion.  Thus the new p a t h  
integral  defines a q u a n t u m  field theory.  

Fig. 1. - A contour at the boundary of space-time. 

This q u a n t u m  field theory  satisfies the  same equations of mot ion as before, 

since we have  added a surface t e rm tha t  does not  change the  equations of mo- 
tion. Thus (3) describes a new solution of the equations of mot ion of the theory,  

or, differently put ,  a new v a c u u m  state.  
I n  this form, it  is fair ly obvious how to construct  non-Abelian 0-vacua. 

In s t ead  of exp [(i0/2~) ~ dx~'A,,], we choose an a rb i t ra ry  representat ion U of 
the  Lie algebra of the gauge group and  write T r u P  exp [i ~ dx~'A~,], where P 

stands for p a t h  ordering along a contour  a t  infinity, and  Try stands for taking 

the  t race  in the representa t ion U of the algebra. Thus we write 

(4) Z(U):fd~dCgdA~exp[ifd2x.~] TrvPexp[i~dx, A~]. 

The non-Abel ian (~ 0-vacua )) are defined by  (4). I n s t ead  of the  continuous 

p a r a m e t e r  0 we have  avai lable  only the  discrete choice of the  representa t ion  U. 
I n  the  Abelian theory,  a nonzero 0 corresponds, as COLEMAN has shown (~), 

to a world with a fract ional  charge of s t rength e0/2z a t  the  r ight -hand end of 
the world, x ---- ~ ~ ,  and  one of s t rength  - -  e0/2~ a t  the lef t -hand end, x ---- - -  c~. 

B y  the  same token,  in the  non-Abelian theory,  a nontr ivial  choice of U corre- 

sponds to a world with a charge in the  representa t ion U of the  gauge group 

a t  x ~ ~ co and  one in the  complex conjugate  representa t ion  U a t  x ~ - -  c~. 

I n  fact~ our way  of modify ing  the basic p a t h  integral  (2) has been to introduce 

a pa th-ordered  exponent ia l  with a contour  a t  the  ends of the  world. Such 

pa th-ordered  exponentials  are often used (4) (with contours  t h a t  are ordinari ly 

(4) K. WILSON: Phys. Rev. D, 10, 2445 (1974). 
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at  finite distances) to represent the effects of external ly introduced,  static 
charges~ and in part icular  we are dealing here with static charges at  x ~-- • ~ .  

In  a non-Abelian gauge theory~ even a static ( that  is, nonmoving) charge 

cannot  be regarded as a c-number, because it has color degrees of freedom and 
it  can exchange color with the  other  charges in the  system. In  fact~ for non- 
trivial choices of U, it is necessary to work not  with the usual Hilber t  space V 
of the theory  in the ordinary vacuum, bu t  with an enlarged space. Le t  V~ 
and VV be finite-dimensional vector  spaces of dimension equal to the dimension 
of U and U. These spaces will represent the color degrees of freedom of charges 
at  the right- and left-hand ends of the world. Then the t t i lber t  space of this 
theory  in a vacuum with nontr ivial  U will turn  out to be V (D V ( ~  Vy. 

To explain those facts, and also to unders tand the physical properties 

of the nontr ivial  vacua, it is useful to introduce a Hamil tonian formulation.  
This can be done directly from (4), by  following the s tandard procedure for 

going from a pa th  integral to a Hamfltonian,  via the transfer mat r ix  (5). How- 
ever~ we will follow a simpler procedure,  i.e. the canonical quantizat ion in 

the gauge A~ ~ 0. 
I n  this gauge Ao is a dependent  variable. Before quantizat ion Ao should 

be el iminated by  means of Gauss's law (6) 

d 
- -  E a  : q J o  , (5) dx 

where E ~ is the (~ electric field ,~, in this gauge E a ~ (~/~x)A~, and where Jo 
is the  charge density~ which is, of course~ a quan tum field operator~ Jo ~ ~7o 2a ~o. 

