ASYMPTOTICS FOR THE STANDARD AND THE CAPELLI IDENTITIES

BY

A. GIAMBRUNO*

Dipartimento di Matematica ed Applicazioni Universitit di Palermo, 90123 Palermo, Italy e-mail: a.giambruno@unipa.it

AND

M. ZAICEV**

Department of Algebra, Faculty of Mathematics and Mechanics Moscow State University, Moscow, 119899 Russia e-mail: zaicev@mech.math.msu.su

ABSTRACT

Let ${c_n(St_k)}$ and ${c_n(C_k)}$ be the sequences of codimensions of the Tideals generated by the standard polynomial of degree k and by the k -th Capelli polynomial, respectively. We study the asymptotic behaviour of these two sequences over a field F of characteristic zero. For the standard polynomial, among other results, we show that the following asymptotic equalities hold:

$$
c_n(St_{2k}) \simeq c_n(C_{k^2+1}) \simeq c_n(M_k(F)),
$$

$$
c_n(St_{2k+1}) \simeq c_n(M_{k \times 2k}(F) \oplus M_{2k \times k}(F)),
$$

where $M_k(F)$ is the algebra of $k \times k$ matrices and $M_{k \times l}(F)$ is the algebra of $(k+l) \times (k+l)$ matrices having the last l rows and the last k columns equal to zero. The precise asymptotics of $c_n(M_k(F))$ are known and those of $M_{k\times2k}(F)$ and $M_{2k\times k}(F)$ can be easily deduced. For Capelli polynomials we show that also upper block triangular matrix algebras come into play.

^{*} The first author was partially supported by MURST of Italy.

^{**} The second author was partially supported by RFBR grants 99-01-00233 and 00-15-96128. Received January 28, 2002

1. Introduction

In this paper we study the asymptotic behaviour of the sequence of codimensions of the T-ideals generated by the standard polynomial and the Capelli polynomial over a field of characteristic zero. Let F be a field, char $F = 0$. Recall that if $F(X)$ is the free associative algebra on the countable set $X = \{x_1, x_2, \ldots, y_1, y_2, \ldots\}$, a T-ideal I of $F(X)$ is an ideal invariant under all endomorphisms of $F(X)$. Also, $I = Id(A)$ is the ideal of polynomial identities of some PI-algebra A. To each T-ideal I one associates a numerical sequence called the sequence of codimensions ${c_n(I)}_{n \geq 1}$ of I or A. We also write $c_n(Id(A)) = c_n(A)$. Each $c_n(I)$ measures the dimension of the multilinear part of $\frac{F(X)}{I}$ in n fixed variables. Thus, if $P_n = \text{Span}_F\{x_{\sigma(1)} \cdots x_{\sigma(n)} | \sigma \in S_n\}$ denotes the space of multilinear polynomials in the first *n* variables x_1, \ldots, x_n , we have that $c_n(I) = \dim_F P_n/P_n \cap I$.

When char $F = 0$, I is determined by its multilinear part and the sequence of codimensions is of special interest in this case.

It is well known ([14]) that for a proper ideal $I, c_n(I)$ is exponentially bounded. Moreover, the precise asymptotics of $c_n(I)$ were computed for some important classes of T-ideals $([1], [12], [15])$, e.g., the ideal of polynomial identities of $n \times n$ matrices ([15]). Recently in [5] and [6] the exponential behaviour of $c_n(I)$, for $I = Id(A)$ a proper ideal, was studied and it was shown that $\exp(I) =$ $\lim_{n\to\infty} \sqrt[n]{c_n(I)}$, the exponent of I, exists and is a non-negative integer. We also write $\exp(I) = \exp(A)$.

For a polynomial (or set of polynomials) V, let $\langle V \rangle_T$ be the T-ideal generated by V and write $c_n(V) = c_n(\langle V \rangle_T)$. In PI-theory a prominent role is played by the standard and the Capelli polynomials; here we shall study their T-ideals and the asymptotics of the corresponding codimensions.

Let S_m be the symmetric group on $\{1, \ldots, m\}$. Recall that

$$
St_m(x_1,\ldots,x_m)=\sum_{\sigma\in S_m}(\operatorname{sgn}\sigma)x_{\sigma(1)}\cdots x_{\sigma(m)}
$$

is the standard polynomial of degree m and that

$$
c_{m+1}(x_1,\ldots,x_{m+1};y_1,\ldots,y_m)=\sum_{\sigma\in S_{m+1}}(\operatorname{sgn}\sigma)x_{\sigma(1)}y_1x_{\sigma(2)}y_2\cdots y_mx_{\sigma(m+1)}
$$

is the $(m+1)$ -th Capelli polynomial. Let C_{m+1} denote the set of 2^m polynomials obtained from c_{m+1} by deleting any subset of variables y_i (by evaluating the variables y_i to 1 in all possible ways).

In this paper we try to find a close relation among the asymptotics of $c_n(St_m), c_n(C_{m+1})$ and $c_n(M_k(F))$ where $M_k(F)$ is the algebra of $k \times k$ matrices over F. Two other algebras play a role in this description: $M_{k \times l}(F)$, the algebra of $(k+l) \times (k+l)$ matrices over F having the last l rows and the last k columns equal to zero, and $UT(d_1, d_2)$, the algebra of upper block triangular matrices of size d_1 and d_2 over F (see details in the next sections).

Suppose that F is algebraically closed. It is well known ([15]) that $\exp(M_k(F))$ $= k^2$. Also, from [10] it follows that $exp(M_{k \times 2k}(F)) = exp(M_{2k \times k}(F)) = k^2$ and from [7] we have that $\exp(UT(d_1, d_2)) = d_1^2 + d_2^2$.

Here we show that

$$
\langle St_{2k} \rangle_T = Id(M_k(F) \oplus B),
$$

$$
\langle St_{2k+1} \rangle_T = Id(M_{k \times 2k}(F) \oplus M_{2k \times k}(F) \oplus D)
$$

and

$$
\langle C_{k^2+1}\rangle_T = Id(M_k(F) \oplus E),
$$

where B, D, E are finite dimensional algebras whose exponent is strictly smaller than k^2 . It follows that asymptotically

$$
c_n(St_{2k}) \simeq c_n(C_{k^2+1}) \simeq c_n(M_k(F))
$$

and

$$
c_n(St_{2k+1}) \simeq c_n(M_{k \times 2k}(F) \oplus M_{2k \times k}(F)).
$$

We remark that the precise asymptotics of $c_n(M_k(F))$ were computed in [15] and those of $M_{k\times2k}(F)$ and $M_{2k\times k}(F)$ can be easily deduced from [10].

For the Capelli polynomials C_{m+1} , it was shown in [13] that $m-3$ \leq exp $(C_{m+1}) \leq m$. Here we examine the two cases: $exp(C_{m+1}) = m$ or $m-1$. The case $exp(C_{m+1}) = m$ has been already described above since $exp(C_{m+1}) = m$ if and only if m is a square. When m is not a square and $m-1$ is a square or the sum of two squares (i.e., $\exp(C_{m+1}) = m-1$), we prove that $Id(C_{m+1}) = Id(A_1 \oplus \cdots \oplus A_t \oplus B)$ where B is a finite dimensional algebra of exponent smaller than $m-1$ and A_1, \ldots, A_t are algebras of the type $M_{k\times2k}(F)$, $M_{2k\times k}(F)$ or $UT(d_1, d_2)$ whose existence depends whether $m-1=k^2$ or $m-1 = d_1^2 + d_2^2$. Asymptotic inequalities for $c_n(C_{m+1})$ are given in this case.

The main results of this paper were announced in [9].

2. Reduced algebras

An important ingredient of this paper is the exponent of a T-ideal or of a PIalgebra (or of a proper variety of algebras) and its existence was proved in [5] and [6]. If V is a variety of algebras, we denote by $Id(V)$ the T-ideal of $F(X)$ of polynomial identities satisfied by all the algebras of V . Also, if V is generated by the algebra A, we write $V = \text{var}(A)$, $c_n(V) = c_n(A)$ and $\exp(V) = \exp(A)$. First we reduce all computations to the case of algebraically closed fields.

