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ABSTRACT 

Trans la t ion  invariant  ideals of subsets  of groups and thei r  invariant  

extensions are s tudied.  

0. Introduct ion  

We investigate invariant extensions of left translation invariant ideals on groups 

and prove a general theorem on such extensions. As a consequence of it, we show 

that  the left Haar measure on any locally compact, second countable Abelian 

group G admits a translation invariant extension which measures at least one 

selector of the family of cosets of any uncountable subgroup of G. This extends a 

result of Nowik [11] and complements some earlier results of the author [14]. We 

show how a modification of a technique of ErdSs, Kunen, Mauldin, Friedman, 

and Talagrand [4, 6] answers a question of Ciehofi by proving that  under Martin 's  

axiom there exists a subgroup of R, the reals, of cardinality continuum whose 

all selectors are not Lebesgue measurable and do not have the property of Baire. 

Additionally, again as a consequence of our general result, we prove that  for a 

regular cardinal n, any abelian group G carries a translation invariant ideal J 

with the property that  for X C_ G, IXI < n if, and only if, X can be translated 

into the complement of any set fl'om J .  This answers a question of Seredyfiski 

[12]. 
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I would like to clarify basic notions now. Let G be a group, let H be a subgroup 

of G. By r ight  cose ts  of H we mean cosets of the form Hg for g C G. If A is a 

subset of G which is the union of a family of right cosets of H, A / H  denotes the 

family of all the right cosets contained in A. We say that S c_ G is a se lec to r  

of  A / H  if S is a subset of A and picks precisely one point from each right coset 

of H included in A. If A happens to be empty, the only selector of A / H  is 0. 

Sometimes selectors of G / H  will be called selectors of H. While studying left 

translation invariant measures and ideals on G, we consider right cosets of H 

since these are orbits of the action of H on G by left translations. Therefore, 

problems considered here can be reformulated for the more general setting where 

G acts on a set X and the invariant measure is defined on X rather than on G. 

This setting is adapted, for example, in [14]. 

For subsets A, B of a group G, A B  denotes {gig2 : gl E A, g2 E B}. N stands 

for the set of all natural numbers including 0. 

1. A g ene ra l  t h e o r e m  

THEOREM 1.1: Let Z be a family of subsets of a group G such that [Z[ <_ [G[ 

and [G \ X[ = [G[ for any X E Z. Let ~ <_ [G] be a regular cardinal. Assume 

that for any H < G and a E G, [(H U {a})/H[ < ~. Then there exists a family 

.T of subsets of G such that 

(i) i f ` 4  C_ Y: and X C_ G are such that [,4[, IX[ < min(~,cof([G[)), then 

G \ x ( U , 4  ) is not contained in a member of Z; 

(ii) if  X c_ G and IX[ _> s, then there exists A E Y: with X A  = G; 

(iii) i f X  c_ G and IX] < ~, then for any Ao, A1 , . . . ,An  E b r, n E N, we have 

(Ui<_n A i ) X  # G. 

Proof  For an ordinal 55, a sequence 7t = (H~: 7 < 55) of subgroups of G is called 

a 55-tower of groups if U¢<~ H~ c H~ and U~<~ H~ ~ H r. We will always have, 

and we make it a part of the definition of 55-tower of groups, that cof(55) -- ~. 55 

is called the he igh t  of  t h e  tower .  If we do not want to specify the height of 

a 55-tower, we will call it simply a tower. We write H for the group U 7/. We 

also adapt the convention that if a 55-tower of groups is denoted by 7/~, then its 

elements are denoted by H~, 7 < 55, and U 7/~ by H% If 7/1 is a 551-tower of 

groups and 7/2 are 552-tower of groups, put 

7/1 < 7/2 .~> H 1 C_ H i for some I' < 552. 
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Given a 5-tower 7-/, let S C G be a selector for G/H, that  is, HS = G and, for 

any two different gl,g2 E S, g2g~ 1 ~ H. For a subset A C_ 5 let 

c~EA "7<a 

Let Af be an ideal of subsets of 5. Define 

o'/(/--/, S, A/') = {S(A): A EAf}.  

An ideal of subsets of ~ will be called a c c e p t a b l e  if it fulfills the following 

three properties: the union of < n sets from Af is in Af (i.e., Af is n-complete); 

5 \ A is cofinal in 5 for any A E 2(; for any B C_ 5 cofinal in 5 there is A C_ B 

with A EAf  and A cofinal in 6. We will construct an increasing, with respect to 

<, sequence ?/% a < p for some ordinal p, of towers of groups, selectors Sa for 

G/H a, and acceptable ideals A/'~, and then define 

(o) U J(n ,so,Jv ) • 
a<p 

First, we show that  .P defined in this fashion for an arbi trary increasing se- 

quence of towers of groups fulfills (iii) from Theorem 1.1. Later, we will specify 

what additional conditions the ?-/~'s must fulfill in order that  (ii) be satisfied as 

well. Finally, we will construct a sequence 7-/~ along with Sa, and A;,, a < p, 

which satisfy these conditions and are such that  F additionally fiflfills (i). 