The general solution of (5) is 

(6) .Ea(x) = � 8 9  ~(x - -  y ) J~ (y )  + gC ~ , 

where ~(x -- y)~-- ~ 1  for x greater  or smaller than  y, and where gC a is a constant  
of integration, to be discussed later. (The factor  of g is included for conve- 
nience.) Finally,  we write the  Hamiltonian~ including the energy of the electric 

field: 

~ +  

The usual vacuum corresponds to C a ~ 0 in (6); now we must  discuss what  

nonzero choices of C a are allowed. 

(~) K. G. WILSON and J. KOGUT: Phys. t~ep., 12 C (1974), Chapter 10. 
(G) For a related discussion, see I. BARS and M. B. GRW]~: Phys. Rev. D, 17, 537 (1978). 
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First,  we should realize tha t  C ~ is, in general, an operator,  not  a c-number. 
In  fact,  all quantities in (6) are operators:  Jo is the quan tum field operator  
for the  charge density and E ~ is the electric-field operator.  Thus we must  ex- 
pect  also C ~ to be an  operator.  

Second, we must  realize that ,  for an arb i t rary  choice of C ~, we will not  obtain 
a Lorentz- invar iant  theory.  We are working in a non-Lorentz- invar ian t  gauge 
A~ ~ 0, and choices for C ~ will lead to Lorentz- invar iant  theories only if they  
can be derived from some Lorentz- invar iant  and gauge-invariant  start ing point.  

Taking the pa th  integral as our Lorentz-invariant ,  gauge-invariant  start ing 
point,  we must  choose a nonzero C ~ tha t  corresponds to an invariant  modifi- 
cation of the basic pa th  integral (2). The only such modification is (4), thus 
we must  determine which C a corresponds to (4). 

As has already been noted, (4) describes a world with an external  charge 

in the representat ion U at  x---- ~- ~ and one in the representat ion U at  
x ~ -- ~ .  The appropriate  choice of C a is simply tha t  C ~ must  represent the 
contribution to the charge density coming from these boundary  charges. The 
appropriate  formula is 

(s) E~(x) = �89 gfdy s(x -- y) J~tot (Y) , 

where Joto~ ~ Jo ~ J0bd~; J~tot includes the contr ibut ion Jo to the charge density 
coming from the quan tum fields and also the contr ibution Jobd~ from the 
boundary  charges. 

In  general, the  charge density operator  at  a point  is the operator  tha t  

generates gauge transformations a t  tha t  point. In  particular,  the contr ibution 
of the boundary  charges to the charge density is Jo (x) ~ 6(x ~ ~ cr ~- bd~ 

~(X ~ -- ~ ) T ~ ,  where T a a n d / ~ -  are the generators of the gauge group acting u Y 

on the boundary  charges in the U and U representations.  Insert ing this infor- 
mat ion in (8), we learn 

(9) E~(x) = � 8 9  y)J~(y) + �89 T~). 

The Hamil tonian is found by  inserting (9) in the general formula (7). 
In  summary,  the passage from the usual vacuum to a nontr ivial  ~, 0-vacuum ~ 

is obtained by  a substi tut ion V --~ V G V Q V~ on the t t i lber t  space, to rep- 
resent the degrees of freedom of boundary  charges, and a subst i tut ion E ~ -+ 

.._~.~a _j_ �89 T~) in the electric-field operator,  to represent  the physical 
effects of such charges. 

~ o w  we must  discuss more tangible properties of these new vacua. 
First,  let us calculate, in the weak-coupling regime, the energy ef the 0-vacua. 

We should consider only states tha t  are overall color singlet s ta tes- -s ta tes  
in which all of the charges present,  including the charges at  infinity, are coupled 
to total  color zero. In  rough terms, the reason is t ha t  this is a confining theory.  
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Formal ly ,  in writ ing down (9) and  (5), we have  dropped f rom the Hami l ton ian  

a t e rm which is zero for overall color singlet s tates and  infinite for other  states.  

