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Infinite Diffusion Velocity and Causality in Special Relativity. 

R. HAKIM 

Groupe d' A strophysique Relativiste, Observatoire de Paris-Mention, 92190 Meudon, France 

(ricevuto i l  23 Febbraio  1979) 

In relativist ic kinetic theory (see, e.g., ref. (1-3) for general reviews) the  various 
t ransport  propert ies of the relat ivist ic  gas are general ly dealt  with a covariant  extension 
of the  well-known Chapman-Enskog method. However, one has to face the following 
problem: the  resulting heat  conduction equation is parabolic and hence heat  propagates  
with an infinite velocity whereas one would expect at most a propagat ion with  the speed 
of l ight.  Incidental ly,  this  is a manifestat ion of the fact tha t  while (~ causal i ty implies 
the Lorentz group ,), the converse s ta tement  (4) is not true. I t  should also be emphasized 
tha t  th is  problem is not specific of re la t iv i ty :  the  usual hea t  conduction equation (or 
diffuse equation) is also parabol ic  and this  feature is known since a long t ime (the wayout  
to the difficulty of infinite diffusion velocity is now well understood (s)). Wha t  is however 
specific of re la t iv i ty  is the question of causality and one would l i k e - - a t  least  in behalf  
of pr inc ip les- - to  get a hyperbolic heat  conduction equation or possibly reconcile its 
parabolic nature with causality. 

Several a t tempts  to solve this  problem have been performed along various lines (s.s.s) 
and the most recent one consists in the  addi t ion of a more or less ad hoc te rm in the 
definition of the heat  flux (7); this  new term being next justified by  a suitable modifica- 
t ion (s) of the Chapman-Enskog method needed to solve the kinetic equation under 
consideration. On the other hand, one can argue (s) tha t  the approximat ions  performed 
(within relat ivist ic  kinetic  theory) in order to get  the  heat  conduction equation, are 
no longer valid much before a regime where velocities are close to the speed of l ight  is 
reached: in this  optic, i t  is not surprising tha t  a pathology arises (i.e. the  lack of causali ty 
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in the results) when one is outside of the domain of validity of the theory. However, 
although correct this argument does not settle the problem of principle. 

In this note we would like to present a very simple model that  sheds a different light 
on this question. This model exhibits the interesting feature of being causa l  and 
nevertheless possessing an in] in i t e  d i ] f~s ion  velovity.  This model is a covariant generaliza- 
tion of the usual random walk (10) and, at this stage, we would like to emphasize strongly 
tha t - -un l ike  the conventional random walk problem, which may be considered as a 
model for Brownian mot ion- - i t  is not intended to represent any actual problem what- 
soever: its virtue lies merely in its heuristic value. 

For the sake of simplicity a two-dimensional space-time is considered in the following 
(only one spatial dimension). From an origin 0 the future light cone is drawn and, in 
its interior, a curvilinear lattice is constructed (see fig. 1), determined from the curves 

(m-l)80 
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Fig.  1. - T h i s  E uc l i de an  r e p r e s e n t a t i o n  of the  s p a c e - t i m e  gr id  e m p h a s i z e s  i t s  i n v a r i a n t  under  d i screte  
Lorent z  t r a n s f o r m a t i o n s .  P o i n t  A (co-ord inates  n, m)  c a n  be  r e a c h e d  o n l y  f r o m  po in t  B (n - -  1, m - -  1) 
or f r o m  p o i n t  ~ ( n - - l ,  m +  1). 

x~'xn~- z ~= ~2v o (n = 1, 2 ... .  ), 

x ~  mOo x l  ( m =  1 , 2  . . . .  ) 

(with p = 0, 1). v 0 and 0 o are arbitrarily small (but not zero) quantities. Rather than 
the Cartesian co-ordinates (x ~ x 1) we shall use the (~ spherical ~) ones (3, 0) defined by 

Xo = ~ e h  O , 

x i = v s h O ,  

(1o) See, e.g., N. WAx: Selected Papers oN Noise and Stochastic Processes (New York, N. Y., 1954). 
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so that  our grid is characterized by the set of integers (n, m),  in such a way that  
3 = n3 o, 0 = mO o. Notice that  this grid is Lorentz invariant  in the sense that  it is 
invariant  under discrete Lorentz transformations 0--+n0. 

As usual we consider a particle that  is at 0 = 0 at (, time ~) 3 o; furthermore at each 
step (i.e. at each time interval 30) it must jump either to the right or to the left, of one 
unit,  with equal a pr ior i  probabilities. I t  follows that  the probability P{nvo, moo} for 
a particle to reach the point mO o at <( t ime ~) nv o is given by 

(1) P{n3 o, mOo} = �89 {P{(n- -  1)v o, (m -t- 1)0o} + P { ( n - -  1)3o, (m - -  1)0o}}, 

with the init ial  condition P{3o, 0} = 1. As usual (10), by substracting the quant i ty  
P{(n - -  1)30, moo} to both sides of this last equation, dividing by 3 o and going over to 
the limit 3o-~0, 0o--~0 , one is led to the following diffusion equation: 

(2) (8183) 1(3, O) = D(SVSO 2) 1(3, 0) ,  

where we have set lim 0o2/23 = D. To eq. (2) for ](3, 0), the probabili ty density for 
a particle to be found at point  0 and at t ime 3, one must add the init ial  condition 
/(0, 0) = (~(0) x 6(3). ](3, 0) is normalized through 

-]-co 

(3) fdO 1(3; 0) : 1 
- - c o  

The diffusion equation (2) is obviously Lorentz-invariant since i) ~ is itself an invar iant  
and ii) the operator 0/80 is invar iant  under the change 0-+0 ~-~, representing itself 
a pure Lorentz transformation. 

