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ABSTRACT 

Let {cn(Stk)} and {cn(Ck)} be the sequences of codimensions of the T- 
ideals generated by the standard polynomial of degree k and by the k-th 

Capelli polynomial, respectively. We study the asymptotic behaviour of 

these two sequences over a field F of characteristic zero. For the standard 

polynomial, among other results, we show that the following asymptotic 

equalities hold: 

c~(St2k) ~- cn(Ck~+l) ~- c~(Mk(g)),  

cn(St2k+l) ~ cn(Mkx2k(F) • M2kxk(F)), 

where Mk(F) is the algebra of k x k matrices and Mkxt(F) is the algebra 
of (k + I) x (k + I) matrices having the last l rows and the last k columns 

equal to zero. The precise asymptotics of cn(Mk(F)) are known and 

those of Mkx2k(F ) and M2kxk(F) can be easily deduced. For Capelli 
polynomials we show that also upper block triangular matrix algebras 

come into play. 
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1. I n t r o d u c t i o n  

In this paper we study the asymptotic behaviour of the sequence of codimensions 

of the T-ideals generated by the standard polynomial and the Capelli polynomial 

over a field of characteristic zero. Let F be a field, char F = 0. Recall that  if F(X} 
is the free associative algebra on the countable set X = {xl, x2 . . . . .  Yl, Y2 . . . .  }, a 

T-ideal I of F<X} is an ideal invariant under all endomorphisms of F(X}. Also, 

I = Id(A) is the ideal of polynomial identities of some PI-algebra A. To each 

T-ideal I one associates a numerical sequence called the sequence of codimensions 

{cn(I)}~___l of I or A. We also write c,~(Id(A)) = cn(A). Each cn(I) measures 

the dimension of the multilinear part  of ~ in n fixed variables. Thus, if 

P ,  = SpanF{xo(1) "'" xo(n)l a E Sn} denotes the space of multilinear polynomials 

in the first n variables xl . . . . .  xn, we have that  c,~(I) = dimp Pn/Pn N I. 
When char F = 0, I is determined by its multilinear part  and the sequence of 

codimensions is of special interest in this case. 

It is well known ([14]) that for a proper ideal I, cn(I) is exponentially bounded. 

Moreover, the precise asymptoties of cn(I) were computed for some important  

classes of T-ideals ([t], [12], [15]), e.g., the ideal of polynomial identities of 

n x n matrices ([15]). Recently in [5] and [6] the exponential behaviour of cn(I), 
for I = Id(A) a proper ideal, was studied and it was shown that  exp(I)  = 

l i m n _ ~  ~ (I),  the exponent of I ,  exists and is a non-negative integer. We also 

write exp(I)  = exp(A). 

For a polynomial (or set of polynomials) V, let {V}T be the T-ideal generated 

by V and write c,~(V) = c~((V}T). In PI-theory a prominent role is played by 

the standard and the Capelli polynomials; here we shall study their T-ideals and 

the asymptotics of the corresponding codimensions. 

Let Sm be the symmetric group on {1 . . . . .  m}. Recall that  

Stm(Xl . . . . .  Xm)---- ~ (sgno')xa(1)" 'Xa(m) 
eES~ 

is the standard polynomial of degree m and that  

C m + l ( X l ,  ' ' '  , Xm+l; Yl . . . . .  Ym) = ~ (sgna)xa(1)ylXa(2)Y2"''ymXa(m+l) 
aESm+I 

is the (m + 1)-th Capelli polynomial. Let Cm+l denote the set of 2 m polynomials 

obtained from Cm+l by deleting any subset of variables Yi (by evaluating the 

variables Yi to 1 in all possible ways). 

In this paper we try to find a close relation among the asymptotics of 

Cn(Stm),cn(Cm+l) and cn(Mk(F)) where Mk(F) is the algebra of k x k ma- 

trices over F.  Two other algebras play a role in this description: Mkxl(F) ,  the 



Vol. 135, 2003 THE STANDARD AND THE CAPELLI IDENTITIES 127 

algebra of (k + l) x (k + l) matrices over F having the last 1 rows and the last 

k columns equal to zero, and UT(db d2), the algebra of upper  block tr iangular  

matrices of size dl and d2 over F (see details in the next sections). 

Suppose tha t  F is algebraically closed. It is well known ([15]) tha t  exp(Mk(F) )  

= k 2. Also, from [10] it follows tha t  exp(Mkx2k(F))  = exp(Mzkxk(F))  = k 2 and 

from [7] we have tha t  exp(Ur(d~, d2)) = d~ + d~. 
Here we show that  

(S~2k)T  = Id(Mk(F) + B), 

(Stzl,, + l)T = Id( Mkx2k( F) + M2kxk(F)  • D) 

and 

(Ck2+I)T = Id(Mk(F) Q E), 

where B, D, E are finite dimensional algebras whose exponent is strictly smaller 

than  k 2. It follows tha t  asymptot ical ly  

c~(St2k) ~" cn(Ck2+l) ~- c.(M~,(F)) 

and 

e,~(Stzk+a) ~- en(Mkx2k(F) ~ M2k×k(F)). 

We remark tha t  the precise asymptot ics  of e,, (Mk (F))  were computed  in [15] and 

those of Mk×2k(F) and M2kxk(F)  can be easily deduced from [10]. 

For the Capelli polynomials C,,+1, it was shown in [13] tha t  m -  3 

< exp(Cm+l)  _< m. Here we examine the two cases: exp(Cm+l)  = m or 

m - 1. The case exp(Cm+l)  = m has been already described above since 

exp(Cm+l)  = m if and only if m is a square. When  m is not a square and 

m - 1 is a square or the sum of two squares (i.e., exp(Cm+l)  = m - 1), we 

prove tha t  Id(Cm+l) = Id(A~ + ... + At • B) where B is a finite dimensional 

algebra of exponent smaller than  m - 1 and Aa,. •., At are algebras of the type 

Mk×2k(F), Mzk×k(F) or UT(dl, d2) whose existence depends whether m -  1 = k 2 

or m -  1 2 2 = d 1 + d 2. Asympto t ic  inequalities for cn(Cm+a) are given in this case. 

The main results of this paper  were announced in [9]. 

