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ABSTRACT 

We propose a definit ion of Gorens te in  Differential Graded  Algebra. In 

order to give examples ,  we in t roduce  the  technical  not ion of Gorens te in  

morph i sm.  This  enables  us to prove the  following: 

THEOREM: Let A be a noetherian local commutative ring, let L be a 

bounded complex of finitely generated projective A-modules which is not 

homotopy equivalent to zero, and let ~ = HomA(L,L)  be the  endo- 

morphism Differential Graded Algebra of L. Then £ is a Gorenstein 

Differential Graded Algebra if and only if A is a Gorenstein ring. 

THEOREM: Let  A be a noetherian local commutative ring with a sequence 

of elements a = (aa . . . . .  an) in the maximal ideal, and let K(a)  be the 

Koszul complex of a. Then K(a)  is a Gorenstein Differential Graded 

Algebra if a n d  only if A is a Gorenstein ring. 

THEOREM: Let A be a noetherian local commutative ring containing a 

field k, and let X be a simply connected topological space  with 

d i m k H . ( X ; k )  < oc, which has Poincar~ duality over k. Let 

C* (X; A) be the singular cochain Differential Graded Algebra of X with 

coefficients in A. Then C * ( X ; A )  is a Gorenstein Differential Graded 

Algebra if and only if A is a Gorenstein ring. 

T h e  second of these  theorems  is a general izat ion of a resul t  by A v r a m o v  

and  Golod fi'om [4]. 

R e c e i v e d  O c t o b e r  12, 2001 a n d  in  r e v i s e d  f o r m  A p r i l  25, 2002 

3 2 7  
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0. I n t r o d u c t i o n  

Some parts of the homological theory of Differential Graded Algebras can be 

viewed as a generalization of the homological theory of rings. One of the central 

notions of this last theory is that of Gorenstein rings. Hence it is natural to seek 

to define Gorenstein Differential Graded Algebras. 

We propose such a definition, and give criteria for when some naturally occur- 

ring Differential Graded Algebras (abbreviated DGAs henceforth) are Gorenstein 

in our sense. 

(0.1) BACKGROUND. The ring theoretical idea lying behind our definition of 

Gorenstein DGAs is the following: If A is a noetherian local commutative ring, 

then A is a Gorenstein ring precisely if the functor RHomA ( - ,  A) gives a duality, 

that is, a pair of quasi-inverse contravariant equivalences of categories, 

RHomA(-,A) 
Of(A) < ~ Df(A), 

RHomA(-,A) 

where Df(A) is the derived category of bounded complexes of finitely generated 

A-modules, see [6, thin. (2.3.14)]. For this to happen is equivalent to the following 

two conditions: 

• There is a natural isomorphism 

M ~ RHomA(RHomA(M, A), A) 

for M in Df(A). 

• RHomA(- ,  A) sends Dfb(A) to Df(A). 

(0.2)  GORENSTEIN DGAs.  In section 2 these conditions are what we shall use 
as direct inspiration for our definition of Gorenstein DGAs, given as definition 

(2.1) below. The definition has two parts, [G1] and [G2], which generalize the two 

above conditions directly, using derived categories of Differential Graded modules 

(abbreviated DG-modules henceforth). 

To show right away that our definition of Gorenstein DGAs is reasonable, 

section 2 continues by considering some ordinary rings as DGAs concentrated 

in degree zero, showing that they are Gorenstein DGAs precisely when they are 

Gorenstein rings in the approprate classical sense (propositions (2.5) and (2.6)). 

(0.3) GORENSTEIN MORPHISMS OF DGAs.  In section 3 we introduce in def- 
inition (3.4) the key technical tool of Gorenstein morphisms of DGAs. These 

morphisms are modeled on Gorenstein homomorphisms from ring theory (see [2], 

[3], and [13]). 
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The purpose of considering Gorenstein morphisms is to get a practical tool 

which will enable us to determine in section 4 when some DGAs occurring in 

nature are Gorenstein DGAs. 

The two main results on Gorenstein morphisms are: 

• Theorem (3.6) (Ascent): Let R ~ S be a Gorenstein morphism of DGAs. 

If  R is a Gorenstein DGA, then S is also a Gorenstein DGA. 

• Proposition (3.10) (Partial Descent): Let Q be a local commutative DGA 

with residue class field k, and let Q ---+ T be a (nice) Gorenstein mor- 

phism of DGAs. I f T  is a Gorenstein DGA, then Q satisfies the Gorenstein 

condition dimk Exto(k, Q) = 1 from [2, sec. 3]. 

We conjecture in (3.7) that "Descent" holds in full generality, that is, if R > S 

is a Gorenstein morphism of DGAs and S is a Gorenstein DGA, then R is a 

Gorenstein DGA, but are unable to prove this. 

(0.4) EXAMPLES. In section 4 we determine when three naturally occurring 

types of DGAs, namely endomorphism DGAs of perfect complexes of modules, 

Koszul complexes, and singular cochain DGAs of topological spaces with Poincar~ 

duality, are Gorenstein. 

Let A be a noetherian local commutative ring, let L be a bounded complex 

of finitely generated projective modules (i.e., L is a so-called perfect complex) 

which is not homotopy equivalent to zero, and let E = Homn(L, L) be the en- 

domorphism DGA of L; see setup (4.1). We show the following "Ascent-Descent 

theorem", 

• Theorem (4.5): A is a Gorenstein ring ¢~ £ is a Gorenstein DGA. 

Also, let a = (al . . . .  , an)  be a sequence of elements in the maximal ideal of A, 

and consider the corresponding Koszul complex K(a) which is a DGA; see setup 

(4.6). We show 

• Theorem (4.9): A is a Gorenstein ring ~ K(a) is a Gorenstein DGA. 

Finally, suppose that A contains a field k. Let X be a simply connected topolog- 

ical space with dimk H.(X; k) < c~, which has Poincar~ duality over k, meaning 

that there is an isomorphism of graded H* (X; k)-modules 

H*(X; k)' ~ EdH*(X; k) 

for some d, where the prime denotes dualization with respect to k; see setup 

(4.11). Consider C*(X; A), the singular cochain DGA of X with coefficients in 

A; see paragraph (4.13). We show 

• Theorem (4.16): A is a Gorenstein ring ~ C*(X; A) is a Gorenstein DGA. 
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Theorem (4.9) is a generalization of a result by Avramov and Golod from [4], 

which is confined to the case where a is a minimal set of generators for the 

maximal ideal of A. 

(0.5) PERSPECTIVES. In the literature, there are several papers which con- 

sider Gorenstein conditions for augmented DGAs. In [9], F5lix, Halperin, and 

Thomas consider augmented cochain DGAs; in [2], Avramov and Foxby consider 

augmented chain DGAs; and in the recent [8], Dwyer, Greenlees, and Iyengar 

consider more general augmented DGAs. 

In a subsequent paper with Iyengar [11], we will show for most of the DGAs in 

question that the Gorenstein conditions from [2] and [9] coincide with our notion 

of Gorenstein DGA. 

