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ABSTRACT

Let {cn(Stx)} and {cn(Ck)} be the sequences of codimensions of the T-
ideals generated by the standard polynomial of degree k and by the k-th
Capelli polynomial, respectively. We study the asymptotic behaviour of
these two sequences over a field F' of characteristic zero. For the standard
polynomial, among other results, we show that the following asymptotic
equalities hold:

en(Stag) = ca{Cro ) = cn{Mp(F)),
cn(Stak+1) ~ en(Myxar(F) ® Magx(F)),

where M (F) is the algebra of k X k matrices and My x(F) is the algebra
of (k+1!) x (k+1) matrices having the last [ rows and the last & columns
equal to zero. The precise asymptotics of cn(My(F)) are known and
those of Myxok(F) and Mok x(F) can be easily deduced. For Capelli
polynomials we show that also upper block triangular matrix algebras
come into play.
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1. Introduction

In this paper we study the asymptotic behaviour of the sequence of codimensions
of the T-ideals generated by the standard polynomial and the Capelli polynomial
over a field of characteristic zero. Let F' be a field, char F = 0. Recall that if F(X')
is the free associative algebra on the countable set X = {z},x2,...,91,¥2.-.-}, &
T-ideal I of F(X) is an ideal invariant under all endomorphisms of F(X). Also,
I = Id(A) is the ideal of polynomial identities of some Pl-algebra A. To each
T-ideal I one associates a numerical sequence called the sequence of codimensions
{en(I)}n>1 of T or A. We also write c,(Id(A)) = cn(A). Each ¢, (/) measures
the dimension of the multilinear part of ﬂIX_) in n fixed variables. Thus, if
P, = Spanp{x,(1) - Zo(n)| o € Sn} denotes the space of multilinear polynomials
in the first n variables xy, ..., ,, we have that ¢,(I) = dimp P,,/P, N 1.

When char F = 0, I is determined by its multilinear part and the sequence of
codimensions is of special interest in this case.

It is well known ([14]) that for a proper ideal I, ¢, (I) is exponentially bounded.
Moreover, the precise asymptotics of ¢, (I) were computed for some important
classes of T-ideals ([1], {12], [15]), e.g., the ideal of polynomial identities of
n x n matrices ([15]). Recently in [5] and [6] the exponential behaviour of ¢, (1),
for I = Id(A) a proper ideal, was studied and it was shown that exp(l) =
limy, o0 ¥/¢n (1), the exponent of I, exists and is a non-negative integer. We also
write exp(]) = exp(A).

For a polynomial (or set of polynomials) V, let (V)1 be the T-ideal generated
by V and write ¢, (V) = ¢,({V)r). In PIl-theory a prominent role is played by
the standard and the Capelli polynomials; here we shall study their T-ideals and
the asymptotics of the corresponding codimensions.

Let S,, be the symmetric group on {1,...,m}. Recall that

Stin(Tyy e m) = Z (sgno)To(1) ** To(m)
GES,,

is the standard polynomial of degree m and that

Crnt1(T1y o Tg 13 Y10 Um) = Z (58110)$0(1)y1$o(2)y2'"ymra(mﬂ)
0€ESm41

is the (m+1)-th Capelli polynomial. Let C,, 1 denote the set of 2™ polynomials
obtained from c,,41 by deleting any subset of variables y; (by evaluating the
variables y; to 1 in all possible ways).

In this paper we try to find a close relation among the asymptotics of
cn(Stm), cn(Cmi1) and ¢, (Mg(F)) where My (F) is the algebra of k x k ma-
trices over F. Two other algebras play a role in this description: Mjx;(F), the
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algebra of (k + 1) x (k + 1) matrices over F having the last [ rows and the last
k columns equal to zero, and UT'(dy,ds), the algebra of upper block triangular
matrices of size dy and da over F' (see details in the next sections).

Suppose that F' is algebraically closed. It is well known ([15]) that exp(My(F))
= k2. Also, from [10] it follows that exp(Mgx2x(F)) = exp(Magxr(F)) = k? and
from [7] we have that exp(UT(d;,dp)) = d% + d3.

Here we show that

(Star)r = Id(M(F) D B),
(Star+1)T = Id(Myyon(F) & Mogxi(F) & D)

and
(Cr2q1)r = Id(Mp(F) ® E),

where B, D, E are finite dimensional algebras whose exponent is strictly smaller
than k2. It follows that asymptotically

Cn(Ska) >~ Cn(Ck2+1) ~ Cn(Afk(F))

and
Cn(Stakg1) = cn(Mpxor(F) @ Mok (F)).

We remark that the precise asymptotics of ¢, (M. (F)) were computed in [15] and
those of Mjwak(F) and Mogxi(F') can be easily deduced from [10].

For the Capelli polynomials Cp,41, it was shown in [13] that m — 3
< exp(Crmr1) < m. Here we examine the two cases: exp(Cj,41) = m or
m — 1. The case exp(Cjnt1) = m has been already described above since
exp(Cry1) = m if and only if m is a square. When m is not a square and
m — 1 is a square or the sum of two squares (i.e., exp(Cp41) = m — 1), we
prove that Id(Cy,1) = Id(A, & --- & Ay @ B) where B is a finite dimensional
algebra of exponent smaller than m — 1 and Aq,..., A; are algebras of the type
Mpsor(F), Moy (F) or UT(dy, d2) whose existence depends whether m—1 = k2
or m — 1 = d} + d2. Asymptotic inequalities for ¢,,(Cy,41) are given in this case.