2. R e d u c e d  a l g e b r a s  

An impor tan t  ingredient of this paper  is the exponent of a T-ideal or of a PI-  

algebra (or of a proper variety of algebras) and its existence was proved in [5] 

and [6]. If  F is a variety of algebras, we denote by Id(l¢) the T-ideal of F ( X )  of 
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polynomial identities satisfied by all the algebras of V. Also, if V is generated by 

the algebra A, we write V = var(A), ca(V) = ca(A) and exp(V) = exp(A). First 

we reduce all computations to the case of algebraically closed fields. 

Let V C F(X)  be a subset of multilinear polynomials and let I = (V)T be 

the T-ideal generated by V. Consider an extension field/~ _D F and let i be the 

corresponding T-ideal generated by V in the free associative _P-algebra f ' (X) .  

It  is not difficult to show that  i = I @F -P; hence the n th  codimension Cn(D in 

f ' ( X )  coincides with the nth  codimension ca(I) in F(X).  Since we are mostly 

interested in codimensions of multilinear identities, throughout we shall assume, 

as we may, that  F is an algebraically closed field of characteristic zero. 

Let G be the infinite dimensional Grassmann algebra over F and let G = 

G (°) @ G (1) be its natural Z2-grading. If A = A (°) ® A (1) is a superalgebra over 

F,  then G(A) = A (°) ® G (°) ® A (1) ® G (1) is called the Grassmann envelope of A. 

We recall that  by a result of Kemer ([11, Theorem 2.3]), if V is a proper variety 

then there exists a finite dimensional superalgebra A such that  V = var(G(A)). 

The exponent of V is computed as follows: let V = var(G(A)) where A = 

A (°) @ A (1) is a finite dimensional superalgebra over F.  By the Wedderburn- 

Malcev theorem (see [4, Theorem 72.19]), A can be written as A = B + J where 

B is a maximal semisimple subalgebra of A and J = J(A) is the Jacobson 

radical of A. It  is not difficult to see that  J is a Z2-invariant subspace of A. 

It  also follows from [17] that  B can be chosen with induced Z2-grading and 

B = A1 @ " .  ® At is the direct sum of simple superalgebras A1 . . . .  , At. Write 

all possible products of the form Ail JA~2J"" JAik ~ 0 for distinct A i l , . . . ,  Ai, 

and set dimF(A~ 1 ® . . .  @ A~)  = d~l ..... ik- Then it was shown in [6, Proposition 

1 and Proposition 2] that  exp(V) = maxil ..... ik {di~ ..... ik}. 

Motivated by this construction we make the following definition 

Definition 1: Let A = A1 ® . . .  ® Ar + J be a finite dimensional superalgebra 

where A 1 , . . . , A r  are simple superalgebras and J = J(A). We say that  A is 

reduced if A1JA2J . . .  JAr ¢ O. 

We prove in the next theorem that  the reduced algebras can be used as building 

blocks of any proper variety. We first prove a lemma (see [2, Lemma 3.2]) that  

will be used throughout the paper. 

LEMMA 1: If  A and B are PI-algebras, then Cn (A), Cn (B) ~ C n (A ® B) <_ cn (A) + 
ca(B). Hence exp(A @ B) = max{exp(A), exp(B)}. 
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Proof  Recall that if R is any algebra, then 

Pn 
Cn ( l~ ) dr":-- P,~ n Id(n)"  

Hence, since Id(A),  Id (B)  D_ Id(A @ B), we have that cn(A), ca(B) <_ Cn (A ® B), 

for all n _> 1. 

Now, the map 
P~ P~ 

~: Pn --+ 
Pn N Id(A)  Pn N I d ( B ) '  

defined by ~(a) = (a + Pn n Id(A),  a + Pn n Id(B)  ), has kernel Pn N Id(A)  N Id(B) .  

Thus, since Id(A ® B) = Id(A)  N Id(B) ,  we have that P. embeds into Pnnld(A~B) 
R Pu Cn (A ® + | (9 and B) < c,~(A) ca(B) follows. Pnnld(B) 

THEOREM 1: Let V be a proper variety of algebras. Then there exists a fi- 

nite number of reduced superalgebras B1 . . . .  , Bt and a finite dimensional super- 

algebra D such that 

V = var(G(B1) @. . .  @ G(Bt) @ G(D)) 

where exp(V) = exp(G(B1)) . . . . .  exp(G(Bt))  and exp(G(D)) < exp(V). 

Proof  Let A be a finite dimensional superalgebra such that Id(V) = Id(G(A)) .  

Write A = A1 ® .-. ® As + J where A1, . . . ,  As are simple superalgebras and 

J = J(A).  Suppose exp(V) = d. Then, as it was mentioned above, there exist 
distinct simple superalgebras Ai, . . . .  , Aik such that 

A i l J . . . J A i k  # 0  and dimF(Ai~ g2""(~Aik )  =d .  

Let L I , . . . ,  Lt be all possible subsets of {1 . . . .  , s} with the following property: 

if, say, Lj = { i l , . . . , i k} ,  then 

dimF(Ail @ ' " @  Aik) = d and Aa( i l ) JAa( i2 )J ' "  JAa(ik) # 0, 

for some permutation a E Sk. For any such Lj, j = 1 , . . . ,  t, then define Bj = 

Ail@ "'" @ Aik + J. By the characterization of the exponent, it follows that 

exp(G(B1)) . . . . .  exp(G( Bt) ) = d -- exp(G(A)). 

Let D1, . . . ,  Dp be all subalgebras of A of the type Aj~ ¢9 .-. @ Ajq + J where 

1 <_ j l  < "'" < jq <_ s and dim(Ajl @.-.@Ajq) < d. If we set D = Dl@. . .@Dp,  
then exp(G(D)) < exp(G(d)). 
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We are left to show that  v a r ( a ( B : ) ~ . - .  • a(Bt)~9 G(D)) = var(G(A)).  Since 

for i = 1 , . . . ,  t, G(Bi),  G(D) e var (a (A)) ,  then 

var((G(B:)  ~ . . .  ~ G(Bt) + G(D) ) C_ var(G(A)). 

Let f = f ( x l  . . . . .  X n )  be a multilinear polynomial and suppose that  f 

Id(G(A)) .  Then there exist a: . . . . .  a~ E A,g:  . . . . .  g,  E G such that  

f (a :  :27 gl  . . . . .  a,  Q g~,) 760. 