Let $V \subseteq F(X)$ be a subset of multilinear polynomials and let $I = \langle V \rangle_T$ be the T-ideal generated by V. Consider an extension field $\bar{F} \supset F$ and let \bar{I} be the corresponding T-ideal generated by V in the free associative \bar{F} -algebra $\bar{F}(X)$. It is not difficult to show that $\overline{I} = I \otimes_F \overline{F}$; hence the *n*th codimension $c_n(\overline{I})$ in $F(X)$ coincides with the *n*th codimension $c_n(I)$ in $F(X)$. Since we are mostly interested in codimensions of multilinear identities, throughout we shall assume, as we may, that F is an algebraically closed field of characteristic zero.

Let G be the infinite dimensional Grassmann algebra over F and let $G =$ $G^{(0)} \oplus G^{(1)}$ be its natural Z₂-grading. If $A = A^{(0)} \oplus A^{(1)}$ is a superalgebra over F, then $G(A) = A^{(0)} \otimes G^{(0)} \oplus A^{(1)} \otimes G^{(1)}$ is called the Grassmann envelope of A. We recall that by a result of Kemer ([11, Theorem 2.3]), if V is a proper variety then there exists a finite dimensional superalgebra A such that $V = \text{var}(G(A)).$

The exponent of V is computed as follows: let $V = \text{var}(G(A))$ where $A =$ $A^{(0)} \oplus A^{(1)}$ is a finite dimensional superalgebra over F. By the Wedderburn-Malcev theorem (see [4, Theorem 72.19]), A can be written as $A = B + J$ where B is a maximal semisimple subalgebra of A and $J = J(A)$ is the Jacobson radical of A. It is not difficult to see that J is a \mathbb{Z}_2 -invariant subspace of A. It also follows from [17] that B can be chosen with induced \mathbb{Z}_2 -grading and $B = A_1 \oplus \cdots \oplus A_t$ is the direct sum of simple superalgebras A_1, \ldots, A_t . Write all possible products of the form $A_{i_1} J A_{i_2} J \cdots J A_{i_k} \neq 0$ for distinct A_{i_1}, \ldots, A_{i_k} and set $\dim_F(A_{i_1} \oplus \cdots \oplus A_{i_k}) = d_{i_1,\ldots,i_k}$. Then it was shown in [6, Proposition 1 and Proposition 2] that $\exp(\mathcal{V}) = \max_{i_1, \ldots, i_k} \{d_{i_1, \ldots, i_k}\}.$

Motivated by this construction we make the following definition

Definition 1: Let $A = A_1 \oplus \cdots \oplus A_r + J$ be a finite dimensional superalgebra where A_1, \ldots, A_r are simple superalgebras and $J = J(A)$. We say that A is reduced if $A_1 J A_2 J \cdots J A_r \neq 0$.

We prove in the next theorem that the reduced algebras can be used as building blocks of any proper variety. We first prove a lemma (see [2, Lemma 3.2]) that will be used throughout the paper.

LEMMA 1: If A and B are PI-algebras, then $c_n(A), c_n(B) \leq c_n(A \oplus B) \leq c_n(A) +$ $c_n(B)$. Hence $\exp(A \oplus B) = \max{\exp(A), \exp(B)}.$

Proof: Recall that if R is any algebra, then

$$
c_n(R) = \dim \frac{P_n}{P_n \cap Id(R)}.
$$

Hence, since $Id(A), Id(B) \supseteq Id(A \oplus B)$, we have that $c_n(A), c_n(B) \leq c_n(A \oplus B)$, for all $n \geq 1$.

Now, the map

$$
\varphi\colon P_n\to \frac{P_n}{P_n\cap Id(A)}\oplus \frac{P_n}{P_n\cap Id(B)},
$$

defined by $\varphi(a) = (a + P_n \cap Id(A), a + P_n \cap Id(B)),$ has kernel $P_n \cap Id(A) \cap Id(B)$. Thus, since $Id(A \oplus B) = Id(A) \cap Id(B)$, we have that $\frac{P_n}{P_n \cap Id(A \oplus B)}$ embeds into $\frac{P_n}{P_n \cap Id(A)} \oplus \frac{P_n}{P_n \cap Id(B)}$ and $c_n(A \oplus B) \leq c_n(A) + c_n(B)$ follows.

THEOREM 1: *Let V be a proper variety of algebras. Then there exists a fi*nite number of reduced superalgebras B_1, \ldots, B_t and a finite dimensional super*algebra D such that*

$$
\mathcal{V} = \text{var}(G(B_1) \oplus \cdots \oplus G(B_t) \oplus G(D))
$$

where $\exp(\mathcal{V}) = \exp(G(B_1)) = \cdots = \exp(G(B_t))$ and $\exp(G(D)) < \exp(\mathcal{V})$.

Proof: Let A be a finite dimensional superalgebra such that $Id(V) = Id(G(A)).$ Write $A = A_1 \oplus \cdots \oplus A_s + J$ where A_1, \ldots, A_s are simple superalgebras and $J = J(A)$. Suppose $exp(V) = d$. Then, as it was mentioned above, there exist distinct simple superalgebras A_{i_1}, \ldots, A_{i_k} such that

$$
A_{i_1} J \cdots J A_{i_k} \neq 0 \quad \text{and} \quad \dim_F(A_{i_1} \oplus \cdots \oplus A_{i_k}) = d.
$$

Let L_1, \ldots, L_t be all possible subsets of $\{1, \ldots, s\}$ with the following property: if, say, $L_j = \{i_1, ..., i_k\}$, then

$$
\dim_F(A_{i_1}\oplus\cdots\oplus A_{i_k})=d\quad\text{and}\quad A_{\sigma(i_1)}JA_{\sigma(i_2)}J\cdots JA_{\sigma(i_k)}\neq 0,
$$

for some permutation $\sigma \in S_k$. For any such L_j , $j = 1, \ldots, t$, then define $B_j =$ $A_{i_1} \oplus \cdots \oplus A_{i_k} + J$. By the characterization of the exponent, it follows that $\exp(G(B_1)) = \cdots = \exp(G(B_t)) = d = \exp(G(A)).$

Let D_1, \ldots, D_p be all subalgebras of A of the type $A_{j_1} \oplus \cdots \oplus A_{j_q} + J$ where $1 \leq j_1 < \cdots < j_q \leq s$ and $\dim(A_{j_1} \oplus \cdots \oplus A_{j_q}) < d$. If we set $D = D_1 \oplus \cdots \oplus D_p$, then $\exp(G(D)) < \exp(G(A)).$

$$
var((G(B_1) \oplus \cdots \oplus G(B_t) \oplus G(D)) \subseteq var(G(A)).
$$

Let $f = f(x_1, \ldots, x_n)$ be a multilinear polynomial and suppose that $f \notin$ $Id(G(A))$. Then there exist $a_1, \ldots, a_n \in A, g_1, \ldots, g_n \in G$ such that

 $f(a_1 \odot q_1, \ldots, a_n \odot q_n) \neq 0.$

Since f is multilinear, we may assume that

$$
a_1 \odot g_1, \ldots, a_n \odot g_n \in A^{(0)} \odot G^{(0)} \oplus A^{(1)} \odot G^{(1)} = G(A)
$$

are homogeneous in the \mathbb{Z}_2 -grading. It follows that

$$
f(a_1\odot g_1,\ldots,a_n\odot g_n)=f^*(a_1,\ldots,a_n)\odot g_1\cdots g_n
$$

where $f^*(x_1, \ldots, x_n)$ is a multilinear polynomial which differs from f only on the sign of some of its coefficients (see [11, Lemma 1.1]). Clearly $f^*(a_1, \ldots, a_n) \neq 0$. We may also assume that $a_1, \ldots, a_n \in A_1 \cup \cdots \cup A_s \cup J$. Since for $i \neq j$, $A_i A_j = 0$, by the property of d described above, we must have that

$$
a_1,\ldots,a_n\in A_{i_1}\oplus\cdots\oplus A_{i_k}+J
$$

for some A_{i_1}, \ldots, A_{i_k} such that $\dim(A_{i_1} \oplus \cdots \oplus A_{i_k}) \leq d$. It follows that f is not an identity for one of the algebras $G(B_1), \ldots, G(B_t), G(D)$. Hence $\text{var}(G(A)) \subseteq$ $var(G(B_1) \oplus \cdots \oplus G(B_t) \oplus G(D))$ and the proof is complete.