Note, however, that our setup differs from that  of [2], [8], and [9], in that we 

do not use augmentations or other auxiliary data to define Gorenstein DGAs. 

Also, we make it a point not to work only with chain or cochain DGAs, but 

rather to give a definition of Gorenstein DGA which is left/right symmetric. 

Indeed, we shall see in section 4 that our theory can be applied to endomor- 

phism DGAs which in general have no canonical augmentation, nor satisfy being 

either chain or coehain DGAs. 

(0.6) ACKNOWLEDGEMENT. This paper owes a great debt to [21] which was 

the first paper to introduce dualizing complexes in a non-commutative situation, 

and hence the first paper that had to deal with such ensuing complications as 

left-, right-, and bi-structures of modules and functors. 

Another paper we should mention is [12] in which duality over DGAs is 

employed to prove an existence result for dualizing complexes over rings. 

We thank Professors Amnon Yekutieli and Sril~nth Iyengar for their interest 

in this project. 

The diagrams were typeset with Paul Taylor's d iagrams. rex .  

1. Notat ion and terminology 

The purpose of this section is to fix the notation and terminology we shall use. 

For more details, see [14] or [16, part III]. 

(1.1) DGAs.  A Differential Graded Algebra (DGA) R over the commutative 

ground ring k is a graded algebra {Ri}iez over k which is equipped with a 

differential, that  is, a k-linear map OR: R.  ~ R.-1  with square zero, satisfying 

the Leibnitz rule 

OR(rs) = OR(r)s + (-1)J'1'rOR(s) 
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when r is a graded element of degree lrl. Note that  we almost exclusively employ 

homological notation, that is, lower indices and differentials of degree -1 ,  and 

that we observe the Koszul sign convention of introducing a sign ( -1 )  mn when 

graded objects of degrees m and n are interchanged. 

The opposite DGA of R is denoted R °pp and is the same as R except that the 

product is changed to 
opp ( 1)I,.Hs I 

r • 8 ~ - -  8 " I ' .  

A morphism of DGAs over k is a morphism of graded algebras over k which is 

compatible with the differentials. 

(1.2) NOTATION. In the rest of this section, R and S denote DGAs over the 

commutative ground ring k. 

Both in this section and in the rest of the paper, we will often suppress the 

ground ring k from the fornmlation of the results. If no canonical ground ring is 

present, then one can simply use k = Z. 

(1.3) DG-MODULES. A Differential Graded R-left-module (DG-R-left-module) 

M is a graded left-module {Mi}iez over R (viewed as a graded algebra), which 

is equipped with a differential, that  is, a k-linear map OM: M. --+ M.-1 with 

square zero, satisfying the Leibnitz rule 

0M(rrn) = 01~(r)m + (-1)[rlrOM (m) 

when r is a graded element of R of degree ]r I. 

DG-R-right-modules are defined similarly. Often we identify DG-R-right- 

modules with DG-R°PP-left-modules. 

Note that we can also consider DG-modules having more than one DG-module 

structure, for instance DG-R-left-R-right-modules which would typically be de- 

noted by RMn, or DG-R-left-S-right-modules which would typically be denoted 

by RNs. In such cases, all the different structures are required to be compatible; 

for a DG-R-left-R-right-module, compatibility means that the rule (rim)r2 = 
r l(mr2) holds. An example of a DG-R-left-R-right-module is R itself. 

For a DG-module M we define the i ' th suspension by 

(EiM)j = Mj-i,  ;~'M_a = (--1)i0~ -*i" 

For each type of DG-modules (for instance, DG-R-left-modules or DG-R-left- 

R-right-modules), there is a notion of morphism. A morphism is a homomor- 

phism of graded modules which is compatible with the differentials. Accordingly, 

each type of DG-modules forms an abelian category. 
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(1.4) HOMOLOGY. A DG-module M is in particular a complex, so has homol- 

ogy which we denote H(M) or HM. 

The product in R induces a product in HR which becomes a graded algebra, 

and the action of R on a DG-module M induces an action of HR on HM which 

becomes a graded HR-module. 

(1.5) QUASI-ISOMORPHISMS AND DERIVED CATEGORIES. I f a m o r p h i s m o f D G -  

modules M ~ N induces an isomorphism in homology HM - :+  HN, then the 

morphism is called a quasi-isomorphism, and is denoted M - ~  N. 

If we take one of the abelian categories of DG-modules introduced above and 

(formally) invert the quasi-isomorphisms, then we get the corresponding derived 

category of DG-modules which is a triangulated category. The derived category 

of DG-R-left-modules is denoted D(R). 

Observe that when we identify DG-R-right-modules with DG-R°PP-left - 

modules, then we also identify the derived category of DG-R-right-modules with 
D(R°PP). 

If R > S is a morphism of DGAs over k which is moreover a quasi-isomor- 

phism, then the derived categories D(R) and D(S) are equivalent as triangulated 

categories; see [16, III.4.2]. This obviously extends: If R and S are connected by 

a sequence of morphisms of DGAs over k all of which are quasi-isomorphisms, 

R ~ - > T I ~ - . . . ~ + T n <  ~- S, 

then D(R) and D(S) are equivalent as triangulated categories. In this situation, 

R and S are called equivalent by a series of quasi-isomorphisms, or just equiv- 

alent, and are indistinguishable for homological purposes. In particular, R is a 

Gorenstein DGA in the sense of this paper if and only if S is a Gorenstein DGA, 

of. paragraph (2.2). 

(1.6) HOM AND TENSOR. On the abelian categories of DG-modules, we can 

define the functors Hom and Q: 

If M and N are DG-R-left-modules, then HomR(M, N) is defined in a classical 

way, as the total complex of a certain double complex. The totaling is done taking 

products along diagonals. 

Similarly, if A is a DG-R-right-module and B is a DG-R-left-module, then 

A QR B is defined as the total complex of a certain double complex. The totaling 

is done taking coproducts along diagonals. 

Note that extra structures on M, N, A, and B are inherited by HOmR and 

(3R. For instance, if RM is a DG-R-left-module and RNs is a DG-R-left-S-right- 

module, then HomR(RM, RNs) is a DG-S-right-module. 
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(1.7) DERIVED HOM AND TENSOR. On the derived categories of DG-modules, 

we can define the functors right-derived Hom, denoted RHom, and left-derived 
L 

Q, denoted Q. The way to do this is to use appropriate resolutions: 

Let P,  I, and F be DG-R-left-modules. Then P is called K-projective, I is 

called K-injective, and F is called K-fiat if the functors Homn (P , - ) ,  Homn ( - ,  I) ,  

and - ®n F send quasi-isomorphisms to quasi-isomorphisms. By adjointness, a 

K-projective DG-module is also K-flat. 