Since f is multilinear, we may assume that  

a: (2, g: . . . . .  an 0 gn E A (°) 0 G (°) ~¢ A (1) (~ G O) = G(A)  

are homogeneous in the Z2-grading. It follows that  

f ( a l  (3 gl . . . . .  a~ ~ gn) = f * ( a l  . . . . .  an)  @ gl  " " g n  

where f* (x l  . . . . .  :rn) is a multilinear polynomial which differs from f only on the 

sign of some of its coefficients (see [11, Lemma 1.1]). Clearly f* (a l  . . . . .  an) 7 60. 

We may also assume that  (1, 5 . . . . .  a n C A1U. . . t2A~UJ.  Since for i 5£ j ,  A iAj  = O, 

by the property of d described above, we must have that  

a l , . . . , a n  E A i : ~ " - ~ A i k + J  

for some A~ 1 . . . . .  A~ k such that  dim(A h ~ . . .  ~ A i~.) <_ d. I t  follows that  f is not, 

an identity for one of the algebras G ( B 1 ) , . . . ,  G(Bt),  G(D). Hence var(G(A)) C_ 

var(G(B1) ~ . . .  ~ G(Bt) ~ G(D)) and the proof is complete. | 

In case of varieties generated by a finite dimensional algebra, the previous 

theorem has a simplified form as follows. Recall that  we may regard an algebra 

as a superalgebra with trivial grading 

COROLLARY 1: Let A be a finite dimensional algebra. Then there exist a finite 

number of reduced algebras B 1 , , . . ,  Bt and a finite dimensional algebra D such 

that var(A) = var(B1 O - - -  • Bt • D) and exp(A) = exp(B1) . . . . .  exp(Bt),  

exp(D) < exp(A). 

Another application of Theorem 1 is given in terms of eodimensions. Re- 

call that  if f (n )  and g(n) are two functions of a natural argument, then we 

say that  f (n )  and g(n) are asymptotically equal and we write f (n )  ~- 9(n) if 

l im,_ .~  I(n) 1. Then we have 
9 ( n )  - -  
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COROLLARY 2: For any proper variety ~, there exists a finite number of reduced 

superalgebras B 1 , . . . ,  Bt such that 

Cn(V ) ~'~ c n ( G ( U l )  @ . . .  @ G(Ut ) ) .  

Proof." Let )2 = var(G(B1) ~ . . .  ~ G(Bt) ~ G(D)) as in the theorem above. By 

Lemma 1 we have that  

c, (G(B1) ~ - . .  @ G(Bt))  < Ca(l?) < cn(G(]~l) ¢~""  + G(B,))  + cn(G(D)). 

Recalling that  exp(G(D))  < exp(G(B1)) = exp(G(B1) @ . . -  ~ G(Bt)),  we have 

the asymptotic equality c,~(Y) ~- en(G(B1) ~ " "  ~ G(Bt)).  1 

3. Evaluating polynomials 

In this section we study the case of a finite dimensional reduced algebra of a 

special type. Throughout this section we assume that  

R = A + J  

where A = Mk(F)  is the algebra of k × k matrices over F and J = J(R) .  

We shall determine the standard and the Capelli identities of minimal degree 

vanishing on R. We start  with the following key lemma. 

LEMMA 2: The Jacobson radical J can be decomposed into the direct sum of 

folw A-bimodutes 

J -- Joo 4~ Jol • Jlo • J n  

where, for p, q C {0, 1}, .]~q is a left faithful module or a O-left module according as 

p = 1 or p = O, respectivel~: Similarly, Jpq is' a right f~ithfut module or a O-right 

module according as q = 1 or q = O, respectively. Moreover, for p, q, i, l ~ {0, 1}, 

JpqJql C_ Jpl, JpqJi~ -- 0 for q ~ i and there exists a finite dimensional nilpotent 

algebra N such that J11 ~ A~-~F N (isomorl)hism of A-bimodules and of algebras). 

Proof: Let e be the unit element of A = Ma:(F). Denote by Le, Re: J -+ J 

the linear transformations of J of left and right multiplication by e, respectively. 

Since L 2 = Le and R~ = Re, they both are diagonalizable linear transformations 

with eigenvalues 0 and 1. Moreover, LeRe = ReLe and J decomposes into the 

sum of its eigenspaces J = J0o @ J01 • Jlo ¢~ J n ,  as desired. The inclusions 

JpqJql C_ Jpl and the equalities JpqJil = 0 for i =/= q are clear. 

Let now Jl l  = I~q ~ . . .  ~ V,~ be the decomposition of J n  into irreducible 

A-bimodules. Each irreducible Vi is isomorphic to AAA; hence Vi contains a 



132 A. GIAMBRUNO AND M. ZAICEV Isr. J. Math. 

non-zero element di (unique up to a scalar) commuting with A and V~ = Adi. 

Moreover, for every i , j  E { 1 , . . . , m } ,  didj commutes with A, hence didj is a 

linear combination of d l , . . . , d m .  It follows that N = S p a n { d l , . . . , d m }  is a 

subalgebra of R and J l l  = A N  ~= A QF N.  | 

LEMMA 3: Suppose that J0i ® Jlo ¢ 0. Then St2k ¢_ Id(R)  and Ck2+i g Id(R).  

Proof: Suppose J10 ¢ 0 and let d E Jm, d ~ 0. Then dA = 0 and eiid ~ 0 for 

some i E {1 , . . . , k} .  

If k = 1, the conclusion of the lemma follows; therefore assume that  k _ 2. 

Since St2k-1 is not an identity for A = Mk(F) ,  there exist elements 

a b . . . , a 2 k - 1  E A such that St2k- l (a l  . . . .  ,a2k-1) = eji for some j ~£ i (for 

instance, the staircase e~+ l , /+ l , e i+ l , i+2 , . . . , e~ , e~ l , eu  . . . . .  e~i will do). But 

then 

e i j S t2k (a l , . . . ,  a2k-i,  d) -- e i jS t2k- l (a l  . . . . .  a2k-1)d =- eijejid -= eiid ~ 0 

and St2k ~ 0 on A. 

It is well known that Mk(F)  does not satisfy the k2-th Capelli polynomial. 