In case of varieties generated by a finite dimensional algebra, the previous theorem has a simplified form as follows. Recall that we may regard an algebra as a superalgebra with trivial grading

COROLLARY 1: *Let A be a finite dimensional algebra. Then there exist a finite number of reduced algebras* B_1, \ldots, B_t and a finite dimensional algebra D such *that* $\text{var}(A) = \text{var}(B_1 \oplus \cdots \oplus B_t \oplus D)$ and $\text{exp}(A) = \text{exp}(B_1) = \cdots = \text{exp}(B_t)$, $\exp(D) < \exp(A)$.

Another application of Theorem 1 is given in terms of eodimensions. Recall that if $f(n)$ and $g(n)$ are two functions of a natural argument, then we say that $f(n)$ and $g(n)$ are asymptotically equal and we write $f(n) \simeq g(n)$ if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 1$. Then we have

COROLLARY 2: *For any proper variety* V , there exists a finite number of reduced superalgebras B_1, \ldots, B_t such that

$$
c_n(V) \simeq c_n(G(B_1) \oplus \cdots \oplus G(B_t)).
$$

Proof. Let $\mathcal{V} = \text{var}(G(B_1) \oplus \cdots \oplus G(B_t) \oplus G(D))$ as in the theorem above. By Lemma 1 we have that

$$
c_n(G(B_1) \oplus \cdots \oplus G(B_t)) \leq c_n(V) \leq c_n(G(B_1) \oplus \cdots \oplus G(B_t)) + c_n(G(D)).
$$

Recalling that $exp(G(D)) < exp(G(B_1)) = exp(G(B_1) \oplus \cdots \oplus G(B_t)),$ we have the asymptotic equality $c_n(V) \simeq c_n(G(B_1) \oplus \cdots \oplus G(B_t)).$

3. Evaluating polynomials

In this section we study the case of a finite dimensional reduced algebra of a special type. Throughout this section we assume that

$$
R = A + J
$$

where $A = M_k(F)$ is the algebra of $k \times k$ matrices over F and $J = J(R)$.

We shall determine the standard and the Capelli identities of minimal degree vanishing on R . We start with the following key lemma.

LEMMA 2: *The Jacobson radical J can be decomposed into the direct* sum of *folw A-bimodutes*

$$
J=J_{00}\oplus J_{01}\oplus J_{10}\oplus J_{11}
$$

where, for $p, q \in \{0, 1\}$, J_{pq} is a left faithful module or a 0-left module according as $p = 1$ or $p = 0$, respectively. Similarly, J_{pq} is a right faithful module or a 0-right module according as $q = 1$ or $q = 0$, respectively. Moreover, for $p, q, i, l \in \{0, 1\}$, $J_{pq}J_{ql} \nsubseteq J_{pl}, J_{pq}J_{il} = 0$ for $q \neq i$ and there exists a finite dimensional nilpotent *algebra N such that* $J_{11} \cong A \odot_F N$ (isomorphism of A-bimodules and of algebras).

Proof: Let e be the unit element of $A = M_k(F)$. Denote by $L_e, R_e: J \to J$ the linear transformations of J of left and right multiplication by e , respectively. Since $L_{\epsilon}^2 = L_{\epsilon}$ and $R_{\epsilon}^2 = R_{\epsilon}$, they both are diagonalizable linear transformations with eigenvalues 0 and 1. Moreover, $L_e R_e = R_e L_e$ and J decomposes into the sum of its eigenspaces $J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$, as desired. The inclusions $J_{pq}J_{ql} \subseteq J_{pl}$ and the equalities $J_{pq}J_{il} = 0$ for $i \neq q$ are clear.

Let now $J_{11} = V_1 \oplus \cdots \oplus V_m$ be the decomposition of J_{11} into irreducible A-bimodules. Each irreducible V_i is isomorphic to $_A A_A$; hence V_i contains a

non-zero element d_i (unique up to a scalar) commuting with A and $V_i = Ad_i$. Moreover, for every $i, j \in \{1, ..., m\}$, $d_i d_j$ commutes with A, hence $d_i d_j$ is a linear combination of d_1, \ldots, d_m . It follows that $N = \text{Span}\{d_1, \ldots, d_m\}$ is a subalgebra of R and $J_{11} = AN \cong A \otimes_F N$.

LEMMA 3: Suppose that $J_{01} \oplus J_{10} \neq 0$. Then $St_{2k} \notin Id(R)$ and $C_{k^2+1} \not\subseteq Id(R)$.

Proof: Suppose $J_{10} \neq 0$ and let $d \in J_{10}$, $d \neq 0$. Then $dA = 0$ and $e_{ii}d \neq 0$ for some $i \in \{1, ..., k\}.$

If $k = 1$, the conclusion of the lemma follows; therefore assume that $k \geq 2$.

Since St_{2k-1} is not an identity for $A = M_k(F)$, there exist elements $a_1, \ldots, a_{2k-1} \in A$ such that $St_{2k-1}(a_1, \ldots, a_{2k-1}) = e_{ji}$ for some $j \neq i$ (for instance, the staircase $e_{i+1,i+1},e_{i+1,i+2},\ldots,e_{nn},e_{n1},e_{11},\ldots,e_{ii}$ will do). But then

$$
e_{ij}St_{2k}(a_1,\ldots,a_{2k-1},d)=e_{ij}St_{2k-1}(a_1,\ldots,a_{2k-1})d=e_{ij}e_{ji}d=e_{ii}d\neq 0
$$

and $St_{2k} \not\equiv 0$ on A.

It is well known that $M_k(F)$ does not satisfy the k^2 -th Capelli polynomial. Also, there exist $a_1, ..., a_{k^2}, b_1, ..., b_{k^2-1} \in A$ such that

 $c_{k^2}(a_1, \ldots, a_{k^2}; b_1, \ldots, b_{k^2-1}) = e_{kk}$

(see, for instance, [16, Proposition 1.4.7]). We now compute

$$
c_{k^2+1}(a_1,\ldots,a_{k^2},d;b_1,\ldots,b_{k^2-1},e)
$$

= $c_{k^2}(a_1,\ldots,a_{k^2};b_1,\ldots,b_{k^2-1})ed = e_{kk}ed = e_{kk}d \neq 0.$

Hence $c_{k^2+1} \not\equiv 0$ on A. A similar proof holds in case $J_{01} \neq 0$.

LEMMA 4: *Write* $J_{11} \cong A \otimes_F N$ as in Lemma 2. If N is not commutative, then $St_{2k+1} \notin Id(R)$ and $C_{k^2+2} \nsubseteq Id(R)$.

Proof: Let $J_{11} = AN \cong A \otimes_F N$ be as in Lemma 2 and pick $d_1, d_2 \in N$ such that $d_1d_2 \neq d_2d_1$. We claim that for any choice of $x_1, \ldots, x_{2k-1} \in A$,

$$
St_{2k+1}(x_1,\ldots,x_{2k-1},d_1,d_2)=\gamma St_{2k-1}(x_1,\ldots,x_{2k-1})[d_1,d_2],
$$

for some non-zero constant γ .

In order to simplify the notation, let us write $2k-1 = n$. Denote $\mathcal{A} =$ $\sum_{\sigma \in S_n}$ (sgn σ) $\sigma \in FS_n$ and recall the left action of S_n on the space of multilinear polynomials in x_1, \ldots, x_n .