Now let M, N, and B be DG-R-left-modules. Then K-projective, K-injective, 

and K-flat resolutions of M, N, and B are quasi-isomorphisms of DG-R-left- 

modules P -~ M, N -~ I, and F -~ B so that P is K-projective, I is 

K-injective, and F is K-flat. Such resolutions always exist; see [14] or [16, part 

III]. The original construction of such "unbounded" resolutions is due to [5] and 

[19]. 

With the resolutions, we can define R H o m n ( M , N )  as H o m n ( P , N )  or 
L 

Homn(M, I),  and when A is a DG-R-right-module, we can define A QR B as 
L 

A On F. We could also define A Qn B as G Gn B, where G -~ ~ A is a K-flat 

resolution of A. 

These definitions turn out to give well-defined functors on derived categories 

of DG-R-left- and DG-R-right-modules. 
L 

Extra structures on M, N, A, and B are inherited by RHomn and On, 

but complications may arise: For instance, while it is always true that 

RHOmR(RM, nNs) is in the derived category of DG-S-right-modules, if we want 

to compute it as HomR(M, I) then we need a quasi-isomorphism nNs  -~> h i s  of 

DG-R-left-S-right-modules so that n I  is a K-injective DG-R-left-module. The 

existence of a resolution such as I is not guaranteed by [14] and [16, part III] 

(but see the next paragraph). 

(1 .8 )  EXISTENCE OF RESOLUTIONS. As we said in the previous paragraph, in 

case of DG-modules with two or more structures, existence of resolutions is a 

potential problem. We will comment on one important instance: Existence of 

a resolution of RRn which is K-injective from the left and from the right, for 

the purpose of defining the functors R H o m n ( - ,  nRn)  and RHomnopp( - ,  nRn)  

which play a large role in this paper. 

Now, we can always define the derived functors R H o m n ( - , n R u )  and 

RHomnopp ( - ,  nRn) ,  for we can simply use K-projective resolutions of the DG- 

R-left- and DG-R-right-modules in the first variables. However, it is valuable 

for computations (e.g., with biduality morphisms) also to be able to use a reso- 
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lution in the second variable. To be precise, what we want is a quasi-isomorphism 

uRn ~- > nIn where nI and IR are K-injeetive. This will give R H o m n ( - ,  urn) ~- 
H o m R ( - ,  nIn) and RHomRopp ( - ,  uRn) ~- Homnopp ( - ,  nIn). 

It  is not clear how to get such an I ,  except in one case: If R itself is K-flat  over 

the ground ring k. In this case, we take the DG-R-left-R-right-module uRn and 

view it as a DG-left-module over R Qk R °pp, the "enveloping" DGA. It  then has 

a K-injective resolution n®~Ro,,R - ~  n®knOppI. We can view this as a quasi- 

isomorphism of DG-R-left-R-right-modutes urn  ~-> nIn, and here nI and In 
turn out to be K-injective. For h i ,  this follows from the computation 

H o m n ( - ,  nI) ~-- Homn®knop, ( -  Q~ R, nokno,, I), 

which shows that  H o m n ( - ,  hi) is the composition of the functors - ®k R and 

HomnoknOpp(-, n®knOp, I), both of which send quasi-isomorphisms to quasi- 

isomorphisms, the first because R is K-flat  over k, the second because nOkn°P"I 
is K-injective over R (~k R °pp. 

In general, R is not X-flat  over k. However, by [15, lem. 3.2(a)] there always 

exists a morphism R > R of DGAs over k which is a quasi-isomorphism, so 

t h a t / ~  is K-flat  over k. 

In other words, if we are willing to replace our DGA with a quasi-isomorphic 

DGA, then we can always assmne that  there is a resolution uRn - ~  nIn so that  

nI and In are K-injective. Let us remind the reader from paragraph (1.5) that  

quasi-isomorphic DGAs are indistinguishable for homological purposes. 

(1.9) DEFINITION (THE CATEGORY fin). Suppose that  HoR is a noetherian 

ring. Then by fin(R) we denote the full subcategory of the derived category 

D(R) which consists of DG-modules M so that  H M  is bounded, and so that  each 

H i M  is finitely generated as an HoR-module. 

(1.10) THE CENTRE. A graded element c in a graded algebra H (which could 

be a DGA) is called central if it satisfies cd = (--1)Mldldc for all graded elements 

d. An arbitrary element in H is called central if all its graded components are 

central. The centre of H is the set of all central elements, and H is called 

commutat ive if all its elements are central. 

(1.11) DG-MODULES IN THE RING CASE. Note that  an ordinary ring A can be 

viewed as a DGA concentrated in degree zero. A DG-module over A (when A is 

viewed as a DGA) is then the same thing as a complex of modules over A (when 

A is viewed as a ring); the various derived categories of DG-A-modules are the 

same as the various ordinary derived categories over A; and the derived functors 
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L 
of Horn and @ of DG-A-modules are the ordinary RHOmA and CA. When A is 

noetherian, the category fin(A) equals Dr(A), the derived category of complexes 

with bounded, finitely generated homology. 

2. G o r e n s t e i n  D G A s  

This section defines our notion of Gorenstein DGA, and shows that it behaves 

sensibly when specialized to some important types of ordinary rings. 

(2.1) DEFINITION (GORENSTEIN DGAs).  Let R be a DGA for which H0R is 

a noetherian ring. We call R a Gorenstein DGA if it satisfies: 

[G1] For M in fin(R) and N in fin(R °pp) the following biduality morphisms are 
isomorphisms, 

M > RHomnopp (RHomn(M, nRn), nRn), 

N > RHomn(RHomno,, (N, nRn), nRn). 

[G2] The functor RHomn( - ,  nRn) maps fin(R) to fin(R°PP), and the functor 

RHomno,p(-,  nRn) maps fin(R °pp) to fin(R). 

(2.2) INVARIANCE UNDER QUASI-ISOMORPHISM. Note that conditions [G1] and 

[G2] only concern flmctors on derived categories. So if two DGAs are equivalent, 

then they are Gorenstein simultaneously. 

(2.3) REALIZING THE BIDUALITY MORPHISMS. From paragraph (1.8) we know 

that after replacing R by an equivalent DGA, we can assume that there exists a 

resolution nRn ~-~ n l n  so that n I  and IR are I(-injective. Hence the biduality 
morphisms from condition [G1] can be realized as concrete biduality morphisms 

M --+ Homnopp (Homn(M, nln) ,  AIR), 

N --4 Homn(Homno,~ (N, RIn), nln). 

(2.4) DUALITY. It is clear that if R is a Gorenstein DGA, then there is a 

duality, that, is, a pair of quasi-inverse contravariant equivalences of categories, 

RHomn(-,R) 
fin(R) < ) fin(R°PP). 

RHomRopp (-,R) 

(2.5) PROPOSITION (COMMUTATIVE RINGS). Let A be a noetherian commuta- 
tive ring of finite Krull dimension. Then the following conditions are equivalent: 

(1) When A is viewed as a DGA concentrated in degree zero, it is a Gorenstein 
DGA. 
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(2) The injective dimension idA(A) is finite. 