Also, there exist a l , . . . ,  ake, bl,..., bk2-i E A such that  

ck2(al, . . . , ak2; bl, . . . , bk2_l) = ekk 

(see, for instance, [16, Proposition 1.4.7]). We now compute 

Ck2+l(a l , . . . , ak2 ,d ;b l , . . . , bk2_ l , e )  

= ck2 (al . . . . .  ak2; bi . . . . .  bk2-1)ed = ekked = ekkd ¢ O. 

Hence ck2+1 ~ 0 on A. A similar proof holds in case J01 ~ 0. | 

LEMMA 4: Write J u  ~ A QF N as in Lemma 2. I f  N is not commutative, then 

St2k+l • Id(R)  and Ck2+2 g Id(R) .  

Proo~ Let J l l  = A N ~ A ® F N b e a s i n L e m m a 2 a n d p i c k d l , d 2  E N s u c h  

that did2 ~ d2dl. We claim that for any choice of X l , . . .  ,X2k-1 E A, 

S t 2 k + l ( x l , . . . ,  X2k-h dl, d2) = 7 S t 2 k - i ( x l , . . . ,  X2k-1)[dl, d2], 

for some non-zero constant % 

In order to simplify the notation, let us write 2 k -  1 = n. Denote .4 = 

~-~'~aes, (sgna)a E FSn and recall the left action of S .  on the space of multilinear 

polynomials in x l , . . . ,  x~. 
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Expand Stn+2(xl , . . . ,  x2k-1, dl,d2) according to the last two variables in a 

monomial. There are the following three possibilities for these variables: (1) 

both  are x's. (2) One x and one d. (3) Both are d's. Accordingly we have 

St~+2(xl,..., x2k-1, dl, d2) = 

¢4( ~ X l ' " X i - l d l ' " X j - l d 2 " " x n x i x j - x l  
l~_i<j(n 

"'" x i - l  d2 "'" X j - l d l  . . .  XnXiXj ) 

% 

- , 4  xl  " . x i - ld l  . . .xuxid2 + xl . . . x i - l d 2 . .  "xndtxi  
\ i=l 

\ 

- x l ' "  Xi - ld2""  xnxidl - x l " "  x i - l d l ' "  x~d2xi) 

÷.A(xl . . .  x~(dld2 - d2dl)). 

Since dl and d2 commute with x l , . . . ,  xn, we obtain that  

Stn+~(x l , . . . , x~ ,d l ,d2)  = ~ Stn(xl  . . . .  , ~  . . . .  , ~ , . . . ,Xn ,X i ,X j ) [d l ,  d2] 
l< i ( j ( n  

+ S t n ( x l , . . . ,  Xn)[dl, d2] 

where ~ means that  the variable x is missing. 

On the other hand, 

S t n ( X l , . . . , x i  . . . . .  X j , . . . , X n , X i , X j )  = ( - 1 ) n - j + n - i - l S t n ( X l , . . .  ,xn).  

Since  ( - 1 )  n - j+n- i -1  = ( - 1 )  i + j - 1  and  

j -1  ~'1 i f j i s e v e n  
~-'~(-1)~+J-1 = t. 0 i f j  is odd 
i=l 

we get that  

St2k+l(Xl , . .  ., Xn, dl, d2) = ~/S tn(Xl , . . . ,  Xn)[dl, d2] 

where ~ -- 1 + 0 + 1 + . . .  ¢ 0 as claimed. 

Since Mk(F) does not satisfy St2k-1, it is clear that  St2k+l • Id(R). 
Let now Vl . . . .  , vk2 be an ordered basis of A consisting of all matr ix  units eij 

such that  vl = ell and let ao, a l , . . . ,  ak2 E A be such that  

aovlal .. "ak2-1Vk~ak2 ~- e l l  
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and 

aoVa(1)al • • " a k 2 - 1 " U a ( k 2 ) a k 2  = 0 

for all a E Sk2, a ¢ 1. 

Recalling that  dl and d2 commute  with A, we now take d~ = end1,  d~ = eud2  

and compute  

! / .  
C k 2 +  2 (  d l  , ~V 1 . . . .  , V k 2 ,  d 2,  a o ,  a l ,  . . . , a k 2  ) 

I I I I I I I I I I I I 
= d l e l l d  2 - d 2 e u d  1 - d f l 2e  u - e u d l d  2 + e n d e d  1 + d2d l eu  

=en id2 ,  dl] # O. 

Hence ck2+2 ~ I d ( R )  and the proof  is complete. II 

LEMMA 5: -/f JOlJlo q- .]2o,]01 q- JloJ0o q- JooJol 7£ 0, then St2k+l ¢ Id (R )  and 

Ca.~+2 G I d ( R ) .  

Proo~ Suppose first tha t  k = 1. If  JloJ01 # 0, let a E Jlo, b E do1 be such tha t  

a b ¢ O .  

Then, if 1 = 1Mk(F), l a  = a, bl = b and a l  = lb = 0. It follows tha t  

Sta(1, a,b) = 2ab + ba. Since ab E JloJol C_ J u ,  ba E J m J l o  C_ Joo, and 

J u  N Joo = 0, we obtain tha t  St3 ¢ I d ( R )  and so C3 ~ Id (R) .  The other cases 

Jo~ Jlo ~ O, JmJoo # O, JooJm # 0 are dealt with similarly. 

Suppose now that  k _> 2 and let JOlJlO 7£ 0. If  U C 301, V E Jlo are such tha t  

uv 7£ 0, then there exists eli E M k ( F )  such that  ueiiv 7 £ 0 for solne i E {1 . . . . .  k}. 

Let j 7£ i and, as in the proof  of Lemma 3, pick matr ix units al . . . . .  a2k-1 E 

M k ( F )  such tha t  St .2k- l (al  . . . . .  a2k-1) = e i j .  Then, since M k ( F ) u  = v M k ( F )  = 

0, we obtain 

St2k+l (tteii, al . . . . .  a2k-1, ej iv)  

= ueii S t2k -  1 (a 1 . . . . .  a2k- 1 ) ej iv -1- f (a 1 . . . . .  a2k- 1, eji vueii) 

where f is a suitable multilinear polynomial  in al . . . . .  a2k-1, ejivueii .  Since 

t t e i i ~ t 2 k - l ( a l , . . .  , a 2 k - 1 ) e j i Y  = ~ t e i i e i j e j i t  ~ = ' t t e i i v  i s  a non-zero element of 

J o l J m  _C J0o, vu E J m J m  c_ J n  and Joo n J u  = 0, it follows tha t  St2k+l q~ 

Id (R ) .  In case JOlJlO = 0 and J lo Jm # 0, let u E Jlo,V c Jm be such 

tha t  '~tv # 0. There exist e~4,ejj C M k ( F )  such tha t  ei iuvej j  7 £ O. Since 

e i i ~ t v e j j  = e i k e k i e i i ' l t y e j j e j k e k j ,  by replacing u with ekitt and v with V e j k ,  we 

may assume tha t  e k k t t  = u a n d  V e k k  = t,. 