Expand $St_{n+2}(x_1,...,x_{2k-1},d_1,d_2)$ according to the last two variables in a monomial. There are the following three possibilities for these variables: (1) both are x's. (2) One x and one d. (3) Both are d's. Accordingly we have

$$
St_{n+2}(x_1,\ldots,x_{2k-1},d_1,d_2) =
$$
\n
$$
\mathcal{A}\Big(\sum_{1\leq i\n
$$
\cdots x_{i-1}d_2\cdots x_{j-1}d_1\cdots x_nx_ix_j\Big)
$$
\n
$$
-\mathcal{A}\Big(\sum_{i=1}^n x_1\cdots x_{i-1}d_1\cdots x_nx_id_2 + x_1\cdots x_{i-1}d_2\cdots x_nd_1x_i
$$
\n
$$
-x_1\cdots x_{i-1}d_2\cdots x_nx_id_1 - x_1\cdots x_{i-1}d_1\cdots x_nd_2x_i\Big)
$$
\n
$$
+\mathcal{A}(x_1\ldots x_n(d_1d_2 - d_2d_1)).
$$
$$

Since d_1 and d_2 commute with x_1, \ldots, x_n , we obtain that

$$
St_{n+2}(x_1,...,x_n,d_1,d_2) = \sum_{1 \leq i < j \leq n} St_n(x_1,...,\hat{x_i},\ldots,\hat{x_j},\ldots,x_n,x_i,x_j)[d_1,d_2] + St_n(x_1,...,x_n)[d_1,d_2]
$$

where \hat{x} means that the variable x is missing.

On the other hand,

$$
St_n(x_1,\ldots,\widehat{x_i},\ldots,\widehat{x_j},\ldots,x_n,x_i,x_j)=(-1)^{n-j+n-i-1}St_n(x_1,\ldots,x_n).
$$

Since $(-1)^{n-j+n-i-1} = (-1)^{i+j-1}$ and

$$
\sum_{i=1}^{j-1} (-1)^{i+j-1} = \begin{cases} 1 & \text{if } j \text{ is even} \\ 0 & \text{if } j \text{ is odd} \end{cases}
$$

we get that

$$
St_{2k+1}(x_1,\ldots,x_n,d_1,d_2)=\gamma St_n(x_1,\ldots,x_n)[d_1,d_2]
$$

where $\gamma = 1 + 0 + 1 + \cdots \neq 0$ as claimed.

Since $M_k(F)$ does not satisfy St_{2k-1} , it is clear that $St_{2k+1} \notin Id(R)$.

Let now v_1, \ldots, v_{k^2} be an ordered basis of A consisting of all matrix units e_{ij} such that $v_1 = e_{11}$ and let $a_0, a_1, \ldots, a_{k^2} \in A$ be such that

$$
a_0v_1a_1\cdots a_{k^2-1}v_{k^2}a_{k^2}=e_{11}
$$

and

$$
a_0v_{\sigma(1)}a_1\cdots a_{k^2-1}v_{\sigma(k^2)}a_{k^2}=0
$$

for all $\sigma \in S_{k^2}, \sigma \neq 1$.

Recalling that d_1 and d_2 commute with A, we now take $d'_1 = e_{11}d_1$, $d'_2 = e_{11}d_2$ and compute

$$
c_{k^2+2}(d'_1, v_1, \ldots, v_{k^2}, d'_2; a_0, a_1, \ldots, a_{k^2})
$$

= $d'_1e_{11}d'_2 - d'_2e_{11}d'_1 - d'_1d'_2e_{11} - e_{11}d'_1d'_2 + e_{11}d'_2d'_1 + d'_2d'_1e_{11}$
= $e_{11}[d_2, d_1] \neq 0$.

Hence $c_{k^2+2} \notin Id(R)$ and the proof is complete.

LEMMA 5: If $J_{01}J_{10} + J_{10}J_{01} + J_{10}J_{00} + J_{00}J_{01} \neq 0$, then $St_{2k+1} \notin Id(R)$ and $C_{k^2+2} \nsubseteq Id(R)$.

Proof: Suppose first that $k = 1$. If $J_{10}J_{01} \neq 0$, let $a \in J_{10}$, $b \in J_{01}$ be such that $ab \neq 0$.

Then, if $1 = 1_{M_k(F)}$, $1a = a, b1 = b$ and $a1 = 1b = 0$. It follows that $St_3(1, a, b) = 2ab + ba$. Since $ab \in J_{10}J_{01} \subseteq J_{11}$, $ba \in J_{01}J_{10} \subseteq J_{00}$, and $J_{11} \cap J_{00} = 0$, we obtain that $St_3 \notin Id(R)$ and so $C_3 \nsubseteq Id(R)$. The other cases $J_{01}J_{10} \neq 0, J_{10}J_{00} \neq 0, J_{00}J_{01} \neq 0$ are dealt with similarly.

Suppose now that $k \geq 2$ and let $J_{01}J_{10} \neq 0$. If $u \in J_{01}$, $v \in J_{10}$ are such that $uv \neq 0$, then there exists $e_{ii} \in M_k(F)$ such that $ue_{ii}v \neq 0$ for some $i \in \{1, \ldots, k\}.$ Let $j \neq i$ and, as in the proof of Lemma 3, pick matrix units $a_1, \ldots, a_{2k-1} \in$ $M_k(F)$ such that $St_{2k-1}(a_1, \ldots, a_{2k-1}) = e_{ij}$. Then, since $M_k(F)u = vM_k(F)$ 0, we obtain

$$
St_{2k+1}(ue_{ii}, a_1, \ldots, a_{2k-1}, e_{ji}v)
$$

= $ue_{ii}St_{2k-1}(a_1, \ldots, a_{2k-1})e_{ji}v + f(a_1, \ldots, a_{2k-1}, e_{ji}vue_{ii})$

where f is a suitable multilinear polynomial in $a_1, \ldots, a_{2k-1}, e_{ji} v u e_{ii}$. Since $ue_{ii}St_{2k-1}(a_1,\ldots,a_{2k-1})e_{ji}v = ue_{ii}e_{ij}e_{ji}v = ue_{ii}v$ is a non-zero element of $J_{01}J_{10} \subseteq J_{00}$, $vu \in J_{10}J_{01} \subseteq J_{11}$ and $J_{00} \cap J_{11} = 0$, it follows that $St_{2k+1} \notin$ *Id(R)*. In case $J_{01}J_{10} = 0$ and $J_{10}J_{01} \neq 0$, let $u \in J_{10}, v \in J_{01}$ be such that $uv \neq 0$. There exist $e_{ii}, e_{jj} \in M_k(F)$ such that $e_{ii}uve_{jj} \neq 0$. Since $e_{ii}we_{jj} = e_{ik}e_{ki}e_{ii}we_{jj}e_{jk}e_{kj}$, by replacing u with $e_{ki}u$ and v with ve_{jk} , we may assume that $e_{kk}u = u$ and $ve_{kk} = v$.

We now compute

$$
St_{2k+1}(e_{11}, e_{12}, e_{22}, \ldots, e_{k-1,k}, e_{kk}, u, v) = 2e_{1k}uv \neq 0
$$

since $vu \in J_{01}J_{10} = 0$. Hence $St_{2k+1} \notin Id(R)$ in this case. Similarly one can show that the same conclusion holds in case $J_{10}J_{00} \neq 0$ or $J_{00}J_{01} \neq 0$.

We next show that $c_{k^2+2} \notin Id(R)$. Suppose, for instance, that $J_{01}J_{10} \neq 0$ and let $u \in J_{01}, v \in J_{10}, uv \neq 0$. As in the proof of Lemma 4, there exists an ordered basis $\{b_1,\ldots,b_{k^2}\}\$ of A consisting of all matrix units e_{ij} , and $a_0,\ldots,a_{k^2}\in A$ such that

$$
a_0c_{k^2}(b_1,\ldots,b_{k^2};a_1,\ldots,a_{k^2-1})a_{k^2}=e_{11}.
$$

We may assume, as shown above, that $ue_{11}v \neq 0$; hence

$$
c_{k^2+2}(u, b_1, \ldots, b_{k^2}, v; a_0, a_1, \ldots, a_{k^2}) = ue_{11}v \neq 0
$$

and $c_{k^2+2} \notin Id(R)$. The other cases are proved similarly.