(3) For each prime ideal p in A, the localization Ap is a noetherian local com- 

mutative Gorenstein ring. 

Proof'. It is well-known that (2) and (3) are equivalent. 

(1) ~ (3). We show that condition [G2] implies (3): Let p be a prime ideal in 

A. It is clear that AlP is in fin(A), so RHomA(A/p, A) is in fin(A °pp) = fin(A) 

by condition [G2]. Localizing in p, we have that RHomA(A/p, A)p is in fin(Ap). 

However, [6, lem. (A.4.5)] gives the first ~ in 

RHOmA (A/p, A)p -~ RUomAp ((A/p)p, Ap) 

RHomAp (Ap/pp, Ap), 

so we have 

RHOmA, (Ap/p,,  Ap) C fin(Ap). 

In particular, RHomAp(Ap/pp, Ap) has bounded homology. As Ap/pp is the 

residue class field of the noetherian local commutative ring Ap, this proves that 

A, is Gorenstein by [17, thin. 18.2]. 
(2) ==~ (1). We must see that conditions [G1] and [G2] hold. Note that since 

A is commutative, the two halves of condition [G1] are equivalent, and the two 

halves of condition [G2] are equivalent. 
[G1]. Since we have idA(A) < ~ ,  there exists an injective resolution A - ~  I 

so that I is bounded. Also, any M in fin(A) has homology which is bounded 

to the right and consists of finitely generated A-modules. This shows that the 

biduality morphisms in condition [G1] are isomorphisms by [6, (A.4.24)]. 

[G2]. Given M in fin(A) we have RHOmA(M,A) -~ HomA(P,A) TM 

HomA(M,I) ,  where I is the resolution from above and P ---> M is a projec- 
tive resolution which can be chosen to consist of finitely generated projective 

A-modules. Now HomA (M, I) has bounded homology (because M has bounded 

homology while I is bounded), and HomA (P, A) has finitely generated homology 

modules (because P consists of finitely generated projective modules). Hence we 

have RHomA(M, A) E fin(A), so [G2] holds. I 

(2.6) PROPOSITION (NON-COMMUTATIVE LOCAL RINGS). Let k be a field, and 

A a k-algebra which is noetherian semilocal PI (see [20]). Then the following 

conditions are equivalent: 

(1) When A is viewed as a DGA concentrated in degree zero, it is a Gorenstein 

DGA. 

(2) The injective dimensions idA(A) and idAop,(A) are finite. 
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Proof: (1) =a (2). We show that condition [G2] implies (2): Let J(A) be the 

Jaeobson radical of A, and let A0 be A/J(A). Clearly, A0 can be viewed either 

as a DG-A-left-module and as such it is in fin(A), or as a DG-A-right-module 

and as such it is in fin(A°PP). So condition [G2] implies that RHOmA(Ao, A) 
and RHomAopp(A0, A) have bounded homology. By [20, prop. 5.7(1)] this says 

idA(A) < oc and idAop,(A) < ~ .  

(2) ~ (1). This is completely analogous to the proof of (2) ~ (1) in proposition 

(2.5). i 

We suspect that proposition (2.6) is far from optimal. In fact, we propose the 

following conjecture: 

(2.7) CONJECTURE (NoN-COMMUTATIVE RINGS). The conditions in proposi- 

tion (2.6) are equivalent for all noetherian rings of finite left- and right-Krull 

dimension. 

Proposition (2.5) makes the conjecture seem reasonable. See [18, chap. 6] for 

the definition of Krull dimension over non-commutative rings. 

3. G o r e n s t e i n  m o r p h i s m s  of  D G A s  

This section defines what we call Gorenstein morphisms of DGAs, in order to 

make us able to give examples of Gorenstein DGAs. We show that these mor- 

phisms are capable of transporting Gorenstein properties back and forth between 

source and target, in a way analogous to ring theory. 

The following is a generalization of finite ring homomorphisms of finite flat 

dimension: 

(3.1) DEFINITION (FINITE MORPHISMS). Let R and S be DGAs for which H0R 

and H0S are noetherian rings, and let R ~ +  S be a morphism of DGAs. We call 

p a finite morphisrn if it satisfies: 
L 

• The functor sSn On - :  D(R) ~ O(S) sends fin(R) to fin(S). 
L 

• The functor - OR RSs: D(R °pp) > D(S °pp) sends fin(R °pp) to fin(S°PP). 

• The funetor p*: D(S) > D(R), restricting scalars from S to R, satisfies 

M E fin(S) ~:~ p*M E fin(R). 

• The functor p*: D(S °pp) ) D(R°PP), restricting scalars from S to R, 

satisfies 

M G fin(S °pp) ~=~ p*M G fin(R°PP). 
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(Note that p* is used to denote the functor which restricts scalars from S to R 

both on DG-S-left-modules and on DG-S-right-modules.) 

(3.2) FINITE MORPHISMS IN THE RING CASE. If A ~> B is a homomorphism 

of noetherian local commutative rings, then we can view c; as a morphism of 

DGAs. As such it is finite precisely if B, viewed as an A-module, is finitely 

generated and of finite fiat dimension. 

Let us next generalize finite Gorenstein homomorphisms of rings: 

Reading [3, lem. (6.5), (7.7.1), and thm. (7.8)] one can see that if A and B are 

noetherian local commutative rings with maximal ideals m and n, and A ~ > B is 

a local homomorphism so that B viewed as an A-module is finitely generated and 

of finite fiat dimension, then p is "Gorenstein at n" in the sense of [3] precisely if 

RHomA(B, A) is isomorphic to ~-nB for some n. We shall attempt in definition 

(3.4) to generalize this to the world of non-commutative DGAs. 

Already the non-commutativity makes a refinement necessary as also observed 

in [13], since in a non-commutative situation the complexes RHOmA(B, A) and 

RHomAo,p (B, A) have different structures (the first has B-left-A-right-structure, 

the second has B-right-A-left-structure). Hence the technical nature of the fol- 

lowing two paragraphs. 

(3.3) INDUCED MORPHISMS. Let R P~ S be a morphisIn of DGAs. Given a 

morphism sSn ~-+ RHomn(nSs,  E'(RRR)) and a DG-S-left-module M we can 
consider 

p* RHoms (M, sSs) 
RHoms~M,a) 

adjoint hess 

RHoms (M, sSn) 

RHoms (M, RHomn (n Ss, E ~ (R Rn ) ) ) 
L 

RHomn(nSs C~s M, En(nRn))  
RHomn (p* M, E n (nRn)). 

In short, this gives an induced morphism 

(1) p* RHoms(M, sSs) ---+ RHoma(p*M, En(nRn)), 

which is an isomorphism if c~ is an isomorphism. 