The main results of this paper were announced in [9].

2. Reduced algebras

An important ingredient of this paper is the exponent of a T-ideal or of a PI-
algebra (or of a proper variety of algebras) and its existence was proved in [5]
and [6]. If V is a variety of algebras, we denote by Id()V) the T-ideal of F(X) of
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polynomial identities satisfied by all the algebras of V. Also, if V is generated by
the algebra A, we write V = var(A), cp(V) = cn(A) and exp(V) = exp(A). First
we reduce all computations to the case of algebraically closed fields.

Let V C F(X) be a subset of multilinear polynomials and let I = (V)7 be
the T-ideal generated by V. Consider an extension field £ O F and let I be the
corresponding T-ideal generated by V in the free associative F-algebra F(X).
It is not difficult to show that [ = I @ F'; hence the nth codimension c,(I) in
F(X) coincides with the nth codimension ¢,(I) in F{X). Since we are mostly
interested in codimensions of multilinear identities, throughout we shall assume,
as we may, that F' is an algebraically closed field of characteristic zero.

Let G be the infinite dimensional Grassmann algebra over F' and let G =
G® @ GM be its natural Zo-grading. If A = A© g AM is a superalgebra over
F, then G(A) = A@ @G ¢ AW @ GW is called the Grassmann envelope of A.
We recall that by a result of Kemer ([11, Theorem 2.3]), if V is a proper variety
then there exists a finite dimensional superalgebra A such that V = var(G(A)).

The exponent of V is computed as follows: let V = var(G(A)) where A =
A g AW js a finite dimensional superalgebra over F. By the Wedderburn—
Malcev theorem (see [4, Theorem 72.19]), A can be written as A = B + J where
B is a maximal semisimple subalgebra of A and J = J(A) is the Jacobson
radical of A. It is not difficult to see that J is a Zg-invariant subspace of A.
It also follows from [17] that B can be chosen with induced Zs-grading and
B=A®--- P A; is the direct sum of simple superalgebras A,,..., A;. Write
all possible products of the form A;, JA;,J -+ JA;, # 0 for distinct A4;,,..., 4;,
and set dimp(A;; ®---® A;,) = d;y,.. 4. Then it was shown in [6, Proposition
1 and Proposition 2] that exp(V) = max;, ..., {di,,. i}

Motivated by this construction we make the following definition

Definition 1: Let A= A;®---® A, + J be a finite dimensional superalgebra
where Ay,..., A, are simple superalgebras and J = J(A). We say that A is
reduced if A\ JAsJ---JA, #0.

We prove in the next theorem that the reduced algebras can be used as building
blocks of any proper variety. We first prove a lemma (see [2, Lemma 3.2]) that
will be used throughout the paper.

LEMMA 1: If A and B are Pl-algebras, then ¢, (A),cp(B) < cp (A®B) < cp(A)+
cn(B). Hence exp(A @ B) = max{exp(4), exp(B)}.
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Proof: Recall that if R is any algebra, then

P,

0= B 1wy

Hence, since Id(A), Id(B) 2 Id(A® B), we have that ¢, (A), c,(B) < c,(A® B),
for all n > 1.
Now, the map
P, P,
:P n n
T BaTaa) © B A 1B
defined by ¢(a) = (a+ P,NId(A),a+ P,NId(B)), has kernel P,NId(A)NId(B).
Thus, since Id(A & B) = Id(A) N Id(B), we have that mfi—)(ﬂm
Pnﬁ}}:i(A) ® PﬂﬂF;Tcli(B) and cn(A (45 B) < Cn(A) + Cn(B) follows. |

embeds into

THEOREM 1: Let V be a proper variety of algebras. Then there exists a fi-
nite number of reduced superalgebras By, ..., B; and a finite dimensional super-
algebra D such that

V=var(G(B1) & - & G(B;) & G(D))
where exp(V) = exp(G(B;)) = - - - = exp(G(B;)) and exp(G(D)) < exp(V).

Proof: Let A be a finite dimensional superalgebra such that Id(V) = Id(G(A)).
Write A = A; @ ---® A, + J where Ay,..., A; are simple superalgebras and
J = J(A). Suppose exp(V) = d. Then, as it was mentioned above, there exist
distinct simple superaigebras A ,..., 4;, such that

ApJ--JA;, #0 and dimp(4;, & B A;,) =d.

Let Ly,...,L; be all possible subsets of {1,...,s} with the following property:
if, say, Lj = {il, e ,ik}, then

diIIlF(Ai1 DD Aik) =d and Aa(il)JAa(iz)J' . JAa(ik) 75 0,

for some permutation o € S;. For any such L;, j = 1,...,t, then define B; =
A, @@ A;, +J. By the characterization of the exponent, it follows that
exp(G(By)) = -+ = exp(G(By)) = d = exp(G(4).

Let Dy, ..., Dy be all subalgebras of A of the type A;, @ ---® A;_ + J where
1<ji < <jg< sanddim(4;, ®---@A;,) <d Hweset D=D & @D,
then exp(G(D)) < exp(G(A)).
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We are left to show that var(G(B,)@--- B G(By) @ G(D)) = var(G(A)). Since
fori=1,...,t, G(B;).G(D) € var(G(A)), then

var((G(By) & - - ® G(B;) & G(D)) C var(G(A)).