CLAIM 1: Let ~ ,  a < p, be ~n increasing sequence of towers of groups with ?-l ~ 
of height 5a, let Sa be a selector for G/H a and let Af~ be an acceptable ideal of 
subsets of T~. Then jz ful~lls (iii). 

Proof." It  is enough to show that  the conclusion holds when the sequences are fi- 

nite, that  is, we have 7-/1 < .. • < 7/n of height 61 . . . . .  (~n, respectively, S I , . . . ,  Sn, 

and A/'I . . . . .  A/',~ for some n E N. 

First note that  if IY[ < n and S(A) E , ] (?l ,  S, Af) with 7-/ of height 6, then 

there exist unboundedly many a < 5 such that  h Y N  S(A) = 0 for any h E 

Ha \ UT<a HT" Indeed, since cof(5) = n, we can find 70 < 5 with Y C_ HToS. 

Any a > 7o, c~ ~ A works, since if h E Ha \ UT<~ HT, then 

hY C hH~oS C_ (H~ " U H O S  C_ S(5 " A), 
y<a 

and clearly S(5 \ A) A S(A) = O. 
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Now let X C_ G have cardinality less than n, and let As E A l l , . . . , A ~  EAf,, .  
M n TO establish (iii), we need to show that,  for some h E G, h X  -1 Ui=l Si(Ai) = 0. 

n--1 H i n I Pick an < 5,~ with Ui----1 C He,,. Pick a n > an from the unbounded set as 

above (for ~ n ( A n )  and Y = X - l ) .  Let hn E H n. \ U.y<a- H~. Note that  for 
n - 1  n any h E Ui=I Hi, we have hh,~ E H',~. ". U-r<~,,, H-r, whence 

hh,  X - 1 N S n ( A , )  =0 .  

n - 2  H i n - 1  ! Next find an-1  < 5n-1 such that  Ui=l c Ha,,_ ' . Pick an_ 1 > C~n-1 from 

the unbounded set constructed above (for Sn - l (An -1 )  and Y = hnX-1) .  Let 
/ /n -2  H i H ~ - I  \ n-1 Then for any h E ~i=1 , we have h~ - I  e ,~,_, U,-r<,~,,,_, H"r " 

h h n _ l h n X  -1 n (S(An-1) U S(An)) = O. 

In the same fashion we construct An-2 . . . . .  hi and, finally, put h = h l h 2 . "  h~. 

This finishes the proof of the claim. 

Now we specify properties of an increasing sequence of towers of groups needed 

to prove (ii). Let 7-/% a < p, be an increasing sequence of towers of groups with 

?_/a of height 5~. 

(a) U~<p H a  = G; 

(b) if cof(a) # ~, then H~ C U~<~ H~ for a > 0 and H ° = {1} and, for any 

< 5. ,  IH~/H31 < ~; 

(c) if cof(a) = a, then V7 < ~ 3fl < a H~ C H~; 

(d) cof(p) ¢ . .  

C L A I M  2" Let 7t% a < p, be a sequence of towers of groups with properties 

(a)-(d).  Let S~ be a selector for G / H  a and let Af~ be an acceptable ideal of 

subsets of S~. Then .T fulfills (ii). 

Proof: If "/-/ be a 5-tower of groups, we say that  a set Y is unbounded in "/-/ 

if there does not exist "7 < 5 such that  Y r~ H c_ H r. First we will show that  

if Y is unbounded in a 5-tower of groups 7 / w i t h  a selector S for G / H  and an 

acceptable ideal Af on 5, then, for some A EAf, Y g N S ( A )  # 0 for any g E G. Let 

B = {a E 5: Y n ( H ~  \ U~<a H~) # 0}. Then B is cofinal in 5, and we can find a 

cofinal set A EAf  with A C_ B. Let g E G. Find s E S such that  gs -1 E H. Pick 

a ¢ A with gs -1 E H ,  for some "7 < a. Then since Y n (Ha \ U,<~ H , )  # 0, 
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Hence 

o Y.. (.o- u . . ) .  Y..,/.,. 
2~<a 

Now let X C_ G have cardinality greater than or equal to n. We need to find 

so  < p and A E N'ao such that,  for any g E G, X - l g  0 S~o(A ) 5£ ~. By what 

was proved above, it is enough to find so < p and go E G such that  X-*go is 

unbounded in Nao. Let 

C~o = min{a < p: 3g ~ G IX-lg n Hal > ~}. 

The ordinal so is well-defined by (a) and (d) since the sequence 7-l% c~ < p, is 

increasing. Pick go E G with IX-lgo N Ha° l >_ ~. 
If cof(a0) ¢ n, then for any h E G, IX- igoh  -1 o IJ~<~o H~ I < n since 

otherwise we would have IX-lgoh-lAH~l >_ n for some h E G and some a < c~0, 

contradicting the choice of So. Hence, by (b), 

(1) IX-lgo A Hg°h[ < t~ for any h E G. 