Similarly, given a morphism RSs ~) RHomnopp(sSn,En(RRn)) and a DG- 

S-right-module N there is an induced morphism 

(2) p* RHomsopp (N, sSs) > RHomRopp (p'N, ~n(RRR)), 

which is an isomorphism if/3 is an isomorphism. 
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(3.4) DEFINITION (GORENSTEIN MORPHISMS). Let R and S be DGAs for 

which HoR and HoS are noetherian, and let R P) S be a finite morphism 

of DGAs. We call p a Gorenstein morphism if it satisfies: 

(1) There are isomorphisms 

(a) sSn  ~) RHomn(nSs ,  ~n(RRI=I)). 

(b) nS s  ~ > RHOmRop,(sSR, ~n(RRR)). 
(2) The isomorphisms a and/3 are compatible in the following sense: 

(a) For each DG-S-left-module M the following square is commutative, 

p*t 
p * M  

R H o m  nopp( R H o m  n ( p* h i , ~ n  ( R R R ) ) ,~n  ( l~ R R ) ) 

:~ p* RHomsopp (RHoms ( M , s  S s ) , s  S s )  

_~ ~ l  b 

> RHomRopp (p* RHoms (M,sSs ) ,~ (n  RR)), 
a 

where s and t are biduality morphisms as in condition [G1], and where a and b 

are induced by o~ and/3 as explained in paragraph (3.3). 

(b) For each DG-S-right-module N there is a commutative square con- 

structed like the one above. 

(3.5) GORENSTEIN MORPHISMS IN THE RING CASE. Note from the observations 

before paragraph (3.3) that if A and B are noetherian local commutative rings 

with maximal ideals m and n, and A - -~  B is a local ring homomorphism so that 

B viewed as an A-module is finitely generated and of finite flat dimension, then 

is a Gorenstein morphism of DGAs in the sense of definition (3.4) precisely if 

is "Gorenstein at n" in the sense of [3]. 

(3.6) THEOREM (ASCENT). Let R and S be DGAs for which H0R and H0S 

are noetherian, and let R P ~ S be a finite Gorenstein morphism of DGAs. Then 

R is a Gorenstein DGA ~ S is a Gorenstein DGA. 

Proof." We prove the theorem by showing that condition [G1] for R implies 

condition [G1] for S, and that condition [G2] for R implies condition [G2] for S. 

[G1]. Let us assume condition [G1] for R. In the first half of condition [G1] 

for S we are given M in fin(S) and must show that the biduality morphism 

3I t ~ RHomsopp(RHoms(M ' sSs) ,  sSs )  

is an isomorphism. This is equivalent to showing that p*t is an isomorphism, 

because both things amount to seeing that t becomes bijeetive when the homology 

functor H is applied to it. 
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But p*t is one of the morphisms in the diagram in definition (3.4), part (2)(a), 

and if we can prove that the other arrows in the diagram are isomorphisms, then 

it follows that p*t is too. The only one of the diagram's other arrows which is not 

a priori an isomorphism is s. And in the situation at hand, p is a finite morphism 

so p*M is in fin(R), and condition [G1] for R then says that s is an isomorphism. 

The second half of condition [G1] for S is proved in a symmetrical way. 

[G2]. Let us assume condition [G21 for R. In the first half of condition [G21 

for S we must show RHoms(M, sSs) E fin(S °pp) for M in fin(S). Since p is a 

finite morphism, this is equivalent to showing p* RHoms(M, sSs) c fin(R°PP), 

and since p is a Gorenstein morphism, paragraph (3.3) implies that  this is the 

same as showing 

(3) RHomR(p*M, En(RRR) ) E fin(R°Pe). 

But as p is a finite morphism, p*M is in fin(R), and condition [G2] for R then 

says that (3) holds. 

The second half of condition [G2] for S is proved in a symmetrical way. | 

Theorem (3.6) says that Gorenstein morphisms transfer the Gorenstein prop- 

erty of DGAs in the direction of the morphism. This is analogous to the situation 

in commutative ring theory, see [3, (7.7.2)], and non-commutative ring theory, 

see [13, thm. 4.7]. 

Moreover, in view of [3, (7.7.2)] and [13, tam. 4.7], we venture the following 

conjecture that Gorenstein morphisms also transfer the Gorenstein property of 

DGAs in the direction opposite to the morphism: 

(3.7) CONJECTURE (DESCENT). In the situation of theorem (3.6), we have 

S is a Gorenstein DGA ~ R is a Gorenstein DGA. 

Unfortunately, we are unable to prove conjecture (3.7). As consolation, we aim 

for proposition (3.10) below. 

(3.8) LOCAL COMMUTATIVE DGAs.  Let Q be a DGA. Then Q is called local 

commutative if it satisfies: 

• Q~ = 0  for i < 0 .  

• Q is commutative and the commutative ring HoQ is noetherian and local. 

• Viewed as a DG-Q-module, Q is in fin(Q). 

In this case, the residue class field k of H0Q is also called the residue class field 

of Q. It is easy to see that one can get a DG-Q-module by placing k in degree 

zero, and zero in all other degrees. This DG-module is again denoted k. 
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Note that  an ordinary noetherian local commutative ring placed in degree zero 

is a local commutative DGA. 

(3.9) MORPHISMS WITH IMACE IN THE CENTRE. Let Q and T be DGAs with 

Q commutative, and let Q --~ T be a morphism of DGAs with image inside 

the centre of T (see paragraph (1.10)). Now ¢ makes it possible to view T as a 

DG-Q-left-Q-right-module in a way which is compatible with the structure of T 

as DG-T-left-T-right-module. In other words, T can be viewed as a DG-module 

with structure Q,TTQ,T. 

Note that the Q-left- and Q-right-structures of Q,TTO,T are equivalent in the 

sense that qt = (-1)lqLItltq holds for graded elements q and t in Q and T. In fact, 

Q behaves almost like a commutative ring of scalars, so we will frequently omit 

the subscripts indicating Q-structures. 

(3.10) PROPOSITION (PARTIAL DESCENT) .  Suppose we are given the following 

data: 

(1) 
(2) 
(3) 

(4) 

(5) 
Then 

Q is a local commutative DGA with residue class field k. 

T is a DGA with HoT noetherian. 

Q ~> T is a finite Gorenstein morphism of DGAs which has image inside 

the centre of T. 

There is a K-projective resolution of T viewed as a DG-Q-module, P 

T, so that P is minimal over Q, i.e., P QO k has zero differential. 
L 

We have T QQ k ~ O. 

T satisfies condition [G2] ~ dimk ExtQ(k, Q) = 1. 

Remark: The right hand side in the implication is the Gorenstein condition 

from [2, sec. 3]. 

L 
Proof." The DG-Q-module k is clearly in fin(Q). So TT QQ k is in fin(T) since 99 

L 
is a finite morphism, so condition [G2] on T implies that RHOmT(TT ®Q k, TTT) 

is in fin(T°PP). Applying 99*, the functor which restricts scalars from T to Q, gives 
L 

that 99* RHomT(TT ®Q k, TTT) is in fin(Q), again since 99 is a finite morphism. 

Writing this in a simpler way, we get 

L 
(4) RHOmT(TT QQ k, TT) E fin(Q). 