The solution of eq. (2), obeying our initial  condition, has the customary form 

(4) ](v, O) = 1/(2zDv)J  exp [-- 02/2D3],  

so that,  at an arbitrarily small t ime 3, there is a nonvanishing probability for the random 
particle to be found at an arbitrarily large distance 0: the diffusion velocity is still infinite 
in this however covariant model. 

Nevertheless, although the diffusion velocity is infinite, the random particle always 
lies wi th in  the light cone (this property is embodied in the condition 3 ~> 0) and hence 
causality is preserved. If we now come back to Cartesian co-ordinates and take an 
hyperplane t = const (or any other spacelike three-surface; see fig. 2), this shows that  
the particle has travelled only on a distance less than ct. 

Let us now draw a few conclusions from the above considerations. 
First, one clearly sees that  the adopted notion of instantanei ty  (i.e. the (~ slicing )> 

of space-time by a family of spacelike three-surfaces) does play an important  role in 
the problem: the model is causal as long as one uses a slicing by spacelike three-surfaces 
that  cut the future null  cone; it loses this property when considering e.g. hyperboloids 
inside this null  cone. 
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Fig.  2. - T he  r a n d o m  pa r t i c l e  can  be  found  a t  a n  a r b i t r a r i l y  l a rgo  d i s t a n c e  w i t h i n  a sma l l  i n t e r v a l  dO 
wi th  a ]xonvanish ing  p r o b a b i l i t y  a n d  a t  a n  a r b i t r a r i l y  smal l  * t i m e  ~, v = e  l e ad in g  t h e r e b y  to a n  
inf ini te  diffusion , ve loc i ty  * whi le  c a us a l i t y  is p r e s e r v e d  s ince the  pa r t i c l e  is st i l l  w i t h i n  the  null  
cone:  i ts  a c t u a l  ve loc i t y  is less t h a n  t h a t  of l ight .  

Next comes the most important  point. If tile jumps of the random particle arc 
to be considered as due to collisions (with a subjacent medium of molecules, the collision 
t ime being v 0 and the mean free path e0ovo), tile limiting process (00, v0)--+0 amounts 
to a change in  the scale o] length and time: in a loosc sense, t ime intervals (respectively 
distances) of the order of vo (respectively of the order of coors) are considered as 
being vanishingly small; one takes a long-time limit (respectively a long-distance limit). 
This feature is, of course, not new and appears not only in the usual random walk 
approach (1o) to Brownian motion but  also in all modern views of statistical mechanics 
where changes of scales are a part of the art. Although not new, this property has 
not been fully considered in relativistic kinetic theory and, in particular, in approxima- 
tion methods. 

Let us briefly specify this last point more precisely in the case of the relativistic 
Chapman-Enskog expansion. This latter represents an expansion in the small parameter 

~th T 

(5) ~ 55 55 , 

where 55 is a typical hydrodynamical distance; 1 is the mean free path;  vth is the thermal 
velocity (whatever its definition in special relativity (11)) and T the collision time. 
As emphasized in any text book on kinetic theory, this also amounts to using new 
time and space variables, say (t, x), connected to the short scale ones (t, x) through 

t ~ T t  , X = V t h T X  . 

Such a transformation does not preserve the light cone e 2 t ~ -  x 2 = 0. With these new 
variables, rather it  becomes {r ~} = O, i.e., i t  gets fiat, allowing thereby mo- 
tions with apparent speeds greater than the velocity of light. This is certainly the 
reason why, eventhough covariant, the Chapman-Enskog method used in  relativistic 
kinetic theory is not causal. 

(11) R.  HAKI~I a n d  .A.. ~r Phys. Fluids, 14, 2751 (1971) (appendix) .  
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A possible wayout to this difficulty can be found in the following remark. While 
for an ordinary Boltzmann gas there exists essentially one typical velocity, i.e. the 
thermal velocity, the relativistic gas involves one more velocity, i.e. the speed of light. 
I t  follows that  now we have two expansion parameters (i.e., e and ~ ~ cv/.5) at our 
disposal and, only a correct interplay of the two parameters can guarantee that  causality 
is maintained in the approximation scheme. I t  is also worth noticing that  causality 
is preserved in two cases: i) when the light cone is preserved in the approximation 
method used and ii) when it closes as a timelike straightline, as is the case in the above 
model (this can be seen by making x and t tending to zero in the model given above; 
one then easily sees that  x/t---~-O). 

We shall elaborate further on these ideas in a forthcoming paper. 

We are indebted to Drs. E. ALVAREZ, D. GERBAL and A. MA~OV.N~Y for discussions. 