By (b) again, each H~ °, 7 < 5~, is the union of less than n many right cosets 

of Hg °. Thus, by (1), we get that  ]X-lgo M H~ o ] < n for any 7 < 5~o, whence 

X - l g 0  is unbounded in 7-/a°. 

If oaf(a0) = n, then, since IX-lgo cl H 31 < n for any/3 < ao, by (c), we get 

IX- lg0  0 g ~  ° ] < n for any 7 < ¢f~o. Thus, again X - l g 0  is unbounded in 7-/~° 

which proves the claim. 

To carry out our construction of the increasing sequence of towers H a, selectors 

Sa for G/H a, and ideals N'a, a < p, fulfilling (a) (d) and to make sure that  the 

family .T we produce satisfies point (i) of the theorem, we split our argument into 

two cases. We fix now for the rest of the proof an acceptable ideal N" of subsets 

of n. There are many choices for N'. For instance, the ideal of nonstationary 

subsets of n works. The referee suggested the following simple example. Consider 

the n-complete ideal H '  on n x n generated by the graphs of functions from t¢ to 

and sets of the form {a} x ~ for a E n. Let AY be the ideal on n obtained by 

transferring AY' via a bijection between n and t~ x t~. Using regularity of n it is 

easy to check that  this A; is acceptable. 

CASE 1: [al-- 

In this case, p = 1 so we will have only one tower 7/°. This takes care of (d). 

The height of the tower will be n. We will need that  No, in addition to being 

acceptable, is also not n-saturated, that  is, n can be partit ioned into n many sets 
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not in No. Both ideals mentioned above as candidates for the ideal A /a re  not 

n-saturated, so we can let No be the ideal A/fixed above. Let (B~: 7 < n) list/7 

in such a way that for each B E 27, B = By on a set of 7's which is not in No. 

This is possible since ]Z] _< ]G] = n. Pick H °, 7 < n, so that the sequence forms 

a n-tower satisfying conditions (a)-(c) and additionally fulfilling 

o ( o )  H,~ \  U H ~ t J B a  ¢ 0 .  

Note that this can be easily done by transfinite recursion by letting H ° be the 

group generated by [.J~<~ H °, the a ' t h  element of G in some fixed enumeration 

of G in order type n, and an elelnent from G \([.J~<~ H ° U B~). This last set 

is nonempty, since by induction one easily shows that tU-~<, H°l < ~ and by 

our assumption complements of members of Z have cardinality n . .P ick  {1} as 

a selector So for G/H ° = G/G. It remMns to check that $- = ,7(7-/°, So, N0) 

satisfies (i). Let X be a subset of G with IXI < ~, and let M = {So(A~): 7 </*} 

for some # < n and A- r E No- Let B be an element of I .  We show that  

G ' . X ( U A  ) is not covered by B. Since n is regular, there exists 7o E n with 

X C_ H°o . Since A/o is n-complete and {'y < n: B = B~} ~ A/, there exists 

7a such that B = B~I, 7~ > 7o, and 71 ~ A. Let go C G be an element of 

H°~ \(U~<-n H° u B.y~). Note further that  H°'n \ U-r<~ H° is invariant with 

respect to translations by elements from X -1 and, being a subset of So(n \ A), 

it is disjoint from So(A) = U A. It therefore is disjoint from x ( U A  ). It follows 

that 90 is not in B u x ( U A  ). 

CASE 2: IGI > n 

We first define an increasing sequence 7-/*, a < [G[, of n-towers of groups 

fulfilling conditions (a)-(e). This is accomplished by a recursive construction, on 

a < IG[ and 7 < t~, of groups H~. Let 2- be listed as (B e : /3 < IGI) in such a 

way that  each B E Z is listed IGI many times. 

The following conditions are maintained in the construction: 

(A) the c~'th element of G in some fixed enumeration of G in order type IGI 

belongs to H~+I; 

(B) if cof(a) # n, then Hg = Uz<~Us<~H~,  also for any 1 < 7 < n, 

U(<s H~ c_ H~ and 0 < IH~/U(<s H~I < n and finally H ° = {1}; 

(C) if cof(a) = n, then there exists an increasing sequence /3. r < a, 7 < n, 

cofinal in a with H~ = U¢<~ ~ ; 

(D) H~ +1 \ ( B ~  t0 [.J.~<,~ H~) # 0. 
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Put 7-/a = (H~: 7 < ~}, a < [G[. In (C) above, we have f17 + 1 in the definition 

of H~ to make sure that U~<7 H~ # H~. This condition is required by the 

definition of t~-tower. 

Note that  satisfying conditions (A) (C) presents no difficulty. (To achieve (A) 

and (B) we use the assumption that if H < G and a ¢ G, then 

[(g U {a})/H] < h:.) Condition (D) is handled as follows. By induction we 

show that ][.J3<~ [-J7<~ H~[ _< max(~, ]al). Since each element of Z has comple- 

ment of cardinality tGI and, by our case assumption, max(~, lal) < ]G I, we can 

always pick an element of G outside of B~ U Uz<a [.JT<~. H~ and make sure that 

it ends up in H~ +1 fiflfilling (D). 