4. Asymptotics for the standard identities

In this section we shall prove our main results about the standard identity and its asymptotics. We start by examining a finite dimensional algebra of a special type

LEMMA 6: Let $R = A + J(R)$ where $A = M_k(F)$ and R satisfies S_{2k+1} or C_{k^2+2} . *If* $J_{01}J_{10} = J_{10}J_{01} = J_{10}J_{00} = J_{00}J_{01} = 0$, then $\text{var}(R) = \text{var}(A_1 \oplus A_2 \oplus J_{00})$ *where* $A_1 = A + J_{10}$ *and* $A_2 = A + J_{01}$ *.*

Proof: Clearly $Id(R) \subseteq Id(A_1 \oplus A_2 \oplus J_{00})$. Let now $f = f(x_1, \ldots, x_n)$ be a multilinear polynomial such that $f \notin Id(R)$.

Suppose first that

$$
f \in Id(A + J_{11} + J_{10}) \cap Id(A + J_{11} + J_{01}) \cap Id(J_{00})
$$

and let $b_1, \ldots, b_n \in R$ be such that $f(b_1, \ldots, b_n) \neq 0$. We may assume by linearity that b_1, \ldots, b_n belong to $A \cup J_{10} \cup J_{01} \cup J_{11} \cup J_{00}$. By the assumption, b_1, \ldots, b_n do not belong, at the same time, to $A \cup J_{11} \cup J_{10}$ or to $A \cup J_{11} \cup J_{01}$ or to J_{00} . Thus there exist $b_i, b_j, i \neq j$, such that one of the following three possibilities occurs: (1) $b_i \in J_{10}$ and $b_j \in J_{01}$. (2) $b_i \in J_{10}$ and $b_j \in J_{00}$. (3) $b_i \in J_{01}$ and $b_j \in J_{00}$. Since the J_{kl} 's are A-bimodules, $J_{01}J_{10} = J_{10}J_{01} = J_{10}J_{00} = J_{00}J_{01} = 0$ and, by Lemma 2, $J_{01}J_{00} = J_{00}J_{10} = J_{00}J_{11} = J_{11}J_{00} = J_{01}J_{01} = J_{10}J_{10} = 0$; we have that each of the above three cases leads to $b_{\sigma(1)} \cdots b_{\sigma(n)} = 0$ for all $\sigma \in S_n$. Thus $f \in Id(R)$, contrary to the assumption.

We have proved that $Id(R) \supseteq Id(A+J_{11}+J_{10}) \cap Id(A+J_{11}+J_{01}) \cap Id(J_{00})$. If we prove that $Id(A+J_{11}+J_{10}) = Id(A+J_{10})$ and $Id(A+J_{11}+J_{01}) = Id(A+J_{01}),$

we would get that $Id(R) \supseteq Id(A_1) \cap Id(A_2) \cap Id(J_{00})$ and the proof would be complete.

In order to prove that $Id(A + J_{11} + J_{10}) = Id(A + J_{10})$, suppose that there exists $f(x_1,...,x_n) \notin Id(A+ J_{11}+ J_{10})$ and let f be multilinear. Since $J_{11} = AN$, A commutes with N and N is commutative by Lemma 4, we have that for all $b_1, \ldots, b_m \in A + J_{11} + J_{10}, a \in A, d \in N$

$$
b_1\cdots b_k a d b_{k+1}\cdots b_m = db_1\cdots b_k a b_{k+1}\cdots b_m.
$$

It follows that if $b_1, \ldots, b_n \in A \cup J_{11} \cup J_{10}$ are such that $f(b_1, \ldots, b_n) \neq 0$, then we can write

$$
f(b_1,\ldots,b_n)=d'f(b'_1,\ldots,b'_n)
$$

for some $d' \in N$, $b'_1, \ldots, b'_n \in A \cup J_{10}$. Thus $f \notin Id(A + J_{10})$ and

$$
Id(A+J_{11}+J_{10})=Id(A+J_{10})
$$

follows. Similarly, one can show that $Id(A + J_{11} + J_{01}) = Id(A + J_{01})$. This completes the proof of the lemma.

For $m \geq 1$ let us denote by $var(St_m)$ the variety of associative algebras defined by the standard identity St_m . Also, for $k, l \geq 1$, let us denote by $M_{k \times l}(F)$ the algebra of $(k+l) \times (k+l)$ matrices having the last l rows and the last k columns equal to zero.

THEOREM 2:

(1) $var(St_{2k}) = var(M_k(F) \oplus B)$ for some finite dimensional algebra B such *that* $\exp(B) < k^2$. In *particular*

$$
c_n(St_{2k}) \simeq c_n(M_k(F)).
$$

(2) $\text{var}(St_{2k+1}) = \text{var}(M_{k \times 2k}(F) \oplus M_{2k \times k}(F) \oplus B)$ for some finite dimensional *algebra B with* $\exp(B) < k^2$. In particular

$$
c_n(St_{2k+1}) \simeq c_n(M_{k \times 2k}(F) \oplus M_{2k \times k}(F)).
$$

Proof: We know by [3] that $\exp(St_{2k}) = \exp(St_{2k+1}) = k^2$. Also, by [11, Theorem 2.3, for any $q \ge 1$, $var(St_q)$ is generated by a finite dimensional algebra. Thus, by Corollary 1, there exists a finite number of finite dimensional reduced algebras B_1, \ldots, B_t (see Definition 1) and a finite dimensional algebra D such that

(1)
$$
\text{var}(St_q) = \text{var}(B_1 \oplus \cdots \oplus B_t \oplus D)
$$

and $\exp(B_1) = \cdots = \exp(B_t) = k^2$, $\exp(D) < k^2$.

The strategy of the proof will be as follows. We shall first analyze the structure of a finite dimensional reduced algebra R such that $St_q \in Id(R)$. We shall next split the proof into the two cases $q = 2k$ and $q = 2k + 1$. In each case we shall plug into (1) the structure of each reduced algebra and we will deduce the desired result.

Let R be a finite dimensional reduced algebra satisfying $St_q \equiv 0$ ($q = 2k$ or $q =$ $2k + 1$). Write $R = A_1 \oplus \cdots \oplus A_m + J$ where A_1, \ldots, A_m are simple subalgebras and $J = J(R)$. By the definition of reduced algebra, $A_1 J A_2 J \cdots J A_m \neq 0$. Hence by $[8]$ (see also $[7]$), R contains a subalgebra isomorphic to the upper block triangular matrix algebra

$$
UT(d_1,\ldots,d_m) = \begin{pmatrix} M_{d_1}(F) & & * & \\ 0 & \ddots & & \\ \vdots & & \ddots & \\ 0 & \cdots & 0 & M_{d_m}(F) \end{pmatrix}
$$

where $A_i \cong M_{d_i}(F)$ for all $i = 1, \ldots, m$ and

$$
\exp(R) = \exp(UT(d_1,\ldots,d_m)) = d_1^2 + \cdots + d_m^2
$$

Clearly $UT(d_1,..., d_m)$ does not satisfy St_{2d-1} where $d = d_1 + \cdots + d_m$. Hence $UT(d_1,..., d_m)$ satisfies St_q for $q = 2k$ or $q = 2k + 1$ only if $d_1 + \cdots + d_m \leq k$. On the other hand, $d_1^2 + \cdots + d_m^2 < k^2$ for any $m > 1$. It follows that if R is a reduced algebra with $\exp(R) = k^2$ satisfying $St_q \equiv 0$ $(q = 2k \text{ or } q = 2k + 1),$ then $R \cong M_k(F) + J$.