We now compute  

St2k+l (eu ,  el2, e22 . . . . .  ek-1.k, ekk, U, V) = 2cliquy 7£ 0 
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since vu E Jo l J lo  = 0. Hence St2k+l ff Id(R) in this case. Similarly one can 

show tha t  the same conclusion holds in case JmJoo ¢ 0 or JooJol ¢ 0. 

We next show tha t  ck~+e ~ Id(R). Suppose, for instance, tha t  JolJlo ¢ 0 and 

let u E Jm, v C .Ira, uv ¢ O. As in the proof  of Lemma 4, there exists an ordered 

basis { b l , . . . ,  bk~} of A consisting of all matr ix  units eij, and ao . . . . .  ak2 C A 

such tha t  

aock2 (bi . . . . .  b~:2; al  . . . . .  a~:2-1)ak2 = ell .  

We may assume, as shown above, tha t  UellV ¢ 0; hence 

ck~+2 (u, bl . . . . .  bk~, v; ao, al  . . . . .  a~,,2 ) = uel iv ¢ 0 

and c~:2+2 q~ Id(R).  The other cases are proved similarly. II 

4. Asymptot ics  for the standard identities 

In this section we shall prove our main results about  the s tandard  identity and 

its asymptotics.  We start  by examining a finite dimensional algebra of a special 

type 

LEMMA 6: Let R = A +  J(R)  where A = Mk(F)  and R satisfies S2k+l or Ck~+2. 

If J01Jlo = J lo Jm = JloJoo = JooYm = O, then var(R) = var(A1 @ A2 @ Yoo) 

where Al = A + Jm and A2 = A + Jm. 

Proo~ Clearly Id(R) C Id(A1 @ A2 @ Joo). Let now f = f ( x l  . . . .  ,x,~) be a 

multilinear polynomial  such tha t  f ff Id(R). 
Suppose first tha t  

f E Id(A + J l l  + J lo)  CI Id(A + J l l  + .JOl) C/Id(Joo)  

and let bl . . . . .  b~ E R be such that  f ( b l , . . . ,  b,~) ¢ 0. We may assume by linearity 

tha t  bl . . . . .  b,~ belong to AUJlo©Jol u Jll  UJoo. By the assumption,  bl . . . . .  b,  do 

not belong, at the same time, to AUJl lU.] lo  or to A U J l l  U J01 or to Jo0. Thus 

there exist hi, b j ,  i • j ,  such that  one of the following three possibilities occurs: 

(1) bi C Jlo and bj C Jol .  (2) b i C Jlo and bj E Joo. (3) bi E Jol and bj E Joo. 
Since the &l ' s  are A-bimodules,  JolJlo = J1o.]ol = JloJoo = Jo0Jom = 0 and, by 

Lemma 2, JmJoo = Joodio = J o o J l l  = J l l J o o  = Jo l Jo l  = J l o J l o  = 0; we have 

tha t  each of the above three cases leads to bo(1) • "bo(,~) = 0 for all a E S , .  Thus 

f C Id(R),  contrary to the assumption.  

We have proved tha t  Id(R) D_ Id(A+ Jll  + J lo )n Id (A+ Jll  + Jol)NId(Joo). If 

we prove tha t  Id(A+ J l l+  Jlo) = Id(A+ Jlo) and Id(A+ J11+ Jol) = Id(A+ Jol), 
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we would get that Id(R) D_ Id(A1) r~ Id(A2) A Id(Joo) and the proof would be 

complete. 

In order to prove that Id(A + Jl l  + J~o) = Id(A + Jlo), suppose that there 

exists f ( x l , . .  ., xn) ¢_ Id(A+ Jll  + Jlo) and let f be multilinear. Since Jl l  = AN,  

A commutes with N and N is commutative by Lemma 4, we have that for all 

b l , . . . , bm E A + J u  + Jlo, a E A ,d  E N 

bl " " bkadbk + l " " bm = dbl " " bkabk + l " " bm. 

It follows that if bl . . . . .  bn E A U J l l  U J10 are such that f ( b l , . . . ,  bn) ¢ O, then 

we can write 

I ( b l , . . . ,  bn) = d ' f ( b l , . . . ,  b~) 

for some d' E N, b~, . . . ,  bin E A U J10- Thus f ¢_ Id(A + Jlo) and 

Id(A + JH + Jlo) = Id(A + J~o) 

follows. Similarly, one can show that  Id(A + Jll  + Jm) = Id(A + Jol)- This 

completes the proof of the lemma. | 

For m _> 1 let us denote by var(Stm) the variety of associative algebras defined 

by the standard identity Stm. Also, for k,I >_ 1, let us denote by Mkxl(F) the 

algebra of (k + l) x (k + l) matrices having the last l rows and the last k columns 

equal to zero. 

THEOREM 2: 

(1) var(St2k) = var(Mk(F) • B) for some tJnite dimensional algebra B such 

that exp(B) < k 2. /11 particular 

Cn(St2k) ~-- cn(Mk(F)). 

(2) var(St2k+l) = var(Mkx2k(F) ¢ M2kxk(F) ¢ B) for some finite dimensional 

algebra B with exp(B) < k 2. /n particular 

cn(St2k+l) ~-- cn(Mkx2k(F) • M2kxk(F) ). 

Proof." We know by [3] that exp(St2k) = exp(St2k+l) = k 2. Also, by [11, 

Theorem 2.3], for any q _> 1, var(Stq) is generated by a finite dimensional algebra. 

Thus, by Corollary 1, there exists a finite number of finite dimensional reduced 

algebras B 1 , . . . ,  Bt (see Definition 1) and a finite dimensional algebra D such 

that 

(1) var(Stq) = var(B, e " .  • Bt • D) 
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and exp(B1) = . . = exp(Bt) = k2, exp(D) < k2. 