Now we construct selectors Sa for G/H% a < IGt. We will write H <~ for 

UT<a H 7. Using (D) and the facts that the groups H a increase as a increases 

and that (Bz :/3 < ]G[} list each member of Z [G  I many times, we can find a set 

E such that 

(2) I E n  (H a \ H<~)[ < 1 for a < ]G[, 

and 

IE\(BzUH~)I = Ia[ for any ~,fl  < IGI. 

Using this last property, we apply transfinite recursion on triples (% 3,~)  ¢ 

x [G I x IG[ ordered in order type IG[ to partition E into subsets E. r, 7 < ~, so 

that they fulfill 

E ~ \ ( B / 3 U H  ~ ) # 0  for a n y T < t ~ a n d a ,  f l < l a ] .  

Note that this implies that 

(3) E ,  \ H a is not included in a member of Z for any 7 < t~ and (~ < ]G[. 

Let T~, a < IGI, be a selector for (H a \ H<'~)/H <~ such that EO(H '~ ". H <~) 

G T~. This is possible by (2). 

Now, fix so < IG]. To define S~o, the desired selector for G/H ~°, we will need 

two more ingredients. First, we define a sequence of sets T a C_ G, a0 <_ a < ]GI, 

by the formulas: 

T = 0 } ,  

TC~ : ( U T•) To' f o r a > ~ o .  
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Note that  for s > So, T a is a selector for (H a \ H<~)/H a°. It  follows from 

this that  Uao___a<lal Ta is a selector for G/H a°. Second, we pick f~ E H ~°, for 

s < [al, as follows: 

if E Cl (H ~ \ H <~) = 0, let f~ = 1; 

i f E N  (H a \ H <a) ¢ 0, then by the fact that  the E~'s partition E and by (2), 

there is a unique ~, < ~, E~ A (H a \ H <a) ¢ 0; pick this 7 and let fa  be an 

arbi trary element of H~ ° \ U~<~ H I  °. 

Note that  even though it is not reflected in our notation, the sequence 

(f~ : s  < Ial) depends on So as do the Ta 's .  We put 

S~o = U faTa" 
ao<_a<lGI 

Since each T% s > So, is a selector for (H a \ H<a)/H a°, S~ o is a selector for 

G/H a° . 
Finally, for each s < Ial, let Ara be equal to the fixed acceptable ideal 2V of 

subsets of n. 

CLAIM 3: Let S~(A.y) E 2 and g~ E G, 7 < tt < min(~;,cof(IGI)). There exist 
< I G] such that the complement of 

(~ < ~ : G \  Ug~Sa~(A~)D_E~ 'Ha  } 

is in N.  

Proof: By ~-completeness of A / a n d  the fact that  the sequence of groups H a, 

s < IGI, is increasing, it will suffice to show that  for any A • N', any g C G, 

and any a0 < ]GI, there exists s l  < [GI such that  the complement in n of 

{~ < ~: G\gSao(A)  _D E~ \ Ha l}  is in H .  

So we fix A C At, g • G, and So < IGI. The above construction of Sao produces 

the Ta ' s ,  So < a < lal, and the fa ' s ,  a < Ial. We will need these objects in 

what follows. Since [--Jao_<a<lal Ta  is a selector for G/H a°, 

(4) g-1 = ht 

for unique h E H a° and t E U~o~a<lGI Ta" Let 

Ce 0 S l = i n i n { a <  I a l : g • H  a } and 7 o = m i n { 7 < ~ : h • H 7  }. 

We claim that,  for any 7 • ~ " A with 7 > 7o, we have G \ gSao (A) D_ E.~ \ Hal ; 
this will be enough since A C N .  Assume towards a contradiction that  there 
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exists s such that, for some 71 > 7o, 71 C t~ \ A, 

(5) 8 C Eyl, 8 !g H ~ ,  and s E gS~o(A). 

By (A), we can find c~2 < IGI such that s E H ~2 \ H <~=. Clearly a l  < a2, so 

(6) g - 1 E H < ~ .  

Note that since s C H ~2 \ H <~2 and, by (5), s E Ey,, we see that 71 is the 

unique 7 < ~ with Ey O (H ~2 \ H <~=) # 0. Since additionally 71 ¢ A tJ (70 + 1), 

by our choice of f~'s for (~o, we get 

(7) fc~2 ~/ U Hy 
yeA ~<y 

We will contradict (7) by computing g-1 in a way different from (4). By (5), 

g - l s  e S,~o(A ), so 

(8) g-1 = hl f~2t l t2s- t  

where hi E U ~ A ( H ?  ° \  U(<y H~°), t, C Uao<y<a2 T7' t2 E To2- Since s G 

E A (H a2 \ H<a2), we have s C Tc~2. From (8) and (6), we see that t28 -1 = 

(h l f~2t l ) - lg  -1 G H <~. It follows therefore that t2 = s. Combining this with 

(8), we obtain 

(9) g - l = h l f a ~ t l .  