We now split the proof into two cases according as $q = 2k$ or $q = 2k - 1$.

CASE 1: Suppose that $q = 2k$ and let $R = A + J$ be a reduced algebra as above where $A = M_k(F)$. Write $J = J_{00} + J_{01} + J_{10} + J_{11}$ as in Lemma 2. Since $St_{2k} \in Id(R)$, by Lemmas 3 and 4, $J_{10} + J_{01} = 0$ and $J_{11} = AN$ where N is commutative. Since $AJ_{00} = J_{00}A = J_{11}J_{00} = J_{00}J_{11} = 0$ and $J_{10} = J_{01} = 0$, we obtain that $R = (A + J_{11}) \oplus J_{00}$ with $J_{00} \subseteq J$ a nilpotent ideal of R. Moreover, by Lemma 2, $A + J_{11} = A + AN \cong A \otimes_F N^{\sharp}$ where N^{\sharp} is the algebra obtained from N by adjoining a unit element. Since N^{\sharp} is commutative, it follows that $A + J_{11}$ and A satisfy the same identities. Thus $var(R) = var(A \oplus J_{00}).$

We have proved that if R is any reduced algebra such that $St_{2k} \in Id(R)$ and $\exp(R) = k^2$, then $\text{var}(R) = \text{var}(M_k(F) \oplus J_{00})$ with J_{00} a finite dimensional nilpotent algebra. But then, by recalling the decomposition given in (I), we get

that $var(St_{2k}) = var(M_k(F) \oplus D')$ where D' is a finite dimensional algebra with $\exp(D') < \exp(M_k(F)) = k^2$.

CASE 2: Suppose now that $q = 2k+1$ and let $R = A + J$ be a reduced algebra with $A = M_k(F)$ and R satisfies St_{2k+1} . In this case, by Lemma 5, we get that $J_{01}J_{10} = J_{10}J_{01} = J_{10}J_{00} = J_{00}J_{01} = 0$. Hence, by Lemma 6, $var(R) = var((A + J_{10}) \oplus (A + J_{01}) \oplus J_{00})$ and J_{00} is a nilpotent algebra. Now, the left A-module J_{10} is isomorphic to $t \geq 1$ copies of a left ideal of $M_k(F)$. Since $J_{10}A = J_{10}J_{10} = 0$ and $A = M_{k \times k}(F)$, then $A + J_{10}$ as an F-algebra is isomorphic to $M_{k \times (k+t)}(F)$ and it is clear that $A + J_{10}$ has the same identities as $M_{k\times2k}(F)$. Similarly, one shows that $A+J_{01}$ satisfies the same identities as $M_{2k \times k}(F).$

We have proved that if R is any reduced algebra such that $St_{2k+1} \in Id(R)$, then $var(R) = var(M_{k \times 2k}(F) \oplus M_{k \times 2k}(F) \oplus J_{00})$ with J_{00} a finite dimensional nilpotent algebra. By invoking the decomposition given in (1), we get that

$$
var(St_{2k+1}) = var(M_{k \times 2k}(F) \oplus M_{2k \times k}(F) \oplus B)
$$

where $\exp(B) \leq k^2 - 1$.

COROLLARY 3: $c_n(St_{2k}) \simeq \alpha n^{(1-k^2)/2}k^{2n}$ and

$$
\frac{\alpha}{k^2} n^{(3-k^2)/2} k^{2n} \lesssim c_n (St_{2k+1}) \lesssim \frac{2\alpha}{k^2} n^{(3-k^2)/2} k^{2n}
$$

where

$$
\alpha = \left(\frac{1}{\sqrt{2\pi}}\right)^{k-1} \left(\frac{1}{2}\right)^{\frac{1}{2}(k^2+1)} \cdot 1!2! \cdots (k-1)! k^{\frac{1}{2}(k^2+4)}.
$$

Proof. The precise asymptotics for $c_n(St_{2k})$ follow from the relation $c_n(St_{2k}) \simeq$ $c_n(M_k(F))$ and the result in [15] where the asymptotics for $c_n(M_k(F))$ were computed explicitly.

Let $I_1 = Id(M_{k \times 2k}(F))$ and $I_2 = Id(M_{2k \times k}(F))$. From [10] it follows that $I_1 =$ $Id(M_k(F)) \cdot F(X), I_2 = F(X) \cdot Id(M_k(F))$ and $c_n(I_1) = c_n(I_2) = nc_{n-1}(M_k(F)).$ Since $\langle St_{2k+1} \rangle_T = I_1 \cap I_2 \cap I_3$ where, by Theorem 2, I_3 is a T-ideal with $c_n(I_3) \lesssim$ $(k^2 - 1)^n$, we get

$$
c_n(I_1) \le c_n(St_{2k+1}) \le c_n(I_1) + c_n(I_2) + c_n(I_3) \simeq 2c_n(I_1).
$$

The second part of the corollary now follows from the asymptotics of $c_n(M_k(F))$. **|**

5. Asymptotics for the Capelli identities

In [13] it was shown that $exp(C_{m+1}) = m, m-1, m-2$ or $m-3$.

Also, $\exp(C_{m+1}) = m$ if and only if $m = k^2$ is a square and, if m is not a square, $\exp(C_{m+1}) = m - 1$ if and only if $m - 1$ is a square or the sum of two squares.

In this section we shall study $var(C_{m+1})$ and the asymptotics of the corresponding codimensions in case m is a square or $m - 1$ is a square or the sum of two squares. By the above, this will imply the cases $\exp(C_{m+1}) = m$ or $m-1$.

We start with the easy case $\exp(C_{m+1}) = m$. In fact we have

THEOREM 3: Let $m = k^2$. Then $var(C_{m+1}) = var(M_k(F) \oplus B)$ for some finite *dimensional algebra B such that* $\exp(B) < k^2$.

Proof: By [11, Theorem 2.3], $var(C_{k^2+1})$ is generated by a finite dimensional algebra and, by [3], $\exp(C_{k^2+1}) = k^2$. Thus, by Corollary 1, there exist finite dimensional algebras B_1, \ldots, B_t, D such that

(2)
$$
\text{var}(C_{k^2+1}) = \text{var}(B_1 \oplus \cdots \oplus B_t \oplus D)
$$

where B_1, \ldots, B_t are reduced and $\exp(B_1) = \cdots = \exp(B_t) = k^2$, $\exp(D) < k^2$. We next analyze the structure of any such reduced algebra.

Let R be a finite dimensional reduced algebra such that $C_{k^2+1} \in Id(R)$ and $\exp(R) = k^2$. As in the proof of the previous theorem, R contains a subalgebra of the type $UT(d_1,..., d_t)$ with $\exp(R) = d_1^2 + \cdots + d_t^2 = k^2$. It is not difficult to show (see also [13]) that $UT(d_1, \ldots, d_t)$ does not satisfy $c_{d_1^2+\cdots+d_t^2+t-1}$. Hence $t = 1, d_1 = k$ and we may write $R = A + J$ where $A = M_k(F), J = J(R)$. Since by Lemma 3, $J_{01} = J_{10} = 0$, then $J = J_{00} + J_{11}$ and, as noted in the proof of Theorem 2, we have that $R = (A + J_{11}) \oplus J_{00}$ with J_{00} a nilpotent ideal of R. Also, by Lemma 4, $J_{11} = AN$ where N is a nilpotent commutative subalgebra centralizing A in R. Hence, as in the proof of Theorem 2, A and $A + J_{11}$ have the same identities and $\text{var}(R) = \text{var}(A \oplus J_{00})$ follows.

By the decomposition given in (2), it follows that $var(C_{k^2+1})$ is generated by $M_k(F) \oplus B$ where B is a finite dimensional algebra and $\exp(B) < k^2$.

COROLLARY 4:

$$
c_n(C_{k^2+1}) \simeq c_n(St_{2k}) \simeq \alpha n^{(1-k^2)/2} k^{2n}
$$

where α is the constant of Corollary 3.