This occurs as follows. The world with charges a t  infinity mus t  be  regarded 

as the l imit  x0 -+ c~ of ~ world with charges a t  x = =~xo. Fo r  any  finite (but 

large) Xo one mus t  consider in the Hami l ton ian  a potent ia l ly  infinite te rm,  the  
electric-field energy in the infinite region x > Xo or x < -  xo. The electric 

field for x > Xo or x < --  Xo is E a = :~_lgQa, Qa being the to ta l  color of the world. 

I f  the  to ta l  Q~ is not  zero, the electric field is nonzero for x > xo and for x < - -  xo 
and  the to ta l  field energy in this infinite region is infinite. Therefore,  we mus t  

now use (9) and  (5) only in color singlet states.  

5Tow, to calculate the energy difference between a 0-vacuum and the or- 

d inary  v a c u u m  in the leading weak-coupling approx imat ion ,  we ignore v a c u u m  

polarization,  and  thus ignore the Jo- te rm in (9). Thus we take  E a ~ lg(T-~--  T~) 
and  the  v a c u u m  energy is W---- (Ea)2 = (g2/4)(T~-- T~) 2. This is to be eval- 

ua t ed  in a s ta te  with U and U coupled to to ta l  color zero, which means T a + T" 
u u 

annihilates the  vacuum.  For  such states,  

W g2 g: g2 
= ~- ((Z-~) e -~ (T~) 2) --  ]- (T~ ~- T~) 2 = ~- ((T~) 2 + (T~):).  

B u t  (T~) 2 and  (Tv)~ are a c-number,  a Casimir opera tor  of the representa t ion  U 

and in te rms  of this Casimir, which we will call C(U), the  v a c u u m  energy,  
re lat ive to the  energy of the  ordinary vacuum,  is W ----- g2 C(U). 

5;ow we can see tha t  not  all of the 0-vacua are stable. The reasoning pro- 
ceeds by  analogy with Coleman's  a rgument  t ha t  in the Abelian case the  physics 
is a periodic function of 0. For,  whenever  it is energetically favorable ,  the vac-  
u u m  will emi t  a charged part ic le-ant ipart ic le  pair,  which will t rave l  to 
x = + ~ ,  in order to screen the boundary  charges. This will occur whenever,  
by  coupling in an appropr ia te  way to some of the  physical  charged particles,  
it is possible to reduce C(U), the to ta l  Casimir opera tor  of the charges a t  

x ---- ~- ~ .  As a result  of this mechanism,  there is a lways only a finite n u m b e r  

of s table 0-vacua. H o w  m a n y  there are depends on the  group representat ions  

of the charged m a t t e r  fields. For  a SU~v gauge group, the number  of stable 

vacua  is never  larger than  N.  

For  example ,  suppose t ha t  there are charged fields in the  fundamen ta l  

(N-dimensional)  representa t ion q~. Then the only stable v a c u u m  is the  ordinary  

vacuum,  because any  representa t ion of SU.u can be formed b y  combining the  
fundamen ta l  representa t ion with itself enough times, so t ha t  any  bounda ry  

charge can be screened. 

On the other  hand,  suppose t ha t  all charged particles are in the  adjoint  
representa t ion  of the group. I n  this case it turns  out  tha t  there are in all h r 

s table vacua.  Apar t  f rom the ordinary  vacuum,  these correspond to choosing 

for U the fundamen ta l  representa t ion  v ~, the second-rank an t i symmet r i c  tensor  
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v ~j, the  th i rd-rank ant isymmetr ic  tensor v "k, and so on up to the (h r -  ])- 
rank ant isymmetr ic  tensor v "k~ .  