Note now that h~fo2 E H a° and tl C U~o<~<~2 T% Comparing (9) with (4), by 

uniqueness of representation of g-1 as the product of an element from H ~° and 

an element of the selector U~o_<~<lal T~' we get h = hide2 (and t = tl).  Thus, 

hlfa2 C H- ~°, whence Yo 

f~2 C,ol --yo - 
y E A  ( < y  " yEA ~<y " 

This, however, contradicts (7) proving the claim. 

We will now consider two subcases. In either of them we will specify an ordinal 

p and ~/~, S~, N',,  a < p, and we will check that b c defined as in (0) fulfills 

condition (i) and conditions (a)-(d) (which will ensure (ii) and (iii) according to 

Claims 1 and 2). 
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SUBCASE 1: eof(IOl) ¢ n. 

In this case, we let our increasing sequence of towers be 7/~, a < IG}, con- 

structed above. So p = ]G[. Note that  (a)-(c) follow immediately from (A)-(C) 

and, by the subcase assumption, condition (d) is fulfilled as well. It  remains to 

check (i). Let # < min(n, cof(IGI) ). Let g.~ e G, Sc~(A.~) E .T for a~ < p, ? < p. 

From Claim 3 and (3), we get that  G \ U~<,  g.yS~, (A.~) is not included in an 

element of Z. 

SUBCASE 2: cof(iG[) = n. 

In this case, in addition to the towers 7-/~, c~ < ]G], constructed above, we will 

need to define one more tower of groups, that  is, p will be [G[ + 1. This will take 

care of condition (d). Put  [G[ = A. Define 7/~ to be the sequence (H~ : c~ < A) 

where 

Note that  this definition along with (A)-(C) implies conditions (a)-(c). Let 

Sx = {1}. Now it remains to define a n-complete ideal A/'~ on A. We do it as 

follows. For 7 < ~, let 

for f • A~, let 

D r = { ~ • A : E ~ M ( H  a \ H  < ~ ) ¢ 0 } ,  

Bf = {c~ E A : 37 C ~ct = f (7 )  and E:/N (H ~ ' -  H <~) ¢ 0}, 

and 

C = {~ e ,~: v-y < nE~ n (H a \ H <~) = 0}. 

Define Af~ to be the n-complete ideal generated by the sets Dr, 7 < ~, B f, 

f 6 A ~, and C. We need to check acceptability of Af~. 

First we need to see that  A \ A is cofinal in )~ for any A E A/~. Let So C A and 

consider {D~ : 7 C a} and {B S : f C b} with [a I, [b I < n. Pick 70 E n \  a. Note 

that  IE~oI = ~, so by (2), {~ < A: E~o N (H a \ H  <a) ~ 0} is cofinal in A. This 

allows us to pick c~' from this set with a '  > a0 and a '  > sup{f(7o) : f G b}. By 

(2) and disjointness of the E~'s this (~' does not belong to U~ca D'~uUf6b BsUC. 
n-Completeness being obvious, to see that  Af~ is acceptable, it remains to show 

that  for any B C_ A cofinal in A there exists A 6 A;~ cofinal in A with A C_ B. Since 

cof(A) = n, we can assume that  IBI = n and that  each subset of B of eardinality 

n is cofinal in A. Assume that  C M B and D~ n B are not cofinal in A for all 7 < n. 

(Otherwise, we are done.) This means that  IC M B[ < n and ID~ N B I < t~ for 
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all ? ~ ~. It follows, by regularity of t~, that the set a -- {7 < ~ : Dr M B ~ 0} 

has cardinality ~. We pick now a function f: n -+ ~ such that f(?) C D r M B for 

? E a. Clearly Bf M B has cardinality n and so is cofinal in A. 

To finish the proof of the theorem, it remains to see that (i) holds. Fix # < t~ 

g~Sx(A~) for?  < # where g~,g~ E G, A~ c A/', and g-ySa~ (A~), with (~ < A, and ' / i 
! and A~ E Afx. We will assume, without loss of generality, that for each ? < #, 

A~ = Dn~ for some 71~ < n, or A~ = BS~ for some f~ G A ~, or A~ = C. In 

fact, we assume that these three possibilities are realized according to whether 

? E X1, ~ E X2, ? C X3 with Xl U X2 UX3 = #. Now, using Claim 3, we find 

< A and A E AF such that 

(10) G \  U g.yS~(dr) D_E~\H a f o r ~ G ~ \ d .  
" y ( p  

! Fix c~ p < /~ with g~ E H ~' for all ? < It. Then 

I ! 