Let f = f(x1,...,2,) be a multilinear polynomial and suppose that f ¢
Id(G(A)). Then there exist ai,...,a, € A,¢1,...,9n € G such that

flar g1, .0, O gn) #0.
Since f is multilinear, we may assume that
GOl an Ogn € AD 0G0 @ AV 56N = G(A)
are homogeneous in the Z,-grading. It follows that

f(al@glv"'vanG)gﬂ) :f*(alﬁ"'van)(:\)gl“'gn

where f*(x1,...,x,) is a multilinear polynomial which differs from f only on the
sign of some of its coefficients (see [11, Lemma 1.1]). Clearly f*(ai,...,a,) # 0.
We may also assume that a1,....a, € A1U---UA,UJ. Since fori # j, 4;4; =0,
by the property of d described above, we must have that

Qp,y-..,an € Ay F - Ay, +J

for some Aj,, ..., As, such that dim(A; &---bA4;,) < d. It follows that f is not
an identity for one of the algebras G(By),...,G(B;), G{D). Hence var(G(A)) C
var(G(By) & - - - & G(B;) ¢ G(D)) and the proof is complete. |

In case of varieties generated by a finite dimensional algebra, the previous
theorem has a simplified form as follows. Recall that we may regard an algebra
as a superalgebra with trivial grading

COROLLARY 1: Let A be a finite dimensional algebra. Then there exist a finite
number of reduced algebras By, ..., By and a finite dimensional algebra D such
that var(A) = var(By & --- & B; ¢ D) and exp(4) = exp(B1) = -+~ = exp{By),
exp(D) < exp(4).

Another application of Theorem 1 is given in terms of codimensions. Re-
call that if f(n) and g(n) are two functions of a natural argument, then we
say that f(n) and g{n) are asymptotically equal and we write f(n) ~ g(n) if

limy, 00 % = 1. Then we have
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COROLLARY 2: For any proper variety V, there exists a finite number of reduced
superalgebras By, ..., B; such that

('n(V) ~ Cn(G(Bl) Db G(Bt))

Proof: Let V = var(G(B)) & ---&® G(B;) ® G(D)) as in the theorem above. By
Lemma 1 we have that

ea(G(B1) &+ G(BY) < en(V) < ea(G(B1) & - & G(By)) + en(G(D)).

Recalling that exp(G(D)) < exp(G(B))) = exp(G(B1) & - - - & G(By)), we have
the asymptotic equality ¢, (V) ~ ¢, (G(By) @ - - - & G(By)). |

3. Evaluating polynomials

In this section we study the case of a finite dimensional reduced algebra of a
special type. Throughout this section we assume that

R=A+J

where A = M(F) is the algebra of k x k matrices over F and J = J(R).
We shall determine the standard and the Capelli identities of minimal degree
vanishing on R. We start with the following key lemma.

LEMMA 2: The Jacobson radical J can be decomposed into the direct sum of
four A-bimodules
J = Joo & Jo1 P Jio b J1

where, for p,q € {0,1}, Jp, Is a left faithful module or a 0-left module according as
p = 1 or p = 0, respectively. Similarly, J,, is a right faithful module or a 0-right
module according as ¢ = 1 or ¢ = 0, respectively. Moreover, for p, ¢,%,1 € {0,1},
Jpqdgt © Jpt, Jpgdit = 0 for ¢ # i and there exists a finite dimensional nilpotent
algebra N such that J1; &2 A g N (isomorphism of A-bimodules and of algebras).

Proof: Let e be the unit element of A = M (F). Denote by L., Re: J — J
the linear transformations of J of left and right multiplication by e, respectively.
Since L2 = L, and R? = R, they both are diagonalizable linear transformations
with eigenvalues 0 and 1. Moreover, L R, = R.L. and J decomposes into the
sum of its eigenspaces J = Joo B Jo1 b Jio @ Ji1, as desired. The inclusions
JpgJqr C Jpi and the equalities J,qJ; = 0 for i # ¢ are clear.

Let now Jy; = Vi & -« & V,, be the decomposition of Jy; into irreducible
A-bimodules. Each irreducible V; is isomorphic to 4A4; hence V; contains a
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non-zero element d; (unique up to a scalar) commuting with A and V; = Ad;.
Moreover, for every i,j € {1,...,m}, d;d; commutes with A, hence d;d; is a
linear combination of di,...,dn. It follows that N = Span{dy,...,dn} is a
subalgebra of R and J;; = AN 2 A®p N. |

LEMMA 3: Suppose that Jo; @ Jig # 0. Then Stor, & Id(R) and Cy2 4y € Id(R).

Proof:  Suppose Jig # 0 and let d € Jyg, d # 0. Then dA = 0 and e;;d # 0 for
some i € {1,...,k}.
If k = 1, the conclusion of the lemma follows; therefore assume that & > 2.
Since Stgp—1 is not an identity for A = My(F), there exist elements
ay,...,a-1 € A such that Styp_i(ai1,...,a20-1) = e;; for some j # ¢ (for
instance, the staircase €;41i4+1,€i+1,i42s---,€nn,€nl,€11,---,655 Will do). But
then

eijStar(ay, . .., a2k—1,d) = €;;Stok-1(ay,...,a0e_1)d = ejje5d = ed # 0

and Stor # 0 on A.
It is well known that M (F) does not satisfy the k2-th Capelli polynomial.
Also, there exist ay,...,a2,b1,...,b2_; € A such that

Ck2(al, ey Qg2 bl, ey ka—l) = €Lk
(see, for instance, (16, Proposition 1.4.7]). We now compute

ck2+1(a1, e ,ak2,d; bl, ‘e ,bkzvl,e)

= cp2{ay, ... ag2; by, ..., bg2_1)ed = exred = exrd # 0.
Hence ¢24; # 0 on A. A similar proof holds in case Jo; # 0. |

LEMMA 4: Write J1; 2 A®p N as in Lemma 2. If N is not commutative, then
Stok+1 & Id(R) and Cy249 € Id(R).