These are all stable because they  t ransform differently under  the center  
of the group, while the adjoint  representat ion is invariant  under  the center.  
Under  a t ransformation by  an element exp [2~i/N] of the center  of SU~v, any  
representat ion of S U~ transforms by  a factor  exp [2~ik/N], where k is an integer 
modulo N tha t  is sometimes called the N:al i ty.  Since the adjoint  representat ion 
has iV-ality zero, the N-al i ty  cannot  be changed by  coupling to particles in 
the adjoint  representation,  and, therefore, there are at  least s stable vacua, 
one for each N-ality.  The k-th rank ant isymmetr ic  tensor has N-al i ty  k, and 
these are the stable vacua. 

To see tha t  other  possible vacua are unstable,  consider for instance a 
boundary  charge in the symmetr ic- tensor  representat ion s ~j. A symmetr ic  
tensor can combine with a particle in the adjoint  representat ion ?~ to make 
an ant isymmetr ic  tensor s~k~--s~k~.  This lowers the energy, because the 
Casimir operator  C(U) is less for the ant isymmetr ic  tensor than  for the sym- 
metric tensor and, therefore, a world with a symmetric- tensor  charge at  in- 
finity will decay, via creation of a pair of particles in the adjoint  representat ion,  
into a world in which the total  charge at  infinity is in the ant isymmetr ic- tensor  
representation. 

As another  example of a possible choice of the gauge group representat ion 

of the charged fields, let us suppose tha t  all charged fields are second-rank 
ant isymmetr ic  tensors ~iJ. In  this case the physics depends very  much on 
whether  N is even or odd. 

If  N is odd, the only stable vacuum is the ordinary vacuum,  because for 
odd N every representat ion cau be made b y  combining ant isymmetr ic  tensors. 
:For instance, the fundamenta l  ~representation, from which everything else can be 
built, can be constructed for N ~  3 as ~ J ~  s ~ ,  and for N----5 as ~ " ~ k ~ m ~ j k ~ .  

Bu t  for even 2(, there  are two stable v a c u a - - t h e  ordinary vacuum and 
also a world with a charge v i in the fundamenta l  representat ion at  infinity. 
The la t ter  possibility exists because for even N the fundamenta l  representat ion 
does not  arise in combining second-rank tensors. 

We are finally ready to discuss the physical properties of the new vacua.  
Here  we will find some surprising results, somewhat analogous to some results 
of Coleman in the Abelian problem. 

Le t  us consider first the case in which the physical charged fields are in the 
adjoint  representat ion v?~. 

In  the ordinary vacuum,  in theories of the type  considered here with un- 
broken gauge symmetry ,  these y particles are confined. However ,  in the non- 
trivial 0-vacua, the y particles are not  conf ined- -but  color is still confined, the  
physical  ~o particles being color singlets. 

Consider, for instance, the first nontrivial  0-vacuum with a charge v~"in 
the N representat ion at  x ---- ~ ~ and a charge ~ in the N representat ion at  
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x ---- - -  ~ .  I f  we ignore vacuum polarization (which is negligible in the weak- 
coupling regime), this 0-vacuum can be described by  simply coupling v * and ~ 
to total  color zero, v*~,. There is in this world, as we have discussed, a back- 
ground non-Abelian electric field and an energy density greater by  �89 C(U) 

than  the  energy of the ordinary vacuum, bu t  the field cannot  decay and the 
vacuum is stable. The 0-vacuum is indicated in line one of fig. 2. 

i i "  

; ;7 ] 

, ,j jZ k~ L 

Fig. 2. - 0-vacua in a theory with quarks in the adjoint representation. 

In  the ordinary vacuum, the ~ particles are confined, and introducing a 

single y~ particle would increase the total  energy by  an infinite amount .  The 
surprise we now encounter  is t ha t  in the 0-vacuum the ~ particles are not  

confined. 
In  fact,  it is possible in the 0-vacuum to introduce a single yJ~ part icle and 

obtain a state of total  color zero by  coupling to the charges a t  infinity in the 
form v ~ ~ .  This is indicated in line two of fig. 2. This state differs in energy 
f rom the 0-vacuum by  a finite amount ,  which in weak coupling is just  the bare  
mass of the ~ particle. 