However, 99 is a Gorenstein morphism, so by paragraph (3.3) there is an iso- 

morphism 

L L 
99* RHOmT(TT QQ k, TTT) "-~ RHOmQ(99*(TT ©Q k), ~nQ), 
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and writing this in a simpler way gives 

L ~_ 
RHOmT(TT ®Q k, TT) (5) 

Now, we have 

L 
) RHOmQ(T @Q k, EnQ). 

L 

~ ~ I _ I  T @q k = PQQ k E z~k 
iEI 

where the second ~ is because P is minimal over Q. Here the fl~ are integers and 
L 

I is a non-empty index set since T @O k ~ 0. Substituting this into the right 

hand side of (5) gives 

L ~ )  
RHOmT(TT @Q k, T T) RHomq( H ~&k, EnQ) 

iEI 

I I  En-~' RHomQ(k,O). 
iEl 

By equation (4) the left hand side is in fin(Q), so the same must hold for the 

right hand side. 

But then RHOmQ(k,Q) itself is certainly in fin(Q), so in particular 

RHomQ(k,Q) has bounded homology, and by [2, thin. (3.1)] this implies 

dimk Extq (k, Q) = 1. | 

There are examples of Gorenstein morphisms occurring in nature. Indeed, in 

the next section they are our chief tool to show that some DGAs occurring in 

)lature are Gorenstein. The following lemma gives a way to obtain Gorenstein 

morphisms. 

(3.11) LEMMA ( A  WAY TO OBTAIN GORENSTEIN MORPHISMS). Suppose we 

are given the following data: 
(1) Q is a commutative DGA with HoQ noetherian. 
(2) T is a DGA with HoT noetherian. 
(3) Q ~ ~ T is a finite morphism of DGAs which has image inside the centre 

ofT.  
(4) There is an isomorphism in the derived category of DG-T-left-T-right- 

modules, 

T T T  "Y > R H O m Q ( T T T ,  E n Q ) .  

Then ~ is a Gorenstein morphism of DGAs. 

Proof'. Restricting the right-structure from T to Q, the morphism ~, restricts to 

an isomorphism 

TTQ ~ RHOmQ(QTT, ~n(QQQ)) 
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as in definition (3.4)(1)(a), and restricting the left-structure from T to Q, the 

morphism ~ restricts to an isomorphism 

QTT /3 RHOmQopp(TTQ, En(QQQ) ) 

as in (3.4)(1)(b). 

To prove the lemma, we must see that the a and 3 so obtained are compatible 

in the sense of (3.4)(2). So we must see that the diagrams from (3.4)(2), with 

Q and T in place of R and S, are commutative. This is easy, but tedious: 

Take, for instance, the diagram from (3.4)(2)(a). To see that it is commutative, 

we need to replace the various modules with suitable resolutions so that the 

derived Horn's become ordinary Horn's, the derived tensors become ordinary 

tensors, and the morphisms can be computed explicitly. A good choice is to 

start by picking a K-injective resolution Q ---) I and go on by using TJT = 
HomQ(TTT, EnI) as a resolution of TTT. The DG-module TJT has the virtue of 

being isomorphic to RHomQ(TTT, EnQ), while being K-injective from the left 

and K-injective from the right. Having introduced resolutions, the computation 

to check comnmtativity is a matter  of patience. | 

4. Examples: Endomorphism DGAs, Koszul complexes, and singular 
cochain D G A s  of  topological spaces 

This section considers three types of DGAs: Endomorphism DGAs of perfect 

complexes of modules, Koszul complexes, and singular eochain DGAs of topo- 

logical spaces with Poincar~ duality, all over noetherian local commutative rings. 

Using the theory of section 3, we give complete criteria for when these are Goren- 

stein DGAs: They are so if and only if the base ring is Gorenstein. The proofs 

work by showing that a suitable morphism from the base ring to the DGA in 

question is a Gorenstein morphism. 

ENDOMORPHISM DGAs.  The following paragraph recapitulates the definition 

of endomorphism DGAs of perfect complexes of modules; see [7] for more details. 

(4.1) SETUP. In paragraphs (4.1) to (4.5) we consider the following situation: 

A is a noetherian local commutative ring, L is a bounded complex of finitely 

generated projective A-modules which is not homotopy equivalent to zero, and 

we look at 8 = HomA(L, L). 

A priori, £ is just a complex of A-modules. However, there is a multiplication 

on £ given by composition: An element ~ in £.i is an A-linear map L ~ ) E- iL .  If 

we also have an element e' in Cj, then we define the product ee' as the composition 
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E-J  (e) o d which is an A-linear map L ~ ~-(i+J)L, that is, an element in Ci+j. 

It is not hard to check that with this multiplication, E is a DGA. 

The complex L becomes a DG-E-left-module with scalar multiplication ~C = 

~(~) for ~ in E and ~ in L. The E-structure on L is compatible with the A- 

structure, so L is a DG-A-left-E-left-module, A£L. Moreover, the identification 

map is an isomorphism of DG-E-left-E-right-modules, 

~EE -> HomA(A,cL, A,EL). 

(4.2) REMARK. Note that C and its homology HE are usually far from com- 

mutative. For instance, if L is the projective resolution of a finitely generated 

A-module of finite projective dimension, M, then we have H0C ~- EndA(M). 

Also, C usually has non-zero homology both in positive and negative degrees. 

(4.3) THE MORPHISM ~E. Since A is commutative, each element a in A gives 

a chain map L a .  L which is just multiplication by a. This chain map is an 

element in the degree 0 component of HomA(L,L). In other words, it is an 

element in HomA(L, L)o = E0. One checks easily that this gives a morphism of 

DGAs, 

A~+E,  a, >(L~:~L). 

Here are three useful observations: 

• The ring HoE is noetherian since it is a finitely generated A-module. 

• The morphism ~2e has image inside the centre of £, because an element e 

in ~i is an A-linear map L ~ > E - i L  whence 

(~E(a)e)(g) -- (~- i (~E(a))  o e)(g) = a~((f) 

-- e(ag) -- (e o ~2c(a))(g) -- (e~E(a))(e) 

= 

• The morphism ~E is a finite morphism of DGAs since L and hence C are 

bounded complexes of finitely generated projective A-modules. 

(4.4) LEMMA (~£ IS GORENSTEIN). The morphism A ~> C is a Gorenstein 
morphism. 

Proo~ We shall use lemma (3.11) with the morphism Q v) T equal to A rE> [ .  

The observations in paragraph (4.3) show that the lemma's conditions (1) to (3) 

hold. If we can show that the lemma's condition (4) also holds, then the lemma 

gives our desired conclusion, that ~E is Gorenstein. 

So we must find an isomorphism EEE __Z+ RHomA(EEE, EnA) in the derived 

category of DG-C-left-C-right-modules. Since E is K-projective over A, we have 
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RHOmA(e£E,E'A) ~ HomA(ECE, EnA), so it is enough to find a quasi- 

isomorphism in the abelian category of DG-£-left-g-right-modules, 

EEl" .Z+ HomA(ECE, E~A). 