(11) g~Sx(AI~)". H a' = g~ U (H~ \ H<~) \ H~ = U (Ha \ H<~)" 
aEA~ acA~,~>a' 

If ? C X1, this gives 

(12) g~Sx(A~) \H" '=U{H~\H<a:Ev ,  M(H~".H<~)¢O,a>e'}.  

Now using the fact that t~ \ A has cardinality n, pick ~ C n so that 

(13) ~ ¢ A, 

and ~ ¢ ~/~ for all ? < p. This, (2), disjointness of the E~'s, and (12) imply that 

(14) G \  U g~Sx(A~)_DE~\H d. 
yEX~ 

There exists a"  < A such that f~ (~) < a"  for ? ~ X~. Making a" > a ~ and using 

(11), we get from this 

(15) G \  U g',Sx(A~) D_ E~\ H"" 
~/~x~ 

Using (11) we obviously also have 

I (16) G \  U g~sx(c) D_ E ~ \ H  a'. 
7~X3 
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Now it follows from (10) and (13)-(16) that  

(u u' ' )  " G". g~S,~(A.~)U g.~S:,(A.~) D E ( \ H  ~ , 
Y<# ~<l,t 

where d "  = max(& ~").  By (3), this means that  the set on the left hand side 

cannot be covered by an element of 77 and (i) is proved. 

2. Extending Haar measures 

Results in this section contribute to the program of investigating nonmeasura- 

bility in the context of translation invariant measures on groups. The recent 

book by Kharazishvili [9] is an up-to-date introduction to the subject. 

We will need a few definitions. Let p be a left translation invariant measure 

defined on a a-algebra of subsets of a group G. Sets in the a-algebra are called 

p-measurable. All measures are a-additive and are not identically equal to 

zero. Without loss of generality, we also assume that  each subset of a measure 

zero set is measurable (and has measure zero). A family 13 of subsets of G is 

said to be eof inal  in p if each p-measurable set of positive measure contains 

a set from B. The measure p is called a - f in i t e  if G is a countable union of 

p-measurable sets of finite measure. We say that  p is m e t r i c a l l y  t r a n s i t i v e  if 

for any two p-measurable sets A and B of positive measure there exists a g E G 

with p(A N gB) > O. 
Vitali 's construction produces a set which is nonmeasurable with respect to 

any invariant extension of Lebesgue measure as a selector of a dense countable 

subgroup of the reals. In [14, Theorem 1], it was shown that  if G is an uncountable 

group, then for an arbitrary left translation invariant a-finite measure p on G 

one can find a countable subgroup of G each of whose selectors is nonmeasurabte 

with respect to any left translation invariant extension of p. This result naturally 

raises the question of whether selectors of uncountable subgroups can be made 

measurable with respect to invariant measures. Note that  the mat ter  is delicate 

since, as proved by Erd6s and Mauldin and Kharazishvili (see the proofs of the 

main results in [5] and [8]), for each measure p as above and each subgroup H 

of G of cardinality 1% and each selector S of G/H there exists a family of left 

translates of S by elements of H whose union is not p-measurable. (Note that  

left translates by elements of H of a selector of G/H are again selectors of G/H.) 
As a partial answer to the above question, it was proved in [14, Theorem 2] 

that  if eof(lGI) > b~o and p is a-finite and metrically transitive, then it admits 

a left translation invariant extension which measures a selector of each subgroup 
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of cardinality IGI. In particular, if the Continuum Hypothesis holds, then the 

left Haar measure on any locally compact, second countable group G admits a 

left translation invariant extension which measures at least one selector of any 

uncountable subgroup. Nowik in [11] showed that in the case when G is equal 

to R, the additive group of the reals, the conclusion follows from the negation 

of the Continuum Hypothesis, thus eliminating the Continuum Hypothesis from 

the assumptions in the case G = ~. Corollary 2.2 below extends this result to all 

locally compact, second countable Abelian groups. Corollary 2.1, of which 2.2 

is a consequence, shows that, apart from cof(IGI) > 1%, only an assumption on 

cofinal in p families is needed for the existence of the desired extension. Both 

these corollaries indicate that particular algebraic properties of the group G are 

of secondary importance for the existence of such invariant extensions. (For more 

background on translation invariant extensions of translation invariant measures 

see [9], and for different aspects of measurability of selectors of subgroups of I1~ 

see [3].) 

COROLLARY 2.1: Let G be an Abelian group with a left translation invariant 

measure #. Assume that cof(lG[) > 1% and that there exists a cofinal in # family 

of  cardinality [G I o f  sets of cardinality IG[. Then there exists a measure ~ on G 

such that 

(i) u is a left translation im,ariant extension of p: 

(ii) for any uncountable X C_ G there exists A c_ G with u(A) = 0 and X + 

A = G; in particular, each uncountable subgroup of G has a u-measurable 

selector. 

Proof: Let B be a family of subsets of G cofinal in # as in the statement of the 

corollary. Let Z = {G \ X: X E B}. Let 9 r be the family produced in Theorem 

1.1 for Z and t~ = R1. Le t / 7  be the translation invariant a-ideal generated by 

and the family of all p-measure zero sets. Note first that each element of ,7 has 

inner measure zero. Otherwise, some set of the form A U X + ([_J A) has positive 

inner measure where A is of measure zero and X C_ G and A c_ 5 r are countable. 