To see tha t  there is only a finite energy difference between the states shown 
in lines one and two of fig. 2, note tha t  the potent ia l ly  infinite te rm is the electric- 
field energy to the left or r ight of the ~ particle. Bu t  this field energy has the 
same value in line two as in line one. Consider, for instance, the electric field 
a t  the point  x in the diagram, which is to the left of the ~o particle. The electric- 

field energy at  this point  depends only on the representat ion of SUN to which 

the total  charge to the left of x (or to the right of x) is coupled. To the left  
of x there is in each case a single charge in the _N representation, and to the right 
of x there is a single charge in the N representat ion (line one) or a pair  of charges 
coupled to the s representat ion (line two), which leads to the same energy. 

In  a similar fashion, there exist finite energy excitations of the 0-vacuum 
with an arbi t rary  number  of ~ particles. For  instance, in the last line of fig. 2 
there  is sketched a state with three particles, coupled with the charges at  in- 
finity to to ta l  color zero, in the pa t te rn  ~ k ~ ~- v ~olz~k~3~ vs. The energy of this s tate  
remains finite even as one separates the three ~-particles f rom each other.  

Thus, in this world ~0 particles are not  confined. ]f,  for instance, there  is 

a conserved quan tum n u m b e r - - b a r y o n  number  or quark n u m b e r - - a n d  the 
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field has fractional  ba ryon  number,  then the state  shown in the second line 

of fig. I is a finite-energy physical state of fractional  ba ryon  number.  
Although v 2 particles are not  confined, color is still confined, and anyone 

living in this world would regard the physical ~0 particles as color singlet states. 
This can easily be seen from the lack of degeneracy of the  states shown in 
fig. 2. There is only one finite-energy excitat ion of the 0-vacuum with a single 

particle present,  because there  is only one way to couple ~ with the  charges 
at  infinity to get to ta l  color zero. Because there is only one state  with a single 

particle, the  physical ~ particle, as opposed to the y~ field, has no internal  
degrees of f r eedomwi t  is a singlet. 

These results are ra ther  reminiscent of some results of Coleman (2) con- 
cerning the Abelian problem at  0 ~ ~. Even  closer analogies with Coleman's 
results appear  if we choose the ~ particles to be, not  in the adjoint  represen- 
ta t ion yj ,  bu t  in the  ant isymmetr ic- tensor  representat ion ~ .  In  this case, 
as has been mentioned,  if the gauge group is SUN for even hT, there is a single 
stable 0-vacuum. As in the previous problem, this vacuum can be considered 
to have  a charge v ~ at  x = q- oo and a charge ~j a t  x = -- oo. 

Unlike the previous example,  there  do not  now exist finite-energy states 
with a single y~ particle, because it  is impossible to couple ~ "  with the surface 
charges v ~ and ~j to make a color singlet. 

On the other  hand, there certainly exist finite-energy states with one ~"  
particle and one ~ ,  antiparticle. In  fact, ~, ~ and the boundary  charges can 

be coupled to to ta l  color zero in more than  one way. 
One part icularly interesting coupling is v~v~jk~"~ (lines two and three 

of fig. 3). States with a particle and an antiparticle coupled in this way cer- 
ta inly have finite energy, at  least as long as we do not  t ry  to separate the 
particle and the antiparticle.  Wha t  happens,  however,  when we t ry  to sepa- 
ra te  them? 

i i 

i i j  ]k  k 
> o ~ ~ o �9 �9 

X 

T , i] j ~  . L  -L;~ m 
$ .~ 0 �9 0 ~ 0 ~, C r- -_ 

Fig. 3. - 0-vacua in a theory with quarks in the second-rank tensor representation. 