The strategy of the proof will be as follows. We shall first analyze the structure 
of a finite dimensional reduced algebra R such that St, E Id(R). We shall next 
split the proof into the two cases q = 2k and q = 2k + 1. In each case we shall 
plug into (1) the structure of each reduced algebra and we will deduce the desired 
result. 

Let R be a finite dimensional reduced algebra satisfying St, - 0 (q = 2k or q = 

2k + 1). Write R = Al @ .  . . @ A, + J where A l l . .  . , A, are simple subalgebras 
and J = J (R) .  By the definition of reduced algebra, A1 J A 2 J . .  - JA, # 0. 
Hence by [8] (see also [7]), R contains a subalgebra isomorphic to the upper 
block triangular matrix algebra 

where Ai % Mdl ( F )  for all i = 1, . . . , m and 

Clearly UT(dl,. . . , dm) does not satisfy St2d-l where d = dl + . . . + dm. Hence 
UT(dl,. . . , dm) satisfies St, for q = 2k or q = 2k + 1 only if dl + . . . + dm 5 k. 
On the other hand, d: + + d& < k2 for any m > 1. It follows that if R is 
a reduced algebra with exp(R) = k2 satisfying St, 5 0 (q = 2k or q = 21; + I),  
then R E Mk(F)  + J .  

We now split the proof into two cases according as q = 2k or q = 2k - 1. 

CASE 1: Suppose that q = 2k and let R = A+ J be a reduced algebra as above 
where A = Mk(F).  Write J = Joo + Jol + J l o  + Jll as in Lemma 2. Since 
Stzk E Id(R), by Lemmas 3 and 4, Jlo + Jol = 0 and Jll = AN where N is 
commutative. Since AJoo = JooA = Jll Jao = JooJll = 0 and Jlo = Jol = 0, we 
obtain that R = (A + J l l )  @ Joo with Joo 2 J a nilpotent ideal of R. Moreover, 
by Lemma 2, A + Jll = A + AN A OF N U  where Nu is the algebra obtained 
from N by adjoining a unit element. Since N U  is commutative, it follows that 

A + Jll and A satisfy the same identities. Thus var(R) = var(A $ Joe). 
We have proved that if R is any reduced algebra such that St2k E Id(R) and 

exp(R) = k2, then var(R) = var(Mk(F) @ Joo) with Joo a finite dimensional 
nilpotent algebra. But then, by recalling the decomposition given in (I),  we get 
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that  var(St2k) = var(Mk(F) ~ D')  where D'  is a finite dimensional algebra with 

exp(D')  < exp(M/c(F)) = k 2. 

CASE 2: Suppose now that  q = 2 k + 1  and let R = A +  J be a reduced 

algebra with A = Mk(F) and R satisfies St2k+l. In this case, by Lemma 5, 

we get that  JoaJlo -- J10Jol = JloJoo = OtooJot -- 0. Hence, by Lemma 6, 

var(R) = var((A + Jm) + (A + Jol) + Joo) and J0o is a nilpotent algebra. Now, 

the left A-module Jlo is isomorphic to t > 1 copies of a left ideal of Mk(F). 
Since JmA = JmJ lo  = 0 and A = Mkxk(F) ,  then A + Jlo as an F-algebra is 

isomorphic to Mkx(k+t)(F) and it is clear that  A + Jlo has the same identities 

as Mkx2k(F). Similarly, one shows that  A + Jol satisfies the same identities as 

m2k x ~. (F). 

We have proved that  if R is any reduced algebra such that  St2k+l E Id(R), 
then var(R) = var(Mkx2k(F) ~ Mkx2k(F) • Joo) with Joo a finite dimensional 

nilpotent algebra. By invoking the decomposition given in (1), we get that  

var(St2k+a) = var(Mkx2k(F) ~ M2kxk(F) • B) 

where exp(B) _< k 2 - 1. | 

COROLLARY 3: c,~(St2k) ~- o~rt(1-k2)/2k2n and 

~n(3-k2)/2k 2n ~ Cn(St2k+l) 2~ (3-k~)/2 
. k-~n k 

2n 

where 
- - - "  -''(~2ff)k-l(2) ½(k2+l) 1!2! (k 1)!k½ (k2+4). 

OL z . . . . .  

Proof." The precise asymptotics for cn(St2k) follow from the relation cn(St2k) ~- 
cn(Mk(F)) and the result in [15] where the asymptotics for c,~(Mk(F)) were 

computed explicitly. 

Let Ia = Id(Mkx2k(F)) and 12 = Id(M2kxk(F)). From [10] it follows that  I1 = 

Id(Mk(F)).F(X), I2 = F(X).Id(Mk(F)) and c,(I1) = cn(I2) = nc,~_i(Mk(F)). 
Since (St2k+l)T = I1 nI2NI3 where, by Theorem 2, I~ is a T-ideal with Cn(I3) < 
(k 2 - 1) ~, we get 

Cn(I1) ~ Cn(St2k+l) ~ Cn(I1) -]- Cn(I2) -}- Ca(X3) ~-- 2Cn(I1). 

The second part  of the corollary now follows from the asymptotics of cn (Mk(F)). 
| 
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5. A s y m p t o t i c s  for  t h e  C a p e l l i  i d e n t i t i e s  

In [13] it was shown that  exp(C,~+l) = m, m - 1, m - 2 or m -  3. 

Also, exp(Cm+l)  = m if and only if m = k 2 is a square and, if m is not a 

square, exp(Cm+l)  = m - 1 if and only if m - 1 is a square or the sum of two 

squares. 

In this section we shall s tudy var(Cm+l)  and the asymptot ics  of the corre- 

sponding codimensions in case m is a square or m - 1 is a square or the sum of 

two squares. By the above, this will imply the cases exp(Cm+l)  = m or m -  1. 

We star t  with the easy case exp(C~+l )  = m. In fact we have 

THEOREM 3: Let m = k 2. Then var(Cm+l)  = var (Mk(F)  ~ B) for some finite 

dimensional algebra B such that exp(B) < k 2. 

Proof." By [11, Theorem 2.3], var(Ck2+l) is generated by a finite dimensional 

algebra and, by [3], exp(CA,=+l) = k 2. Thus, by Corollary 1, there exist finite 

dimensional algebras B1 . . . . .  Bt, D such that  

(2) var(Ck2+l) = vat(B1 ® . . -  ® Bt • D) 

where B1 . . . . .  Bt are reduced and exp(B1) . . . . .  exp(Bt)  = k 2, exp(D) < k 2. 