We now start to study the case $\exp(C_{m+1}) = m - 1$.

LEMMA 7: Let $R = A + J$ where $A = M_k(F)$ and $J = J(R)$. If $R \in \text{var}(C_{m+1})$ where $m - 1 = k^2$, then

$$
var(R) = var(M_{k \times 2k}(F) \oplus M_{2k \times k}(F) \oplus B)
$$

with B a finite dimensional algebra such that $\exp(B) < m - 1$.

Proof: By Lemmas 4 and 5, we have that $J_{01}J_{10} = J_{10}J_{01} = J_{10}J_{00} = J_{00}J_{01} =$ 0 and $J_{11} = AN$ where N is commutative and centralizes A. By Lemma 6, $var(R) = var(A_1 \oplus A_2 \oplus J_{00})$ where $A_1 = A + J_{10}$ and $A_2 = A + J_{01}$. As in the proof of Theorem 2, we see that $var(A_1) = var(M_{k \times 2k}(F))$ and $var(A_2) =$ $var(M_{2k\times k}(F))$ and the conclusion follows.

In the next two lemmas we examine the case when $m-1$ is the sum of two squares and R is a finite dimensional algebra whose semisimple part has only two simple components.

LEMMA 8: Suppose $m - 1 = k_1^2 + k_2^2$ and let $R = A \oplus B + J$ where $A =$ $M_{k_1}(F), B = M_{k_2}(F)$ and $J = J(R)$. If $R \in \text{var}(C_{m+1})$ and $AJB \neq 0$, then $var(R) = var(A_1 \oplus A_2 \oplus D)$ where $A_1 = A + B + AJA + BJB + AJB$, $A_2 =$ $A + B + AJA + BJB + BJA$ and $\exp(D) < m - 1$.

Proof: We first claim that

$$
(3) \t\t\tBJAJB=0 \t\t and \tAJBJA=0.
$$

Suppose, by contradiction, that there exist elements $x, y \in J$ such that $BxAyB \neq$ 0. If 1_A and 1_B denote the unit elements of A and B respectively, then we may assume that $1_Bx = x1_A = x$ and $1_Ay = y1_B = y$. Hence

$$
(4) \hspace{3.1em} Ax = xB = yA = By = 0.
$$

As in the proof of Lemma 3, pick matrices

$$
u_1, \ldots, u_{k^2}, a_0, a_1, \ldots, a_{k^2-1} \in A, v_1, \ldots, v_{k^2}, b_0, b_1, \ldots, b_{k^2-1} \in B
$$

with the property that

$$
x a_0 u_1 a_1 u_2 \cdots a_{k_1^2 - 1} u_{k_1^2} 1_A y b_0 v_1 b_1 v_2 \cdots b_{k_2^2 - 1} v_{k_2^2} \neq 0
$$

and any non-trivial permutation of $u_1, \ldots, u_{k_1^2}, v_1, \ldots, v_{k_2^2}$ in the above product is zero. Then from (4) it follows that

$$
c_{k_1^2+k_2^2+2}(x, u_1, \ldots, u_{k_1^2}, y, v_1, \ldots, v_{k_2^2}; a_0, a_1, \ldots, a_{k_1^2-1}, 1_A, b_0, b_1, \ldots, b_{k_2^2-1}) \neq 0,
$$

a contradiction. The second equality in (3) is proved similarly.

Next we show that if $xAyB \neq 0$, for some $x, y \in J$, then we may take $x \in$ $AxA \subseteq AJA$. In fact, since B is a unitary algebra, $Bx \neq 0$ implies $BxAuB \neq 0$, and this contradicts (3). Hence $Bx = 0$. If also $Ax = 0$, then, as above, it would follow that $c_{k_1^2+k_2^2+2}$ is not an identity for R. Therefore $Ax \neq 0$ and $x \in AJA$.

Similarly, it can be proved that if $AxBy \neq 0$, for some $x, y \in J$, then we may take $y \in BJB$.

Consider now a non-zero product of the type

$$
a_1d_1\cdots a_{m-1}d_{m-1}a_m
$$

where $a_1, \ldots, a_m \in A \cup B$ and $d_1, \ldots, d_{m-1} \in J$. Then, by (3), either $a_1, \ldots, a_m \in A$ A or $a_1, \ldots, a_m \in B$ or there exists $1 \leq k \leq m$ such that $a_1, \ldots, a_{k-1} \in A$, $a_k, \ldots, a_m \in B$ or $a_1, \ldots, a_{k-1} \in B$, $a_k, \ldots, a_m \in A$.

Similarly, if

$$
d_0a_1d_1\cdots a_{m-1}d_{m-1}a_m\neq 0
$$

where $a_1, ..., a_{k-1} \in A$, $a_k, ..., a_m \in B$ and $d_0, d_1, ..., d_{m-1} \in J$, then, by what we proved above, we may take $d_0 \in AJA$.

We next show that

$$
var(R) = var(A_1 \oplus A_2 \oplus A_3 \oplus A_4)
$$

where $A_3 = A + J$ and $A_4 = B + J$. Since $\exp(A_3 \oplus A_4) = \max\{k_1^2, k_2^2\} < k_1^2 + k_2^2$, this will complete the proof of the lemma.

Let $f \notin Id(R)$, a multilinear polynomial, and suppose that $f \in Id(A_3) \cap Id(A_4)$. Since $AB = BA = 0$, in order to obtain a non-zero evaluation of f we must substitute at least one element $y \in J$ such that $AyB \neq 0$ or $ByA \neq 0$. As we remarked in the proof of (4), the element y can be taken in *AJB* or *BJA,* respectively. Taking into account the relation (3) and the above discussion, it follows that all the other variables must be evaluated in $A \cup B \cup AJA \cup BJB$. Thus either $f \notin Id(A_1)$ or $f \notin Id(A_2)$. This proves that

$$
Id(R) \supseteq Id(A_1) \cap Id(A_2) \cap Id(A_3) \cap Id(A_4).
$$

The other inclusion is obvious and the proof of the lemma is complete. \blacksquare

LEMMA 9: Let $m - 1 = k_1^2 + k_2^2$ and let $A_1, A_2 \in \text{var}(C_{m+1})$ be the algebras defined in *the previous lemma. Then* there *exist finite dimensional algebras D1 and D2 such that*

$$
\text{var}(A_1)=\text{var}(UT(k_1,k_2)\oplus D_1),\quad \text{var}(A_2)=\text{var}(UT(k_2,k_1)\oplus D_2)
$$

and $\exp(D_1), \exp(D_2) < m-1$.

Proof: Consider the algebra $A' = A + AJA$. By Lemma 2 we have that $AJA =$ $(AJA)_{11} = AN \cong A \odot N$ for some nilpotent algebra N. Suppose first that N is non-commutative. Then, by Lemma 4, $C_{k_1^2+2} \not\subseteq Id(A')$. If $AJAJB \neq 0$, as in the proof of Lemma 8, we can prove that $c_{k_1^2+k_2^2+2} \notin Id(A_1)$, a contradiction. Hence $AJAJB = 0$. Since $AB = BA = 0$, we obtain that

$$
var(A_1) = var((A + B + AJB + BJB) \oplus (A + AJA))
$$

and $A+AJA$ has exponent less than $m-1$. In case N is commutative, $Id(AJA) \subseteq$ $Id(A)$ implies that $var(A_1) = var(A + B + AJB + BJB)$.

By applying the same arguments to the summand BJB we obtain that $\text{var}(A_1)$ $= \text{var}((A + B + AJB) \oplus D)$, for some finite dimensional algebra D with $\exp(D)$ $\leq m-1$.