I t  turns out  tha t  the energy remains finite if we take  the particle to the left 
and the antiparticle to the  right (line two of fig. 3), bu t  it  diverges if we take  
the particle to the right and the antipart icle to the left (line three). The dif- 
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ference between the two cases stems from the electric field in the region be- 
tween v 2 and ~, indicated as x in the diagram. The electric-field energy 
at  x depends, of course, only on the total  S b~ representat ion of all the  charges 
to the left (or to the right) of x. In  line two there are two charges, yJ and ~, 
to the  left of x, coupled as y J ~  to the N representation.  This is the smallest 
nontrivial  representat ion of S U,~ and corresponds to an electric-field energy 
density equal to the energy density of the 0-vacuum. Therefore,  even as 
and  ~ are pulled apart ,  the  configuration in line two is a finite-energy excita- 
t ion of the 0-vacuum. 

On the other  hand, in line three the charges to the left of x are ~ and ~, 
which cannot  combine to the N or N representat ion of SU~, bu t  combine to 
form larger ( third-rank tensor) representations. In  this case, the electric-field 
energy density is larger than in the 0-vacuum, and the energy, relat ive to the 
energy of the 0-vacuum, would diverge as one tr ied to separate V and ~. 

Thus yJ and ~ can be separated, bu t  only if one removes ~o to the left and 
to the right.  They  are half-asymptot ic  particles, like the states found by  
COLEMAN'in the Abelian case at  0----u. 

As in the previous example,  because the multiplicity of states in line two 
is one, the physical half-asymptotic  states are color singlets. 

I t  is possible (line four of fig. 3) to have an arb i t rary  number  of v 2 and 
particles, which can be separated arbitrari ly far from each other  at  only a 
finite cost in energy, bu t  only if the ~ and ~ particles al ternate  and the left- 

most  particle is a yJ particle. 

3 .  - N o n - A b e l i a n  E l i g g s  t h e o r i e s  i n  t w o  d i m e n s i o n s .  

In  this section we will change orientat ion and consider Higgs theories in 
which the gauge symmet ry  is spontaneously broken. For  simplicity, we will 
consider only theories in which there  are no unbroken gauge symmetries.  

Our purpose is to show tha t  0-vacua still exist in this case, tha t  they  are 
associated with instantons and tha t  certain quali tat ive properties of the 
0-vacua depend only on the representations of the gauge group in which one 
places the charged particles, and not  on whether or not the gauge symmetries  
are spontaneously broken. 

We will thus consider Lagrangians of the general type  

(lo) -~f : Tr  (Duq~* DuqJ-- V(q~*, ep)- �88 ) , 

where ~ and ~* are scalar fields and V(cp*, ep) is a potential  chosen so tha t  the 
gauge symmetries  are completely broken. The scalar mult iplets  m ay  be several 
in number,  if this is needed in order to completely break the gauge symmetries.  
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The gauge group we will still take to be Sb~.. Moreover, we will assume that  

there arc no accidental degeneracies in the vacuum s t a t e - - a n y  two possible 

vacua can be obtained from each other by a gauge transformation.  

W h a t  does it mean to say tha t  the gauge symmetries are completely broken? 
Let t ing ~0o be a typical minimum of the Higgs potential, one would usually 

say tha t  this means tha t  ttle only element g of S U~. which leaves ~0 invariant  

is g ~ 1. Actually, however, a refinement in the definition is necessary. 

Suppose tha t  all of the q~-fields are in the adjoint representation of the 

group. Then any transformation g = exp [2~ik/N] in the center of the group 

leaves the charged fields invar ian t - - for  arbi t rary values of ~, not  just ~0 ~ ~0o. 

Such a (( t ransformation ,) cannot be regarded as a symmet ry  of Lagrangian (10), 

since it is not  really a transformation at a l l - - i t  is the identi ty operation on 

all the fields. 