It follows that X + (U A) has positive inner measure and, therefore, contains a 

set from B. But this is prohibited by Theorem 1.1(i) (we use here cof(IGI) > ~0) 

and our definition of Z. Now, it follows from Szpilrajn's lemma [15, Section 2] 

that there exists v as in (i) such that the family of ~,-measure zero sets contains 

/7. Thus, (ii) is guaranteed by Theorem 1.1(ii). | 

Remark: In the context of Theorem 2 from [14], it would be interesting to see 

if the assumption on the existence of the cofinal family for # in Corollary 2.1 can 
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be replaced by ~-finiteness of p (or by a-finiteness and metric transitivity). Here 

it may be worth pointing out that for the above proof to work, we can weaken 

the condition "each p-measurable set of positive measure contains a set fl'om B" 

in the definition of cofinality in p to the condition "for each p-measurable set A 

of positive measure there exists a countable set D C G such that D + A contains 

a set from B." The modification of the proof is straightforward. 

COROLLARY 2.2: Let G be a locally compact, second countable Abelian group. 

Then there exists a measure u on G such that 

(i) u is a translation invariant extension of  the Haar measure; 

(ii) for any uncountabIe X C_ G there exists A C_ G with u(A) = 0 and X + 

A = G; in particular, each uncountable subgroup of G has a u-measurable 

selector. 

Proo~ Consider the non-trivial case when G is uncountable. Clearly all the 

assumptions of Corollary 2.1 are fulfilled here: cof(lGI) = cof(2 ~°) > N0 and the 

family of all Borel sets of positive Haar measure is cofinal in Haar measure, is of 

eardinality 2 ~°, and consists of sets of cardinality 2 ~°. | 

Questions related to the above result were studied by Cichofi, Kharazishvili, 

and Wgglorz in [3]. Among other things they proved [3, Theorem 6] that if 

Martin's Axiom (MA) holds, then there is a subgroup of ]R of cardinality 2 ~° 

none of whose selectors is Lebesgue measurable (i.e., is of Lebesgue measure 

zero) and there is another subgroup of cardinality 2 ~° none of whose selectors 

has the Baire property (i.e., is meager). Actually, only the first part of the above 

statement is proved there explicitly but the method extends easily to the Baire 

property case. Jacek Cichofi asked (private communication) if it is possible to 

construct, under MA, one group of cardinality 2 a° with both of these properties, 

i.e., none of the selectors of this group should be Lebesgue measurable or have the 

Baire property. In Theorem 2.4, we show that a modification of a construction 

due to Friedman and Talagrand [6] and Erd6s, Kunen, and Mauldin [4] gives an 

affirmative answer to this question. 

Friedman and Talagrand and, independently, ErdSs, Kunen, and Mauldin con- 

structed, assuming MA, the following subset A of R. Let ¢: P(N) --+ R be defined 

by ¢(M) = Y ~ M  2-i" Define A to be {¢(M~): c~ < 2 ~° } where {M~: c~ < 2 ~° } 

is a family of infinite subsets of N such that 

(a) MZ \ Ms is finite whenever a < ~; 

(b) V(mn) C NN3a < 2 ¢° Ms dominates (mn). 
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(Here and below M dominates (ran) means that the n ' th  element of M is 

greater than or equal to m. . )  

Such a family exists if MA is assumed. It was proved that if ,~(X) = 0, then 

)~(A + X) = 0 ([4] and [6]), and if X is meager, then A + X is meager as well 

([6]). Modifying the proof from [6], we show here that the group generated by A 

has the same property. 

Let BM = {¢(N): N _C M}, M C_ N, and let (C) stand for the group generated 

by a set C c_ R. 

LEMMA 2.3: 

(i) For any X with A(X) = 0 there is a sequence (ran) C N N such that if M 

dominates (ran), then A(X + (BM)) = O. 

(ii) Similarly for X meager. 

Proof: We give an argument for (i) only. It is a slight modification of the proof 

fi'oln [6] and is included here to indicate the needed changes. Changes needed to 

prove (ii) are similar and the proof of (ii) is left to the reader willing to consult [6]. 

Alternatively one can apply Shelah's theorem [13], see also [1, Theorem 2.7.20], 

which makes (ii) a consequence of (i). 