We alext analyze the s tructure of any such reduced algebra. 

Let R be a finite dimensional reduced algebra such that  Ck2+l ~ Id(R) and 

exp(R) = k 2. As in the proof  of the previous theorem, R contains a subalgebra 

of the type U T ( d l , . . . ,  dr) with exp(R) = d~ + - . .  + dt 2 = k 2. It  is not  dimcult  

to show (see also [13]) tha t  UT(dl  . . . . .  dr) does not satisfy c~+...+d~+t-1. Hence 

t = 1, dl = k and we may write R = A + J where A = Mk(F) ,  J = J(R). Since 

by Lemma 3, Jm = J10 = 0, then J = Joo + J n  and, as noted in the proof of 

Theorem 2, we have tha t  R = (A + J l l )  @ Joo with Joo a nilpotent ideal of R. 

Also, by Lemma 4, .Ill = A N  where N is a nilpotent commutat ive  subalgebra 

centralizing A in R. Hence, as in the proof  of Theorem 2, A and A + Jll have 

the same identities and var(R) = var(A ~ Jo0) follows. 

By the decomposit ion given in (2), it follows that  var(Ck2+l) is generated by 

M~,(F) @ B where B is a finite dimensional algebra and exp(B) < k 2. II 

COROLLARY 4: 

cn(Ck2+l) ~ Cn(St2k) "0 ctn(1-k2)/2k2n 

where a is the constant of  Corollary 3. 

We now star t  to s tudy the case exp(C.~+x) = m - 1. 
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LEMMA 7: L e t  R = A +  J where A = M k ( F )  and J = J ( R ) .  I f  R E var(Cm+l) 

where m - 1 = k 2, then 

var(R) = var (Mkx2k(F)  ® M 2 k x k ( F )  G B)  

with B a ~nite dimensional algebra such that  exp(B) < m - 1. 

Proof'. By Lemmas 4 and 5, we have that  JOlJlo = JloJol = JloJoo = JooJol = 

0 and J l l  = A N  where N is commutative and centralizes A. By Lemma 6, 

var(R) = v a r ( A 1 O A 2 ® J o o )  where A1 = A + J l o  and A2 = A + J o l .  As in 

the proof of Theorem 2, we see that  var(A1) = var(Mk×2k(F)) and vat(A2) = 

var (M2kxk(F) )  and the conclusion follows. | 

In the next two lemmas we examine the case when m - 1 is the sum of two 

squares and R is a finite dimensional algebra whose semisimple part  has only two 

simple components. 

LEMMA 8: Suppose m - 1 = k21 + k 2 and let R = A ® B + J where A = 

M k , ( F ) , B  = Mk2(F)  and J = J ( R ) .  I f  R E var(Cm+l) and A J B  7t O, then 

var(R) = vat(A1 • A2 ® D) where A1 = A + B + A J A  + B J B  + A J B ,  A2 = 

A + B + A J A  + B J B  + B J A  and exp(D) < m - 1. 

Proo~ We first claim that  

(3) B J A J B  = 0 and A J B J A  = O. 

Suppose, by contradiction, that  there exist elements x, y C J such that  B x A y B  ~t 

0. If 1A and lt~ denote the unit elements of A and B respectively, then we may 

assume that  1BX = XlA = x and l A y  = y l B  = y. Hence 

(4) A x  = x B  = y A  -- B y  = O. 

As in the proof of Lemma 3, pick matrices 

u l , . . . , u k ~ , a o ,  al . . . .  ,ak~_l E A, v l , . . . , v k~ ,bo ,  b l , . . . , b k~_ l  E B 

with the property that  

x a o u l a l u 2 . . ,  ak~_lUk~ 1Aybov lb lv2""  bk~_lvk] 7 t 0 

and any non-trivial permutat ion of u l , . . . ,  uk~, v l , . . . ,  vk~ in the above product 

is zero. Then from (4) it follows that  

Ck~+k~+2(X,  Ul  . . . .  , Uk~, y, V l , . . . ,  Vk~; ao, a l , . . . ,  a k ~ _  1 , 1A, bo, bl . . . .  , bk~_l) 7 t O, 
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a contradiction. The second equality in (3) is proved similarly. 

Next we show that  if xAyB ~ 0, for some x, y E J ,  then we may take x E 

AxA C_ AJA.  In fact, since B is a unitary algebra, Bx ~ 0 implies BxAyB  ~ 0, 

and this contradicts (3). Hence Bx = 0. If  also Ax = 0, then, as above, it would 

follow that  Ck~+k~+ 2 is not an identity for R. Therefore Ax ~ 0 and x C AJA. 

Similarly, it can be proved that  if AxBy ~ O, for some x, y E J ,  then we may 

take y E B J B. 

Consider now a non-zero product of the type 

a i d  1 . . .  a m _ l d m _ l a r a  

where al . . . .  , am E AUB and d l , . . . ,  din-1 C J. Then, by (3), either al  . . . .  , am C 

A or al . . . . .  am E B or there exists 1 _< k _< m such that  al , . . . ,ak -1  C A, 

a k , . . . ,  am E B o r  al . . . .  , ak -1  E B ,  a k , . . . ,  am C A .  

Similarly, if 

doaldl.. "am-ldm-lam ~ 0 

where al . . . .  ,ak-1 E A,  a k . . . .  ,am C B and do,d1 . . . .  ,dm-1 C J, then, by what 

we proved above, we may take do E AJA. 

We next show that  

var(R) = var(A1 ® A2 ® A3 ¢~ A4) 

2 2 where A3 = A + J  and A4 = B + J .  Since exp(A3®A4) = max{k12, k22} < k 1 + k  2, 

this will complete the proof of the lemma. 

Let S f[ Id(R), a multilinear polynomial, and suppose that  f C Id(A3)OId(A4). 

Since AB = BA = 0, in order to obtain a non-zero evaluation of f we must 

substitute at least one element y E J such that  AyB ~ 0 or ByA ~ O. As 

we remarked in the proof of (4), the element y can be taken in A J B  or BJA,  

respectively. Taking into account the relation (3) and the above discussion, it 

follows that  all the other variables must be evaluated in A U B U AJA U BJB.  