As another example, suppose that  all charged fields are in the tensor rep- 

resentation ~", and tha t  the h r of SU~. is even. Then, in addition to g ~ 1, 

also g ---- --  1 leaves the ~"  invariant. But  if there are fields in the fundamental  

representation ~ ,  only g = -1  leaves them invariant. 

I n  saying tha t  the gauge symmetries are completely broken, what  one really 

means is tha t  the only elements g of S L~. tha t  leave a typical vacuum ~o in- 

variant  are elements of the center of SU tha t  have a trivial action on all of 'N 

the charged fields. 

Now, let us ask whether our theory has instantons. (For a related dis- 

cussion, see ref. (7).) 

Any finite-action fichl configuration must, as x -+ ~ ,  approach some gauge 

transform of the typical vacuum T ~- ~o, A ,  ---- 0. Thus at large x we have 

q~(x) : U(x)q:o, A# == ( ~ , U ) U  -~. U(x) is defined essentially on a large circle 
at the boundary  of the world (fig. 1). Because this contour is a circle, we ~re 

dealing with maps from a circle into the gauge group S 5~. Because these maps 

are all topologieal iy trivial (z~(SUN) : 0) it seems at first sight tha t  arbi t rary 

boundary  condi t ions  can be deformed into the s tandard conditions ~ - - ~ o ,  

A~ ~ 0, so tha t  there would be no instantons. 

If  U were completely well defined by the formulae ~ ( x ) ~  U(x)cfo, A , - ~  
---- (~  U) U -~, this conclusion would be correc t - - there  would be no instantons. 

I towever,  it may  happen that ,  even when ~(x) and A~ are given, there is more 

than one solution for U(x)--more than one branch in the definition of U. In  

this case, it might  happen tha t  on going around a large circle at  infinity one 

would, on returning to the starting point, arrive at  a different branch in the 

definition of U. This ehango in branch of U on travelling around a large circle 

would then be a topological invariant classifying the instanton. 

(7) For anMogous comments on classification of instantons and vortices, see 
G. 'T HOO~T: Nucl. Phys., 135 B, 1 (1978). 
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An ambiguity in the formula ~0(x)= U(x)q~o, once ~ is given, corresponds 
to U -+ Ug, where g leaves q0 invariant. In view of the comments above about 
what it means to have the gauge symmetries completely broken, g must be 
an element of the center of the group that leaves all of the charged fields in- 
variant. Therefore, g-= exp [2~rik/N] for some k, the allowed values of k 
depending on what charged fields are present. Xt is this k that  will label the 
different topological classes. 

If  there are matter  fields in the fundamental representation of the gauge 
group, they are not invariant under any element of the center of the group 
except g = 1. Therefore, there are no nontrivial topological classes, no in- 
stantons and no nontrivial 0-vacua. This is reminiscent of the conclusion in 
the previous section that  theories with unbroken gauge symmetry, and with 
some of the matter  fields in the fundamental representation, have no nontrivial 
O-vacua. 

On the other hand, suppose all charged fields are in the adjoint representation 
of the gauge group. Since this representation is invariant under the center 
of the group, it is possible for U(x), on going around a large circle, to change 
by an arbitrary factor exp [2~rik/N], for an arbitrary integer k, which is de- 
fined only modulo _Y. 

In  this case, there are ~ topological classes, corresponding to N possible 

values of k. We may regard k as the <, instanton number ,>. But, because k 
is only defined modulo _Y, the instanton number is well defined (is a topological 
invariant) only modulo ~ .  We may now define O-vacua by modifying the usual 
Feynman path integral prescription to weight all fields with an extra factor 
exp [iOk]. Since k is defined only modulo N, the permitted values of O, to make 
exp [iOk] well defined, are 