If ,~(X) = 0, we can find a sequence (Un) such that each Un is a finite union 

of open intervals, X _C N,~ Un>~ u,~, and ~,~ 2'~2A(U,~) < ec. Choose m~ so 

that A(I + U,J < 2A(Un) for any interval A; with A(I) _< n2 ~-'~". Let M 

dominate (m,~). It is easy to see that there are Hn C R, ]H~[ _< 2 ~, n c N, with 

BM C_ H~ + [0, 2t-'~-]. Let e0 . . . .  , ek C {--1, 0, 1}. Then for r _> k, we have 

k k k 

+ E ~iBM ~ U ( E  ~'H" + Eei[O' 2'-~'] + U~) = U H + I  + 
\ 

X Un, 
i = 0  n > r  " i = 0  i = 0  n > r  

where [HI _< 2 kn < 2 n2 and A(I) < k21 . . . .  < n21-m'~. Thus, by the choice of 

(m~) and U,~, we get 

a s  

/ = 0  n~-- 'r  n ~ ' r "  

k i.e., .~(X + Y~i=o ~iBM) = 0. It follows that A(X + (BM)) = O. | 

Now we have the following theorem. 

THEOREM 2.4: Assume MA. There exists a group G C_ R with IG[ = 2 ~° such 

that G + X is of Lebesgue measure zero if X is, and G + X is meager if X is; in 
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particular, none of the selectors of RIG is Lebesgue measurable or has the Baire 

property. 

Proo~ To get the "in particular" part  one only needs to notice that  if G has a 

measurable selector, then it must have measure zero, and similarly each selector 

with Baire property must be meager. 

It  is easy to see that,  for all o < 2 s°, IA \ ( Q + B M ,  )1 < 2s° where Q stands for 

the rationals. It follows from this that  for any c~ < 2 s° there is a group H c_ R 

with [HI < 2 ~° and (A) c_ H + (BMo). Thus, to show that  given X C_ ]R with 

,~(x) = 0 (X meager) we have ~(X + (A)) = 0 (X + (A) meager, respectively), 

it is enough to find a < 2 ~° such that  A(X + (BM~)) = 0 (X + (BM,) meager, 

respectively). Remember that  we assume MA, which implies that  the union of 

< 2 s° sets of Lebesgue measure zero is of measure zero and the same holds for 

meager sets. The existence of such an a is guaranteed by Lemma 2.3. | 

Remark: An analysis of the proof of the above theorem reveals that  the theorem 

can be deduced merely from some consequences of MA. To obtain precisely the 

statements below, we use some well-known results concerning Cichofi's diagram 

which can be found in [1, Chapter 2]. To get, with the argument above, a sub- 

group G of IR of cardinality 2 s° such that,  for any set X of Lebesgue measure zero, 

G + X has Lebesgue measure zero and, for any meager set X, G + X is meager, 

one only needs to assume that  the additivity of the ideal of Lebesgue measure 

zero sets is 2 s°. Note that  a subgroup G of cardinality 2 s° will not have selectors 

which are Lebesgue measurable or have the Baire property if only G + X ~ ]R for 

any X which is meager or has Lebesgue measure zero. The construction above 

achieves it with a slightly weaker assumption, that  the additivity of the meager 

ideal and the covering of the measure zero ideal are both 2 s°. 

3. Translating sets into complements 

In [12], Seredyfiski studied the following operation. Let ff  be a family of subsets 

of an Abelian group G. Define if* to be the family of all A c_ G such that  any 

set in f f  can be translated into the complement of A, that  is, 

,7* = {X c G: VA E ff3g E G X + g N A  = q}}. 

The definition and investigation of the operation * were motivated by the result 

of Galvin, Myeielski, and Solovay that,  for G the additive group of the reals, 

(meager sets)* = (strong measure zero sets). Seredyfiski asked in [12, p. 219, 
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P1368] if there exists (in ZFC) a family of subsets of R such that  `7* = {countable 

subsets of R}. 1 It was noticed in [12, p. 209 and p. 212] that the following 

consistency results follow from the above-mentioned GalvimMycielski-Solovay 

theorem and results of Laver and Carlson: 

(a) {meager sets}* = {countable sets} provided the Borel Conjecture holds by 

[7], which is consistent by [10]; 

(b) {Lebesgue measure zero sets}* = {countable sets} is the dual Borel 

conjecture which is consistent by [2]. 

The corollary below answers Seredyliski's question in the affirmative. In fact, 

since cof(2 s°) _> •1, we get a translation invariant a-ideal `7 of subsets of tR for 

which `7* = {countable subsets of N}. 

COROLLARY 3.1: Let G be an Abelian group, and let ~ be a regular cardinal. 

There is a left translation invariant ideal ,7 on G such that `7* = { X  C_ G: [X I < 

~}. If, additionally, eof(Ial) > ~, then we can construct `7 to be n-complete. 

Proof  It is easy to see that 

`7* = { - X :  VA c `7 X + A  ¢ a} .  

We keep this in mind through the rest of this proof. Let 9 ~ be the family of 

subsets of G produced in Theorem 1.1 for tc and for I = {0}. Let ,.7 be the 

translation invariant ideal generated by .T. The conclusion holds by Theorem 

1.1 (ii) and (iii). Assume cof(]G]) _> n. Let `7 be the translation invariant, n- 

complete ideal generated by 5 r .  Now the conclusion follows by Theorem 1.1 (i) 

and (ii). 1 
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