Thus either f f[ Id(A1) or f ~ Id(A2). This proves that  

Id(R) D_ Id(A1) N Id(A2) N Id(A3) N Id(A4). 

The other inclusion is obvious and the proof of the lemma is complete. I 

LEMMA 9: Let m - 1 = k 2 + k22 and let A1,A2 C var(Cm+l) be the algebras 

defined in the previous lemma. Then there exist finite dimensional algebras D1 

and D2 such that 

var(A1) = var(UT(kl ,  k2) • D1), var(A2) = var(UT(k2, kl) ~) D2) 
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and e x p ( D j ,  exp(D2) < m - 1. 

Proo~ Consider the algebra A' = A + A J A .  By Lemma 2 we have that A J A  = 

( A J A ) n  = A N  ~- A ~) N for some nilpotent algebra N. Suppose first that N 

is non-commutative. Then, by Lemma 4, Ck~+2 q: Id(A') .  If A J A J B  # O, as 

in the proof of Lemma 8, we can prove that ck~+k~+2 ¢ I d ( A j ,  a contradiction. 

Hence A J A J B  = 0. Since A B  = B A  = 0, we obtain that 

var(A1) = var((A + B + A J B  + B J B )  (9 (A + A J A ) )  

and A + A J A  has exponent less than m - 1 .  In case N is commutative, I d ( A J A )  C 

Id(A) implies that var(A1) = var(A + B + A J B  + B J B ) .  

By applying the same arguments to the summand B J B  we obtain that var(A1) 

= var((A + B + A J B )  (9 D), for some finite dimensional algebra D with exp(D) 

< m - 1 .  

Now, as it was shown in [8], the algebra A + B + A J B  contains a subalgebra 

isomorphic to UT(k l ,  k2). Hence Id (A  (9 B (9 A J B )  C_ Id (UT(k l ,  k2)). On the 

other hand, by [8], I d ( V T ( k l ,  k2)) = I l i2 where 11 = Id (Mk l (F) )  and I2 = 

Id(Mk2(F)) .  Since ( A J B )  2 = 0, it is easy to see that if f l  E I1 and f2 C I2 

then f l f 2  = 0 is an identity for A (9 B (9 A J B .  Hence var(A + B (9 A J B )  = 

var(UT(kl ,  k2)) and the conclusion of the lemma follows for the algebra A1. The 

proof for the algebra A2 is obtained by making the obvious changes. | 

THEOREM 4: Let m 7£ k 2 and suppose that m - 1 is a square or the sum of  two 

squares. Then 

var(Cm+l) = var(A (9 B (9 D) 

where D is a finite dimensional algebra with exp(D) < m - 1, 

{ M r x 2 r ( E )  (9 M2Txr(F) i f  m -  1 = r 2 is a square 
A = 0 otherwise 

and 

B -- f 0 i f  m - 1 is not the sum of two squares, 
[ (]~s2+t2=m_l UT(s , t )  otherwise. 

Proof'. By [11, Theorem 2.3], var(Cm+J is generated by a finite dimensional 

algebra. As in the proof of Theorem 2, by invoking Corollary 1, we need only ex- 

amine finite dimensional reduced algebras in var(Cm+l). We then apply Lemmas 

7, 8 and 9 to complete the proof of the theorem. | 
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LEMMA 10: 

THE STANDARD AND THE CAPELLI IDENTITIES 

Let  k 2 = s 2 + t 2. Then 

v/-ncn(Mkx2k(F) ) ~- f l cn(UT(s ,  t)), 

for some constant  3. 
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Proof: Since by [15], c n ( M k ( F ) )  ~ an(1-k2)/2k 2'~, by [101 we obtain tha t  

c,~(Mkx2k(F))  = n c n - l ( M k ( F ) )  ..o c~n(1-k2)/2+lk2n. 

On the other hand, by [8], cn(UT(s ,  t)) ~- fln(1-s~-t2)/2+3/2(82 -t- t2) n. | 

COROLLARY 5: Let ?n ~ k 2 and suppose that  m -  1 is a sqnare or the sum of  two 

squares. I f  m - 1 is the sum of  two squares, then there exist  non-zero constants 

a l  <_ ~2 such that  

a l n a ( m  - 1) n < cn(Crn-F1) ~ a2na(m - 1) n 

where a = (5 - m ) / 2 .  I f  m - 1 = k 2 is not  the sum o f  two squares, then 

anb(n~ -- 1) ~ ~< c•(Cm+l) <~ 2anb(m -- 1) n 

where b = (4 - m ) / 2  and a is the constant  o f  Corollary 3. 

Proof." If  m - 1 is the sum of two squares then, by applying the previous lemma 

to the conclusion of Theorem 4, we can write 

cn(Cm+l)  ~ c,~(dl + . . .  ~ A~) 

where A1 . . . . .  A~ are algebras of the type UT(s ,  t) with s 2 + t 2 = m - 1. Hence 

max{cn(A1)  . . . . .  cn(Ar)}  5 cn(Cm+l)  5 cn(A1) + . . .  + cn(Ar)  

and the first par t  of the proof  follows from the asymptot ic  equality (see [8]) 

c . (UT(s ,  t)) ~_ ~(s,  t)n(~-~-t~)/2+3/2(s 2 + t2) '~ 

(5) = ~(s ,  t )n (5 -m) /2 (m - 1) ~, 

where a(s ,  t) is a constant  depending on s and t. 

Suppose now that  m - 1 = k 2 is not  the sum of two squares. In this case, by 

Theorem 4, Cn (Cm+ 1 ) -~ Cn (Mk × 2k (F)  O M2k × k (F))  and the asymptot ics  for this 

sequence were est imated in Corollary 3 for the s tandard  identity St2k+l.  | 
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We remark  t ha t  the constants  a l  and a2 in Corol lary 5 can be computed  using 

the relations (5). Namely, 

( ~ l = m a x { a ( s ' t ) l s 2 + t 2 = m - 1 } '  (~2= E a(s , t )  
s 2 + t  ~ = m -  1 

where 

O~(S,t) ~ SS2_ltt2_l(s 2.Jr t2)(4_s2_t2)/2 

(see [8]) and 

( - ~ 2 ~ ) k - 1 ( ~ )  ½(k2+l) 1'21 ( k - 1 ) ' k  ½(k2+4). . . . . .  
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