Now, as it was shown in [8], the algebra $A + B + AJB$ contains a subalgebra isomorphic to $UT(k_1, k_2)$. Hence $Id(A + B + AJB) \subseteq Id(UT(k_1, k_2))$. On the other hand, by [8], $Id(UT(k_1, k_2)) = I_1 I_2$ where $I_1 = Id(M_{k_1}(F))$ and $I_2 =$ *Id*($M_{k_2}(F)$). Since $(AJB)^2 = 0$, it is easy to see that if $f_1 \in I_1$ and $f_2 \in I_2$ then $f_1 f_2 \equiv 0$ is an identity for $A + B + AJB$. Hence $\text{var}(A + B + AJB) =$ $var(UT(k_1, k_2))$ and the conclusion of the lemma follows for the algebra A_1 . The proof for the algebra A_2 is obtained by making the obvious changes. \blacksquare

THEOREM 4: Let $m \neq k^2$ and suppose that $m-1$ is a square or the sum of two *squares. Then*

$$
var(C_{m+1}) = var(A \oplus B \oplus D)
$$

where *D* is a finite dimensional algebra with $\exp(D) < m - 1$,

$$
A = \begin{cases} M_{r \times 2r}(F) \oplus M_{2r \times r}(F) & \text{if } m - 1 = r^2 \text{ is a square} \\ 0 & \text{otherwise} \end{cases}
$$

and

$$
B = \begin{cases} 0 & \text{if } m-1 \text{ is not the sum of two squares,} \\ \bigoplus_{s^2+t^2=m-1} UT(s,t) & \text{otherwise.} \end{cases}
$$

Proof: By [11, Theorem 2.3], $var(C_{m+1})$ is generated by a finite dimensional algebra. As in the proof of Theorem 2, by invoking Corollary 1, we need only examine finite dimensional reduced algebras in $var(C_{m+1})$. We then apply Lemmas 7, 8 and 9 to complete the proof of the theorem. \blacksquare

Vol. 135, 2003

 $\text{LEMMA } 10: \text{ Let } k^2 = s^2 + t^2. \text{ Then}$

$$
\sqrt{n}c_n(M_{k\times 2k}(F))\simeq \beta c_n(UT(s,t)),
$$

for some constant 3.

Proof: Since by [15], $c_n(M_k(F)) \simeq \alpha n^{(1-k^2)/2} k^{2n}$, by [10] we obtain that

$$
c_n(M_{k \times 2k}(F)) = nc_{n-1}(M_k(F)) \simeq \alpha n^{(1-k^2)/2+1} k^{2n}.
$$

On the other hand, by [8], $c_n(UT(s,t)) \simeq \beta n^{(1-s^2-t^2)/2+3/2}(s^2+t^2)^n$.

COROLLARY 5: Let $m \neq k^2$ and suppose that $m-1$ is a square or the sum of two *squares. If* $m - 1$ *is the sum of two squares, then there exist non-zero constants* $\alpha_1 \leq \alpha_2$ such that

$$
\alpha_1 n^a (m-1)^n \lesssim c_n (C_{m+1}) \lesssim \alpha_2 n^a (m-1)^n
$$

where $a = (5 - m)/2$. If $m - 1 = k^2$ is not the sum of two squares, then

$$
\alpha n^{b}(m-1)^{n} \lesssim c_{n}(C_{m+1}) \lesssim 2\alpha n^{b}(m-1)^{n}
$$

where $b = (4 - m)/2$ and α is the constant of Corollary 3.

Proof. If $m-1$ is the sum of two squares then, by applying the previous lemma to the conclusion of Theorem 4, we can write

$$
c_n(C_{m+1}) \simeq c_n(A_1 \oplus \cdots \oplus A_r)
$$

where A_1, \ldots, A_r are algebras of the type $UT(s, t)$ with $s^2 + t^2 = m - 1$. Hence

$$
\max\{c_n(A_1),\ldots,c_n(A_r)\}\lesssim c_n(C_{m+1})\lesssim c_n(A_1)+\cdots+c_n(A_r)
$$

and the first part of the proof follows from the asymptotic equality (see [8])

(5)
$$
c_n(UT(s,t)) \simeq \alpha(s,t)n^{(1-s^2-t^2)/2+3/2}(s^2+t^2)^n
$$

$$
= \alpha(s,t)n^{(5-m)/2}(m-1)^n,
$$

where $\alpha(s, t)$ is a constant depending on s and t.

Suppose now that $m - 1 = k^2$ is not the sum of two squares. In this case, by Theorem 4, $c_n(C_{m+1}) \simeq c_n(M_{k \times 2k}(F) \oplus M_{2k \times k}(F))$ and the asymptotics for this sequence were estimated in Corollary 3 for the standard identity St_{2k+1} .

We remark that the constants α_1 and α_2 in Corollary 5 can be computed using the relations (5). Namely,

$$
\alpha_1 = \max\{\alpha(s,t) | s^2 + t^2 = m - 1\}, \quad \alpha_2 = \sum_{s^2 + t^2 = m - 1} \alpha(s,t)
$$

where

$$
\alpha(s,t) = \frac{\alpha(s)\alpha(t)}{s^{s^2-1}t^{t^2-1}(s^2+t^2)^{(4-s^2-t^2)/2}}
$$

(see [8]) and

$$
\alpha(k) = \left(\frac{1}{\sqrt{2\pi}}\right)^{k-1} \left(\frac{1}{2}\right)^{\frac{1}{2}(k^2+1)} \cdot 1!2! \cdots (k-1)! k^{\frac{1}{2}(k^2+4)}.
$$

References

- [1] A. Berele and A. Regev, *On the codimensions of the verbally prime P.I. algebras,* Israel Journal of Mathematics 91 (1995), 239-247.
- [2] A. Berele and A. Regev, *Codimensions of products and of intersections of verbally prime T-ideals, Israel Journal of Mathematics* 103 (1998), 17-28.
- [3] A. Berele and A. Regev, *Exponential growth for codimensions of some p.i. algebras,* Journal of Algebra 241 (2001), 118–145.
- [4] C. Curtis and I. Reiner, *Representation Theory of Finite Groups and Associative Algebras,* Wiley, New York, 1962.
- [5] A. Giambruno and M. Zaicev, *On codimension growth of finitely generated associative algebras,* Advances in Mathematics 140 (1998), 145-155.
- [6] A. Giambruno and M. Zaicev, *Exponential codimension growth of P.I. algebras:* an exact estimate, Advances in Mathematics 142 (1999), 221–243.
- [7] A. Giambruno and M. Zaicev, *Minimal varieties of* algebras *of exponential growth,* Electronic Research Announcements of the American Mathematical Society 6 (2000), 40-44.
- [8] A. Giambruno and M. Zaicev, *Minimal varieties of algebras of exponential growth,* Advances in Mathematics (to appear).
- [9] A. Giambruno and M. Zaicev, *Asymptotics of the functions of eodimension growth of* the *standard and Capelli identities,* Uspekhi Matematicheskikh Nauk (to appear).
- [10] A. Guterman and A. Regev, On the *growth of identities,* in *Algebra (Moscow, 1998),* de Gruyter, Berlin, 2000, pp. 319-330.
- [11] A. Kemer, *Ideals of Identities of Associative Algebras,* Translations of Mathematical Monographs, Vol. 87, American Mathematical Society, Providence, RI, 1988.
- [12] D. Krakowski and A. Regev, *The polynomial identities* of *the Grassmann algebra,* Transactions of the American Mathematical Society 181 (1973), 429-438.
- [13] S. Mishchenko, A. Regev and M. Zaicev, *The exponential growth of codimensions for Capelli identities,* Israel Journal of Mathematics 115 (2000), 333-342.
- [14] A. Regev, *Existence of identities in AQB,* Israel Journal of Mathematics 11 (1972), 131-152.
- [15] A. Regev, *Codimensions* and *trace codimensions of matrices* are *asymptotically equal,* Israel Journal of Mathematics 47 (1984), 246-250.
- [16] L. H. Rowen, *Polynomial Identities in Ring Theory,* Academic Press, New York, 1980.
- [17] E. J. Taft, *Invariant Wedderburn factors,* Illinois Journal of Mathematics 1 (1957), 565-573.