Proof: Let J;3 = AN 2 AQp N be as in Lemma 2 and pick dy,d2 € N such
that dids # dod;. We claim that for any choice of z1,..., 2951 € A,

Stok1(x1, ..., Top—1,d1,da) = yStak_1(x1,. .., Top—1)[d1, d2],

for some non-zero constant .

In order to simplify the notation, let us write 2k — 1 = n. Denote A =
Yoc S, (sgno)o € F S, and recall the left action of S,, on the space of multilinear
polynomials in x4, ..., Z,.
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Expand St,io(21,...,T2-1,d1,dz2) according to the last two variables in a
monomial. There are the following three possibilities for these variables: (1)
both are z's. (2) One z and one d. (3) Both are d’s. Accordingly we have

Stnt2(1,. .., Tok-1,d1,d2) =

A( E Ty Tiady o xjoydy o TRTiT —

1<i<j<n

.. ':I:i—ld2 . .:L‘j__ldl . .xnmixj)
n
—-A( E T Tim1dy o TpXdy + 2y - T1da - Tpdi T
i=1

=2y L1l Tpidy — Ty Tiady 'xndzxz’)
+./4(.’L’1 cee .’En(dldz - d2d1))
Since d; and d; commute with zq,...,z,, we obtain that

Stn+2(:v1,...,a:n,d1,d2)= Z Stn(l‘l,...,.fi,...,@,...,.’l)n,.’l,',',iL‘j)[dl,dQ]
1<i<j<n

+ Stn(l'l, . .,xn)[dl,dzl

where Z means that the variable z is missing.
On the other hand,

Stn(:l?l, ‘e ,.’I:"\i, “e ,.’f}, o ,:L‘n,l‘z',fl,‘j) = (—1)"’j+"'i“lStn(x1, ‘e .,.’L‘n).

Since (~1)=41i-1 = (_1)7*i-1 and
j—l - ..
Z(—l)“’j‘l _J1 ifjiseven
— 10 ifjisodd
1=

we get that

Stok41(21, ...  Tny d1,d2) = vStp(21,. .., 20)[d1, do]

where y =140+ 1+ ---3# 0 as claimed.

Since My (F) does not satisfy Stor_1, it is clear that Story; & Id(R).

Let now v1,...,v2 be an ordered basis of A consisting of all matrix units e;;
such that v; = ey; and let ag,ay,...,a;2 € A be such that

ag¥1ay * - Ap2_1Vg2052 = €11
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and
(101}0(1)(11 s akz_l’v,,(p)akz =0
for all & € Sy2, 0 # 1.

Recalling that d; and do commute with A, we now take dj = eq1dy, d5 = e11ds
and compute

U U
crzan(dl, v1, .o g2, ds ag, g, .. ap2)
! ! i U ' gt > »i " g
=(11€11d2 - d2€11d1 - d1d2€11 e €11d1d2 + 611d2d1 + d2 1€11
:en[dmdl] # 0.

Hence cx2 4o € Id(R) and the proof is complete. ]

LEMMA 5: If Jo1J10 + Jiodor + J10Joo + JooJo1 # 0, then Storyy & Id(R) and
Ck2+2 Z Id(R)

Proof: Suppose first that &k = 1. If JyoJp; # 0, let a € Jig,.b € Jo1 be such that
ab # 0.

Then, if 1 = 1y, (F), la = a,b1 = b and al = 1b = 0. It follows that
St3(1,a,b) = 2ab + ba. Since ab € JygJo1 C Ji1, ba € JnJig C Jgo, and
Jin N Jgg = 0, we obtain that Sty € Id(R) and so C3 € Id(R). The other cases
J()]J]o 7é 0, J]()J()() 75 O, J()()J()l # 0 are dealt with similarly.

Suppose now that & > 2 and let Jy;Ji9 # 0. If u € Jyy,v € Jyo are such that
uv # 0, then there exists e;; € My (F) such that ueyv # 0 for some i € {1,....k}.
Let j # i and, as in the proof of Lemma 3, pick matrix units ay,...,az—1 €
M(F) such that Styg_1(a1,...,a2k-1) = €i;. Then, since M (F)u = vMi(F) =
0, we obtain

Stors1(ues, a1, ..., a2k—1,€;;v)

= ue;Stop_1(ar, ..., aop_1)ej;v + far, ..., aou_1.ej0ues)

where f is a suitable multilinear polynomial in ai,...,a2x—1,€jvue;. Since
uei;Stog_1(ay, ..., a2n_1)e;;v = ueyeje;v = ue;v is a non-zero element of
JorJ10 C Joo, vu € Jigdor € Ji1 and Jog N J1p = 0, it follows that Stopq &
Id(R). In case Jy1Jip = 0 and JipJor # 0, let u € Jig,v € Jo; be such
that uv # 0. There exist e;,e;; € Mip(F) such that ejuve;; # 0. Since
€ Uvej; = €jhepie;uve; e ke, by replacing u with eyu and v with vejy, we
may assume that egpu = v and veyy, = v.
We now compute

Story1(e11,€12, €224+ o €k—1 ks CRRs U, V) = 2€1u0 F 0



Vol. 135, 2003 THE STANDARD AND THE CAPELLI IDENTITIES 135

since vu € JoiJig = 0. Hence Stopy1 € Id{R) in this case. Similarly one can
show that the same conclusion holds in case JigJpo # 0 or JogJo1 # 0.