However, A,EL is a bounded complex of finitely generated projective A-modules, 

so by [1, sec. 1, thms. 1 and 2] the two so-called evaluation morphisms appearing 

as the last two arrows in the following diagram are isomorphisms, 

HomA (A,EL, A,EL) 

HomA(A,EL, A QA A,EL) 

HomA(A,EL, A) QA A,EL • HomA (HOmA (A,EL, A,cL), A). 

Substituting ¢£¢ ~ HOmA (A,cL, A,£L) twice, this gives an isomorphism 

EgE ~- ~ nomA (EgC, A), 

which is in particular a quasi-isomorphism, as desired. | 

(4.5) THEOREM (ASCENT-DESCENT FOR ENDOMORPHISM DGAs) .  In the 
situation of setup (4.1), we have 

A is a Gorenstein ring ¢a £ is a Gorenstein DGA. 

Proof 3 :  We will use theorem (3.6) with R P ) S equal to A ~E~ g to see this. 

Paragraph (4.3) and lemma (4.4) say that the hypotheses of theorem (3.6) 

hold, so the theorem applies. 

Now, A is noetherian commutative and has finite Krull dimension. So if A 
is a Gorenstein ring then proposition (2.5) says that A viewed as a DGA is a 

Gorenstein DGA. And theorem (3.6) then implies that £ is a Gorenstein DGA. 

¢=: We will use proposition (3.10) with Q ~> T equal to A ~E) £ to see this. 

Indeed, proposition (3.10) applies: The proposition's condition (1) clearly 

holds, and conditions (2) and (3) hold by paragraph (4.3) and lemma (4.4). 
Condition (4) holds since £ is a bounded complex of finitely generated projective 

A-modules, hence has homology which is bounded and finitely generated over A, 

hence has a minimal projective resolution over A. Condition (5) holds since L is 
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not homotopy equivalent to zero whence the homology of £ cannot be zero, so 
L 

So if E is a Gorenstein DGA, then proposition (3.10) gives 

dimk ExtA(k, A) = 1 

which implies that A is a Gorenstein ring by [17, thm. 18.1]. | 

KOSZUL COMPLEXES. The following paragraph recapitulates the definition of 

Koszul complexes. 

(4.6) SETUP. In paragraphs (4.6) to (4.10) we consider the following situation: 

A is a noetherian local commutative ring, and a = (as . . . . .  an) is a sequence of 

elements in the maximal ideal of A. 

We can construct the so-called Koszul complex K(a) of a which is a DGA: As 

a graded algebra, K(a) is simply the exterior algebra A F on the free module 

F = Ael  @ •. • ® Aen.  To get a DGA, we introduce the differential 

O~(a)(e~, A . . .  A e~j) = E ( -1 ) i+ la~ ,e~ ,  A . . .  A ~  A . . .  A esj, 
i 

where the hat indicates that e~ is left out of the wedge product. 

(4.7) THE MORPHISM 92K(a). There is a morphism of DGAs 

A ~K(~) K(a) 

given by noting that  the degree zero component of K(a) is A itself. As in para- 

graph (4.3), here are three useful observations: 

• The ring HoK(a) is noetherian since it is a finitely generated A-module. 

Also, K(a) is a commutative DGA. 

• The morphism ~K(a) has image inside the centre of K(a), since the centre 

is all of K(a). 

• The morphism ~t<(a) is a finite morphism of DGAs since K(a) is a bounded 

complex of finitely generated projective A-modules. 

(4.8) LEMMA ((~K(a) IS GORENSTEIN).  The morphism A ~K(;) K(a) is a 

Gorenstein morphism.  

Proof: Like the proof of lemma (4.4), this is based on lemma (3.11), and again, 

what we need is to show that the lemma's condition (4) holds. So we need to find 

an isomorphism K(a) ~> RHOmA(K(a),EnA) (by commutativity of K(a) we 
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need not worry about left- and right-structures here). Since K(a) is K-projective 

over A we have RHOmA(K(a), EnA) ~ HomA(K(a), EnA), so it is enough to find 

a quasi-isomorphism 
K(a) ~-~ HOmA(K(a), EnA). 

However, the degree n component of K(a) is A n F  which is A itself, so the 

projection of K(a) onto its degree n component has the form K(a) ~ ~ EnA. It 

is now easy to check that there is an isomorphism 

K(a) ~-~ HOmA(K(a),End), k,  ~ (~, ~ 7~(kA ~)), 

which is in particular a quasi-isomorphism, as desired. | 

(4.9) THEOREM (ASCENT-DESCENT FOR KOSZUL COMPLEXES). In the situa- 

tion of setup (4.6), we have 

A is a Gorenstein ring ¢~ K(a) is a Gorenstein DGA. 

Proof: This is almost verbatim to the proof of theorem (4.5), in that we apply 

theorem (3.6) and proposition (3.10) to the finite Gorenstein morphism A ~K(~) 

K(a). This gives the implications ~ and ¢=. | 

(4.10) RELATION TO A RESULT BY AVRAMOV-GOLOD. Avramov and Golod 

proved in [4] a result which can be stated in the language of Avramov and Foxby 

[2] as follows: Let A be a noetherian local commutative ring, let a = ( a s , . . . ,  an) 

be a minimal system of generators of the maximal ideal of A, and let K(a) be 

the Koszul complex of a. Then 

(6) A is a Gorenstein ring ¢=> dimk ExtK(a)(k, K(a)) = 1, 

where k is residue class feld of K(a). 
From theorem (4.9) follows the more general statement that (6) holds for the 

Koszul complex K(a) on any sequence a of elements in the maximal ideal of 

A. This is because the right hand sides of the bi-implications in theorem (4.9) 

respectively equation (6) are equivalent, as proved in [11, thm. I]. 
Equation (6) could also be proved for the Koszul complex K(a) on any sequence 

a in the maximal ideal of A by using [2, thin. (3.1)]. 

SINGULAR COCHAIN DGAs OF TOPOLOGICAL SPACES. In this subsection we 

break the habit of the rest of the paper and switch to cohomological notation, 

that is, upper indices on graded objects and differentials of degree +1. 

The following three paragraphs give some facts on singular cochain DGAs of 

topological spaces; see [9] and [101 for more details. 
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(4.11) SETUP. In paragraphs (4.11) to (4.16) we consider the following situ- 

ation: A is a noetherian local commutative ring which contains a field k, and 

X is a simply connected topological space with dimk H,(X; k) < c~, which has 

Poincar~ duality over k, in the sense that there is an isomorphism of graded 

H* (X; k)-modules 

(7) H*(X; k)' ~ EdH*(X; k) 

for some d, where the prime denotes dualization with respect to k. 

Note that the isomorphism (7) implies 

(8) Hd(X; k) TM k and Hi(X; k) = 0 for i > d. 