2 ~  4xl 2 ~ ( n  - -  1) 
0 = 0 ,  N '  N '  " " '  N 

Thus there are _~ possible 0-vacua. 
This may be reminiscent of the conclusion in sect. 2 that,  when the gauge 

symmetry is not spontaneously broken, and the charged ~articles are all in 

the adjoint representation of the gauge group, there are ~ 0-vacua. 
As a final example, let us consider theories in which all charged matter  

fields are in the second-rank tensor representation ~J. In  this case, if _~ is 
even, the change in U in going around a large circle must be a mnltiplicative 
factor • 1, since 1 and -- 1 are the only elements of SU~ that  leave the second- 
rank tensors invariant. Thus, there are two topological classes of fields. And 

there are also two vacua: apart  from the usual vacuum, there is an additional 
vacumn in which fields in the nontrivial topological class are weighted with 

a factor -- 1. 
On the other hand, if N is odd, only the identity element of SU~ leaves 
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the representation ~0" invariant. Therefore, for odd N there are no nontrivial 
topological classes and no nontrivial vacua. 

These results mirror the claim in the last section that, in theories with un- 
broken gauge symmetry and with the charged fields in the ~J representation, 
a single nontrivial 0-vacuum exists if and only if Z r is even. 

These examples show that  the number of 0-vacua depends only on the 
representations of the charged fields, and not on whether the gauge symmetries 
are spontaneously broken. However, the interpretation of the vacua--in terms 
of a background field, or instantons--is different in the two cases. 

Additional similarities between the 0-vacua in theories with unbroken gauge 
symmetry and those in I:Iiggs theories can be found by considering the ex- 
pectation value of Trv P exp [i ~ A.dx.J for large but finite contours and 
various choices of the S b~ representation V. Whether one finds area law decay 
depends o~n the choice of V and the 0-vacuum. As in the Abelian case, in- 
stantons give area decay for the same choices of V (and the same 0-vacua) 
for which one finds area decay in theories in which the 0-vacua are interpreted 
in terms of a background electric field. 

In theories with unbroken gauge symmetry, we defined the 0-vacua by 
including a factor Tr~P exp [i ~ A~,dx~'], with a contour at the boundary of 
the world, in the definition of the path integral. For various choices of U one 
obtains the various vacuum states. Actually, the same formal procedure yields 
the 0-vacua in Higgs theories. Indeed, Trv P exp [i ~ A.dx.] will, in gauge 
fields that  are pure gauges at infinity, simply measure the topological class, and 
assign a phase factor to each topological class. If k is the topological class, as 
defined above, and n is the ~-al i ty (discussed in sect. 2) of the representation 
U, this phase factor is exp [2~ink/N]. To obtain the n-th 0-vacuum, one picks U 
to have ~-al i ty n. Thus, despite their different physical interpretations, the 
0-vacua can formally be defined the same way, whether or not the gauge sym- 
metry is spontaneously broken. 

4 .  - C o n c l u s i o n s .  

Several aspects of this subject seem to be worthy of some note. 
First, the correct treatment of the 0-vacua in theories with unbroken gauge 

symmetry requires that  one takes seriously the fact that  a background u 
Mills field is an operator, not a c-number. 

Second, it is interesting to see that  many formal properties of the 0-vacua 
do not depend on whether the theory has symmetry breaking and instantons. 

Finally, it is interesting to see, in some of the cases treated above, explicit 
examples in which color is confined, but quarks are not confined. 
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�9 R I A S S U N T O  (*) 

Si mos t r a  che esis tono vuot i  0 in teor ic  di gauge b id imens iona l i  non abcl iane,  cosi 

come in teor ie  abel iane.  

(*) Traduzione a cura della Redazione. 

0 BagyyMht B ~yMepHof i  gBaHTOSOfi XpOMO~HHaMKge. 

PealoMe (*). - -  I-[oga3htBaeTcr[, tlTO 0 BagyyMl, I cytt[eCTBy1OT n ;1ByMepHbIX Hea6enesbix 

Ka~H6pOBOql/blX TeOpnax, a Tag~e n a6e$ieabix TeOpn~x. 

(') IZepeset)eno pec)amlue?~. 