We next show that cgz 49 ¢ Id(R). Suppose, for instance, that Jo;1Jyo # 0 and
let w € Jo1,v € Jig, uv # 0. As in the proof of Lemnma 4, there exists an ordered
basis {b1,...,bx2} of A consisting of all matrix units e;;, and ag,...,ap2 € A
such that

agCrz(byy .. bgzsay, .. @z g )ape = eqy.

We may assume, as shown above, that uejjv # 0; hence
Cpzpa(t, by . bg2 Va0, G, L g2 ) = e v # O

and c2 o € Id(R). The other cases are proved similarly. ]

4. Asymptotics for the standard identities

In this section we shall prove our main results about the standard identity and
its asymptotics. We start by examining a finite dimensional algebra of a special

type

LEMMA 6: Let R = A+ J(R) where A = M (F) and R satisfies Sop11 or Cyz 4.
If J(]]Jl() = J10J01 = JIOJOO = J00J01 = 0, then V&I‘(R) = V&I‘(Al B AQ [ Joo)
where Ay = A+ Jig and Ay = A+ Jgy1.

Proof: Clearly Id(R) C Id(A; & Ay & Joo). Let now f = f(xy,...,xn) be a
multilinear polynomial such that f ¢ Id(R).
Suppose first that

f S Id(A +Ju+ Jlo) N ]d(A-‘f— Ji + -]01) N Id(J()O)

and let by,....b, € Rbesuch that f(b;,...,b,) # 0. We may assume by linearity
that by, ..., b, belong to AUJoUJgUJ11UJgo. By the assumption, by, ..., b, do
not belong, at the same time, to AU.Jy U .Jyg or to AU J11 U Jgy or to Jog. Thus
there exist b;, by, ¢ # j, such that one of the following three possibilities occurs:
(1) b; € Jip and bj € Jor. (2) b; € Jig and bj € Joo.- (3) b; € Joy and bj € Joo-
Since the Jy;'s are A-bimodules, Jo;J10 = J10J01 = J10Joo = JooJo1 = 0 and, by
Lemma 2, Jo1Joo = JooJ1o = JooJ11 = J11Joo = Jordor = Ji0J10 = 0; we have
that each of the above three cases leads to b, (1) - - bs(n) = 0 for all o € S;,. Thus
f € Id(R), contrary to the assumption.

We have proved that Id(R) D Id(A+ Ji +Jiwo)NId(A+ Jy1 + Jo1)NId(Joo). If
we prove that Id{A+Jy1+J1o) = [d(A+J10) and Id(A+Jy1+Jo1) = Td(A+Jor),
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we would get that Id(R) 2 Id(A;) N Id(A3) N Id(Jy) and the proof would be
complete.

In order to prove that Id(A + Ji; + Jio) = Id(A + Jyp), suppose that there
exists f(zy,...,2,) € Id(A+J11+J10) and let f be multilinear. Since Jj; = AN,
A commutes with N and N is commutative by Lemma 4, we have that for all
bi,....bpy €A+ Jy1 +Jio,a€ A, deN

bl"'bkadbk+l"'bm:dbl"’bkabk-{-l"'bm'

It follows that if b;y,...,b, € AU Jyy U Jyg are such that f(by,...,b,) # 0, then
we can write

Flor,. . ba) = d'f(B,, ..., 0))
for some d' € N, b},...,b,, € AU Jyjp. Thus f & Id(A + Jyo) and

Id(A + Jii +Jio) = Id(A + Jio)

follows. Similarly, one can show that Id(A + Jy1 + Jo1) = Id{A + Jo1)- This
completes the proof of the lemma. |

For m > 1 let us denote by var(St,,) the variety of associative algebras defined
by the standard identity St,,. Also, for k,I > 1, let us denote by Myx;(F) the
algebra of (k+1) x (k +1) matrices having the last ! rows and the last k columns
equal to zero.

THEOREM 2:
(1) var(Star) = var(M(F) @ B) for some finite dimensional algebra B such
that exp(B) < k%. In particular

en(Star) ~ cn(Mi(F)).

(2) var(Stary1) = var(Mgxok(F) ® Mok« (F) @ B) for some finite dimensional
algebra B with exp(B) < k2. In particular

cn(Stakt1) = cn(Mpixon(F) @ Mogxi(F)).

Proof: We know by [3] that exp(Stax) = exp(Star+1) = k2. Also, by [11,
Theorem 2.3], for any g > 1, var(St,) is generated by a finite dimensional algebra.
Thus, by Corollary 1, there exists a finite number of finite dimensional reduced
algebras By,..., By (see Definition 1) and a finite dimensional algebra D such
that

(1) var(Stq) =VaI'(Bl@ @Bt@D)
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and exp(B) = -+ - = exp(B;) = k?, exp(D) < k2.

The strategy of the proof will be as follows. We shall first analyze the structure
of a finite dimensional reduced algebra R such that St, € Id(R). We shall next
split the proof into the two cases ¢ = 2k and ¢ = 2k + 1. In each case we shall
plug into (1) the structure of each reduced algebra and we will deduce the desired
result.