An important object is C* (X; k), the singular cochain DGA of X with coeffi- 

cients in k, which can be defined as 

C*(X; k) = Homk(C,(X; k), k), 

where C,(X; k) is the singular chain complex of X with coefficients in k. The 

multiplication which turns C* (X; k) into a DGA is cup product, which is defined 

using the Alexander-Whitney map on C,(X; k). 

The singular cohomology H*(X; k) is defined as the cohomology algebra of 

C*(X; k). See, e.g., [10, chap. 5] for details on C*(X; k) and H*(X; k). 

(4.12) INTRODUCING S. By the "free model" construction employed in [9, proof 

of thnl. 3.6], we have that C* (X; k) is equivalent to some R which is a DGA over 
k with R ° = k and R 1 = 0, and with each R i finite dimensional over k. 

Next, by the method employed in [10, ex. 6, p. 146], there exists a DG-ideal I 

in R so that the canonical surjection R --~ R / I  is a quasi-isomorphism, and so 

that the right-most non-vanishing component of S = R / I  has the same degree as 

R's right-nlost non-vanishing cohomology; namely, degree d (see equation (8)). 
So S looks like 

. . . - - + O - + k - - + O - ~ S 2 - + . . . ~ S a ~ O - ~ . . . ,  

with each S i finite dimensional over k. Note that S o is central in S because R ° 

is central in R. 

To sum up, C* (X; k) is equivalent to R which is again equivalent to S. 

(4.13) REMARKS ON C* (X; A). Our main object of interest in this part of the 
paper is C*(X; A), the singular cochain DGA of X with coefficients in A, which 
can be defined as 

C*(X; A) = Homk(C,(X; k), A). 
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Again, the multiplication is cup product, defined using the Alexander-Whitney 

map on C,(X; k). 

The purpose of the following paragraphs is to show that C*(X;A) is a 

Gorenstein DGA if and only if A is a Gorenstein ring. 

However, it will be an advantage not to work with C* (X; A) itself but rather 

with an equivalent DGA which is more tractable: First, there is an evaluation 

morphism 

HOmk(C,(X; k), k) Qk A ----+ Homk(C,(X; k), k ®k A) 

which is a quasi-isomorphism because the homology 

H(C,(X; k)) = H,(X; k) 

is finite dimensional over k, see [1, sec. 1, thm. 2]. This can also be read 

C*(X; k) ®k d --~ C*(X; A), 

and it is not hard to check that this is a morphism of DGAs. 

Secondly, by paragraph (4.12), we have that C* (X; k) is equivalent to the DGA 

called S. 

To sum up, we have that C*(X; A) is equivalent to C*(X; k) ®k A, and as A 

is fiat over k, this is again equivalent to S ~)k A. 

(4.14) THE MORPHISM ~S- There is a morphism of DGAs 

A SA~ SQk A, a~ ) l s Q a .  

As in paragraphs (4.3) and (4.7), here are three useful observations: 

• The ring H°(S ®k A) is noetherian because we have 

H°(S ®k A) TM H°(C*(X; A)) --- A, 

where the second ~ holds because X is connected. 
• The morphism ~s has image inside S O ®k A, and as S o = k is central in S 

and A is commutative, ~s has image inside the centre of S ®k A. 

• The morphism Ps is a finite morphism of DGAs since S is finite dimensional 

over k, whence SQk A is a bounded complex of finitely generated projective 

A-modules. 

(4.15) LEMMA (~S IS GORENSTEIN). The morphism A - ~  S ®k A is a 

Gorenstein morphism. 
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Proof." Let us start with some computations. Since we have H(S) ~ H(C*(X; k)) 

-~ H* (X; k), the Poincar6 duality isomorphism (7) gives an isomorphism of graded 

H(S)-modules 
G-d(H(S) ') -~ H(S). 

This means that G-d(H(S)~) is free; in other words, there is an element ~ in 

(~-d(H(S) '))° so that 

(9) H(S) 9 c, ~ c~ e E-g(H(S)')  

is an isomorphism. 

Actually, ( is a linear form Hd(S) ~ ) k. As S d is the right-most non-vanishing 

component of S, we have a surjection S d ----+ Hd(S), and we can define a linear 

form S d -~. k as the composition 

s d ~ n d ( S ) ~ k .  

This can again be viewed as an element E in (E-d(S'))°. 
Now, E is an element in the DG-S-left-S-right-module E-d(S~) which satisfies 

Es -- (-1)t-=ll~lsE for any graded element s in S, as one proves easily using 

that E is induced by ( which is defined on the commutative graded algebra 

H(S) ~ H*(X; k). It is also mapped to zero by the differential of E-d(s~). Hence 

we can define a morphism of DG-S-left-S-right-modules 6 by 

S ~ s ~ sE c ~-d(S ' ) .  

The cohomology of (i is easily seen to be the isomorphism (9), so we have that 6 

is a quasi-isomorphism, hence an isomorphism in the derived category of DG-S- 

left-S-right-modules. 

Denoting source and target differently, 5 reads 

(10) sSs - ~  RSomk(sSs, E-dk). 

We shall use this isomorphism below. (Note that by lemma (3.11), the existence 

of 6 actually shows that the canonical morphism k ) S is Gorenstein.) 

Now for the proof proper: To show that 

A vs) S ;3k A 

is Gorenstein, we shall use lemma (3.11) with Q ~) T equal to A ~s) S Qk A. 

The observations in paragraph (4.14) show that the lemma's conditions (1) to 

(3) hold, so we must show that the lemma's condition (4) also holds. 
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This condition requires a certain isomorphism in the derived category of DG- 

(S Qk A)-left-(S Ok A)-right-modules, which we obtain as follows using the iso- 

morphism ~ from equation (10): 

5~DA 
S •k A ~ RHomk(S,E-dk) Gk A 

(a) 
=~ RHomk(S, E-dk Ok A) 

RHomk(S, E-d A ) 

RHomk (S, RHomA (A, E-dA)) 

(b) L 
--~ RHomA (S Gk A, E-dA) 

RHOmA(S Qk A, E-dA), 

where (a) is an evaluation morphism which is a quasi-isomorphism and hence an 

isomorphism in the derived category, because the homology H(S) ~ H(C* (X; k)) 

- H*(X; k) is finite dimensional over k, see [1, sec. 1, thm. 2], and where (b) is 

an adjunction isomorphism. | 

(4.16) THEOREM (ASCENT-DESCENT FOR SINGULAR COCHAIN DGAs).  In 

the situation of setup (4.11), we have 

A is a Gorenstein ring v* C* (X; A) is a Gorenstein DGA. 

Proo~ This is almost verbatim to the proof of theorem (4.5): Observe that as 

C*(X; A) is equivalent to S Qk A by paragraph (4.13), paragraph (2.2) implies 
that it is enough to show 

A is a Gorenstein ring ~ S Qk A is a Gorenstein DGA. 

For this, we apply theorem (3.6) and proposition (3.10) to the finite Gorenstein 

morphism A ~s~ S Ok A. This gives the implications ~ and ¢=. | 
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