Let R be a finite dimensional reduced algebra satisfying St, =0 (g =2k or ¢ =
2k+1). Write R= A, ®---® A, + J where Ay, ..., A, are simple subalgebras
and J = J(R). By the definition of reduced algebra, A;JAsJ---JA,, # Q.
Hence by [8] (see also [7]), R contains a subalgebra isomorphic to the upper
block triangular matrix algebra

Mdl(F) *
_ 0
UT(dy,...,dp) = )
0 <o 0 Mg, (F)

where A; & My, (F) foralli=1,...,m and
exp(R) = exp(UT(dy,...,dp)) =ds + - 4+ d2,.

Clearly UT(dy,...,d,,) does not satisfy Stog._1 where d = dy + - -- + d,,,. Hence
UT(d,,...,dy) satisfies St, for g =2k or g =2k +1only if dy +---+ d;, < k.
On the other hand, d? + --- + d2, < k? for any m > 1. It follows that if R is
a reduced algebra with exp(R) = k? satisfying St; = 0 (¢ = 2k or ¢ = 2k + 1),
then R = M (F)+ J.

We now split the proof into two cases according as ¢ = 2k or ¢ = 2k — 1.

CASE 1:  Suppose that ¢ = 2k and let R = A+ J be a reduced algebra, as above
where A = M(F). Write J = Jgo + Jo1 + Jio + J11 as in Lemma 2. Since
Stor, € Id(R), by Lemmas 3 and 4, Jig + Jo1 = 0 and Ji; = AN where N is
commutative. Since AJyg = JooA = J11Jgo = JooJ11 = 0 and Jig = Jo; = 0, we
obtain that R = (A + Ji1) & Joo with Jgo C J a nilpotent ideal of R. Moreover,
by Lemma 2, A+ J;; = A+ AN = AQp N* where Nt is the algebra obtained
from N by adjoining a unit element. Since N* is commutative, it follows that
A+ Jy;1 and A satisfy the same identities. Thus var(R) = var(A4 & Jyo).

We have proved that if R is any reduced algebra such that Sts;, € Id(R) and
exp(R) = k?, then var(R) = var(My(F) @ Joo) with Jgo a finite dimensional
nilpotent algebra. But then, by recalling the decomposition given in (1), we get
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that var(Stax) = var(M(F) & D') where D’ is a finite dimensional algebra with
exp(D') < exp(M(F)) = k?.

CASE 2: Suppose now that ¢ = 2k + 1 and let R = A + J be a reduced
algebra with A = My(F) and R satisfies Storyq. In this case, by Lemma 5,
we get that Jo1.J10 = JioJor = JioJoo = JooJor = 0. Hence, by Lemma 6,
var(R) = var((A + Jio) & (A + Jo1) @ Joo) and Jog is a nilpotent algebra. Now,
the left A-module Jyo is isomorphic to ¢ > 1 copies of a left ideal of M (F).
Since JipA = JioJio = 0 and A = My« (F), then A + Jyo as an F-algebra is
isomorphic to My x4+ (F) and it is clear that A + Jio has the same identities
as Mywor(F). Similarly, one shows that A + Jo; satisfies the same identities as
Mg i (F).

We have proved that if R is any reduced algebra such that Stor. € Id(R),
then var(R) = var(Mpxok(F) & Myyor(F) & Joo) with Jyg a finite dimensional
nilpotent algebra. By invoking the decomposition given in (1), we get that

var(Stagy1) = var(Mgxox(F) & Magxi(F) @ B)
where exp(B) < k? — 1. |

COROLLARY 3: ¢, (Stor) ~ an1=+)/2k2n and

%n(3-k2)/2k2n < en(Stapst) < _2];%”(3—k2)/2k2n

where

v— 1.2
o = (L)k 1(_1_)2(k +1)1'2'(k_1)'k%(k2+4)
Vv2r 2

Proof: The precise asymptotics for ¢, {Stax) follow from the relation ¢, (Stey) ~
cn(Mi(F)) and the result in [15] where the asymptotics for ¢, (My(F)) were
computed explicitly.

Let I} = Id(Mpxok(F)) and Iz = Id(Maogx i (F')). From [10} it follows that I
Id(M(F))-F(X), I, = F(X) - Id(My(F)) and ¢, (I;) = cn(I2) = nep—1 (Mg (F)
Since (Stag 1)1 = I1 N IoN I3 where, by Theorem 2, I3 is a T-ideal with ¢, (I3)
(k% — 1), we get

).
<

~

en (1) < en(Staks1) < en(ln) + cn(I2) 4 en(I3) =~ 2¢,, ().

The second part of the corollary now follows from the asymptotics of ¢, (Mg (F)).
|
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5. Asymptotics for the Capelli identities

In [13] it was shown that exp(Cyy41) =m,m —1,m — 2 or m — 3.

Also, exp(Cpyt) = m if and only if m = k? is a square and, if m is not a
square, exp(Cp11) = m — 1 if and only if m — 1 is a square or the sum of two
squares.

In this section we shall study var(Cy,+1) and the asymptotics of the corre-
sponding codimensions in case m is a square or m — 1 is a square or the sum of
two squares. By the above, this will imply the cases exp(Cy,41) = mor m — 1.

We start with the easy case exp(Cy,41) = m. In fact we have

THEOREM 3: Let m = k?. Then var(Cp,41) = var(My(F) & B) for some finite
dimensional algebra B such that exp(B) < k2.

Proof: By [11, Theorem 2.3], var(Cy24;) is generated by a finite dimensional
algebra and, by [3], exp(Cy24) = k2. Thus, by Corollary 1, there exist finite
dimensional algebras By,..., By, D such that

(2) var(Cyzy1) =var(B1®---® B @ D)

where By,..., B; are reduced and exp(Bl) =--- = exp(B;) = k%, exp(D) < k2.
We next analyze the structure of any such reduced algebra.

Let R be a finite dimensional reduced algebra such that Cy2y; € Id(R) and
exp(R) = k2. As in the proof of the previous theorem, R contains a subalgebra
of the type UT(dy,...,d;) with exp(R) = d% + --- + d? = k2. Tt is not difficult
to show (see also [13]) that UT'(d1, ..., d;) does not satisfy 4242441 Hence
t =1,dy = k and we may write R = A+ J where A = M;(F'),J = J(R). Since
by Lemma 3, Jo; = Jig = 0, then J = Jyo + J1; and, as noted in the proof of
Theorem 2, we have that R = (A + Jy1) & Joo with Jgo a nilpotent ideal of R.
Also, by Lemma 4, .J;; = AN where N is a nilpotent commutative subalgebra
centralizing A in R. Hence, as in the proof of Theorem 2, A and A + J;; have
the same identities and var(R) = var(A & Jyo) follows.

By the decomposition given in (2), it follows that var(Cy24,) is generated by
M;(F) @ B where B is a finite dimensional algebra and exp(B) < k?. |

COROLLARY 4:

cn(Chay1) = cn(Star) ~ an1=+)72p2n

where « is the constant of Corollary 3.

We now start to study the case exp(Cpyy1) =m — 1.
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LEMMA 7: Let R= A+ J where A= M(F) and J = J(R). If R € var{Cp41)
where m — 1 = k2, then

V&.I‘(R) = Var(kagk(F) (&5 MQkxk(F) &) B)

with B a finite dimensional algebra such that exp(B) < m — 1.

Proof: By Lemmas 4 and 5, we have that Jo1J10 = J1oJo1 = J10Joo = JooJo1 =
0 and Ji; = AN where N is commutative and centralizes A. By Lemma
var(R) = var(A, @ Ay ® Joo) where A = A+ Jip and Ay = A+ Jp1. Asin
the proof of Theorem 2, we see that var(A4;) = var(Mgxox(F)) and var(A,)
var(Magx(F)) and the conclusion follows. |

I

In the next two lemmas we examine the case when m — 1 is the sum of two
squares and R is a finite dimensional algebra whose semisimple part has only two
simple components.

LEMMA 8: Suppose m — 1 = k% + k2 and let R = A® B+ J where A =
M, (F),B = My,(F) and J = J(R). If R € var(Cp,4+1) and AJB # 0, then
var(R) = var(A; & A ® D) where Ay = A+ B+ AJA+ BJB+ AJB, A =
A+ B+ AJA+ BJB+ BJA and exp(D) <m — L.

Proof: We first claim that
3) BJAJB=0 and AJBJA=0.

Suppose, by contradiction, that there exist elements z,y € J such that Bx AyB #
0. If 14 and 15 denote the unit elements of A and B respectively, then we may
assume that 1pxr = x1l4 = x and 14y = ylp = y. Hence

(4) Ar=zB=yA=By=0.
As in the proof of Lemma 3, pick matrices
ULy .y Ug2, G0y A1, -, g2 € A, U1,---,ng,bo,bh---’bkg_l €B
with the property that
TapUyaruz - - Gz U2 1aybovibivg - bz _yvpz # 0

and any non-trivial permutation of uy, ..., U2, V1, - - -5 Vpg in the above product
is zero. Then from (4) it follows that

ck§+k§+2(x,u1, e URZ Y ULy 5 UR2; G, G - --,akf_plA»bo)bh . ..,bkg_l) #0,
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a contradiction. The second equality in (3) is proved similarly.

Next we show that if xAyB # 0, for some z,y € J, then we may take x €
AxA C AJA. In fact, since B is a unitary algebra, Bz # 0 implies BrAyB # 0,
and this contradicts (3). Hence Bx = 0. If also Az = 0, then, as above, it would
follow that Ck2 k242 is not an identity for R. Therefore Ar # 0 and z € AJA.

Similarly, it can be proved that if AxBy # 0, for some z,y € J, then we may
take y € BJB.

Consider now a non-zero product of the type

ardy - am_o1dm_10m

where ay,...,a,, € AUBanddy,...,dy—1 € J. Then, by (3), eitheray,...,a;, €
Aor aj,...,am € B or there exists 1 < k < m such that ay,...,a,_1 € A,
Qky---y 0y € Boray,...,ag_1 € B, ag,...,a, € A.
Similarly, if
d0a1d1 v -am_ldm_lam ;é 0

where ay,...,ax_1 € 4, ak,...,am € B and do,d1,...,dn_1 € J, then, by what
we proved above, we may take dy € AJA.
We next show that

var(R) = var(A; & A2 @ A3 & Ay)

where A3 = A+J and Ay = B+J. Since exp(As® A) = max{k?, k%} < k?+k2,
this will complete the proof of the lemma.

Let f € Id(R), a multilinear polynomial, and suppose that f € Id(A3)NId(Ay).
Since AB = BA = 0, in order to obtain a non-zero evaluation of f we must
substitute at least one element y € J such that AyB # 0 or ByA # 0. As
we remarked in the proof of (4), the element y can be taken in AJB or BJA,
respectively. Taking into account the relation (3) and the above discussion, it
follows that all the other variables must be evaluated in AU BU AJA U BJB.
Thus either f ¢ Id(A;) or f & Id(As). This proves that

Id(R) D Id(A;) N Id(Ag) N Id(As) N Id(A4).
The other inclusion is obvious and the proof of the lemma is complete. ]

LEMMA 9: Let m — 1 = k% + k2 and let Ay, Ay € var(Cynqy) be the algebras
defined in the previous lemma. Then there exist finite dimensional algebras D,
and Dy such that

var(Ay) = var(UT (ky, k2) ® Dy), var(Az) = var(UT (ks, k1) & Ds)
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and exp(Dy),exp(Dy) < m — 1.

Proof: Consider the algebra A’ = A+ AJA. By Lemma 2 we have that AJA =
(AJA);; = AN &2 A© N for some nilpotent algebra N. Suppose first that N
is non-commutative. Then, by Lemma 4, Cy2,o Z Id(A"). If AJAJB # 0, as
in the proof of Lemma 8, we can prove that CR2 k2 42 ¢ Id(A,), a contradiction.
Hence AJAJB = 0. Since AB = BA = 0, we obtain that

var(A;) = var((A+ B+ AJB+ BJB) & (A + AJA))

and A+ AJ A has exponent less than m—1. In case N is commutative, [d(AJA) C
Id(A) implies that var(A,) = var(A+ B+ AJB + BJB).

By applying the same arguments to the summand B.J B we obtain that var(A4;)
=var((A+ B + AJB) @ D), for some finite dimensional algebra D with exp(D)
<m-—1.

Now, as it was shown in [8], the algebra A + B + AJB contains a subalgebra
isomorphic to UT(ky, ka). Hence Id(A+ B + AJB) C Id(UT(ky, kz)). On the
other hand, by [8], Id(UT (k1,k2)) = I1I> where I} = Id(My,(F)) and I, =
Id(M,,(F)). Since (AJB)? = 0, it is easy to see that if f{ € I} and fo € I,
then f;fs = 0 is an identity for A + B + AJB. Hence var(A + B+ AJB) =
var(UT(ky, k2)) and the conclusion of the lemma follows for the algebra A;. The
proof for the algebra A, is obtained by making the obvious changes. |

THEOREM 4: Let m # k? and suppose that m — 1 is a square or the sum of two
squares. Then
var(Cp41) = var(A @ B& D)

where D is a finite dimensional algebra with exp(D) < m — 1,

4= { Miy2r(F) ® Moy (F) ifm —1=r? is a square
0 otherwise

and

B 0 if m — 1 is not the sum of two squares,
" | Dseqrrmm_1 UT(s,t) otherwise.

Proof: By [11, Theorem 2.3], var(Cp,+1) is generated by a finite dimensional
algebra. As in the proof of Theorem 2, by invoking Corollary 1, we need only ex-

amine finite dimensional reduced algebras in var(Cy,+1). We then apply Lemmas
7, 8 and 9 to complete the proof of the theorem. |



Vol. 135, 2003 THE STANDARD AND THE CAPELLI IDENTITIES 143
LeMMA 10: Let k? = s +t2. Then
Ve, (Mixan(F)) ~ Ben (UT (s, 1)),
for some constant 3.
Proof: Since by [15], ¢, (My(F)) ~ an!=*)/2}2 by [10] we obtain that
en(Mixor(F)) = nep_ 1 (My(F)) ~ an(1=F)/2+1p2n

On the other hand, by [8], cn(UT (s, 1)) = gn{1=s"=t")/2+3/2(32 4 y2)n 1

COROLLARY 5: Let m # k? and suppose that m—1 is a square or the sum of two
squares. If m — 1 is the sum of two squares, then there exist non-zero constants
a1 < ag such that

an®(m — 1" < cp(Cryq1) S agn®(m — 1)

where a = (5 — m)/2. If m — 1 = k? is not the sum of two squares, then
an’(m —1)" < ea(Cmt1) < 20mb(m — 1)

where b = (4 — m)/2 and « is the constant of Corollary 3.

Proof: If m—1 is the sum of two squares then, by applying the previous lemma
to the conclusion of Theorem 4, we can write

n(Crmg1) 2 en(A1B - A,)
where Aj,..., A, are algebras of the type UT(s,t) with s*> + 2 = m — 1. Hence
max{cn(A1),...,ca(Ar)} S en(Crmtr) S cn(A1) + -+ cn(Ar)
and the first part of the proof follows from the asymptotic equality (see [8])

5 enlUT(5,8)) = afs, )n1=e ~0)/243/2(g2 | y2yn
= & s

(s, )n®=™/2(m — 1)",

where «(s,f) is a constant depending on s and f.

Suppose now that m — 1 = k? is not the sum of two squares. In this case, by
Theorem 4, ¢, (Cint1) = cn{Mixar(F) @ Magw i (F)) and the asymptotics for this
sequence were estimated in Corollary 3 for the standard identity Stogy;- |
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We remark that the constants «; and az in Corollary 5 can be computed using
the relations (5). Namely,

o = max{a(s,t)| 2 +t*=m -1}, as= Z a(s,t)

$24t2=m—-1

where
a(s)a(t)

Ot(S,t) = Ssz_lttz_l(SQ + t2)(4_32_t2)/2

(see [8]) and

1 \k-1 /1302 4D) L2
={— Z 19 (B — ez (BT
a(k) (\/ﬁ) (2) 120+ (k — 1)k E"+),
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