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Let K C R" be a convex centrally symmetric bounded and absorbing set, 

#(K n z ~) the number of lattice points it contains, vol(K) its standard volume, 

and K* its polar convex set. We prove below that the quantity 

#(K n z " ) / ( # ( K *  n z n) .vol(K)) 

is bounded, above and below, by positive constants, depending on n but not on 

K (Theorem 1). 

This result may be seen as an arithmetic analog of the Riemann-Roch theorem 

for a bundle E on a smooth projective curve C : K  (resp. K*, log(#(K n z~)), 

logvol(K)) plays the role of E (resp. fll ® E*, h ° (C ,E) ,  deg(E)). One knows 

that Minkowski's theorem stating that K n z ~ :~ 101 when vol(K) is big enough 
is analogous to the theorem of Riemann that E has a nontrivial section when 

deg(E) is big enough. Our result completes this analogy. We also deduce several 

corollaries of this theorem. 

We thank B. Mazur for many conversations and P. M. Gruber for his comments. 

1. The main result 

1.1. Let K be a convex centrally symmetric bounded and absorbing set in R n. 

We consider two invariants of K, the number of lattice points in K 

(1) M ( K )  = # ( K O  Z n) 
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and the volume of  K 

(2) V(K)  = vol(K) 

for the standard measure on R n. When n = 0 we take M ( K )  = V(K)  = 1. 

Let ( x , y )  = ~_,ixiYi be the usual inner product on R n and 

(3) K* = [x E Rn; sup ( x , y )  <_ 1 ] 
yEK 

the polar body of  K. 

According to Bourgain and Milman [2] there is an absolute constant c > 0 such 

that 

(4) V ( K ) V ( K * )  > c n V(Bn) 2, 

where Bn is the standard unit ball and 

TUEOREM 1. For any K as above 

M ( K )  <_ &c_~V(B~)2.  
6-n - M ( K * ) V ( K )  

1.2. To prove Theroem 1 it is enough to get the lower bound 

(5) 6 -n _< M ( K ) / ( M ( K * ) V ( K ) ) .  

Indeed, assume (5) holds for all K. Applying this inequality to K* we get 

M(K**)  <_ 6 " M ( K * ) V ( K * )  -~. 

But K C K** so M ( K )  < M(K**) .  Using (4) we conclude that 

M ( K )  <_ M ( K * )  V ( K ) & c  -'~ V(B~) -2, 

i.e. the upper bound in Theorem 1. 

1.3. REMARKS. (a) When K is an ellipsoid we have 

V ( K ) V ( K * )  = V(B.) z, 

therefore Theorem 1 holds with c replaced by 1. 



Vol. 74, 1991 LATTICE POINTS IN CONVEX BODIES 349 

(b) By the argument in 1.2, we see that Theorem 1 remains valid if we replace 

K* by the set K v o f y  E R" such that, for all x E K, ](x,y)[ < 1. 

1.4. LEMMA 2. Let I C R be an interval. Then 

# ( I C  Z) _< sup[ ] V(I ) ,2] .  

PROOF. Here V(I)  is the usual length of  I. Clearly 

# ( I n  z )  _< v ( I )  + 1. 

The conclusion follows from the fact that # ( I  n z )  is an integer. 

Assume that the finite set K n Z n spans the lattice Z ~. 1.5. PROPOSITION 3. 

Then 

M ( K ) V ( K * )  < 6". 

PROOF. We proceed by induction on n. When n = 0 this is true by convention. 

Assume the Proposition holds for n - I. Let v be a nonzero primitive element in 

K n z" .  Define Ao = Zv, Ax = A/ (Zv) ,  Eo = Rv, El = AI ~)z R, p : R" --* E l the 

projection, Ko = K n Eo and Kl = p ( K ) .  

S i n c e p ( K n  Z n) C ( K I N  Al) we get 

(6) M ( K )  = # (K  G Zn) < #(KI A AI) x Max # ( p - I ( x )  N K N Zn). 
xEEi 

Given any y E Z n and x = p ( y ) ,  the map 

so :R ~ p - l ( x )  

mapping X E R to SO(X) = y  + Xv is an isomorphism such that so(Z) = p - l ( x )  G 

Z" and ¢-~(p-~(x)  n K) is an interval in R. From Lemma 2 we get 

(7) # ( p - ' ( x )  n K N  Z") < sup [~V(p - ' ( x )  n K),2}.  
x~_Ei 

The set p- l (O)K n z "  contains more than two elements and, by the Brunn-  

Minkowski theorem, 

(8) V ( p - l ( x )  n K) < V(p-~(O) n K) = V(Ko). 

Therefore, by (6), (7) and (8), 

M ( K )  < M(Kt )  ~ V(Ko). 
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We may now apply the induction hypothesis to Kx and the lattice Ax of rank 

n - 1. We get 

(9) M(K)  <_ 6 "-~ ] V(K~) -~ V(Ko). 

Since Eo has dimension one, we have 

(10) V(Ko)V(K~) = 4. 

On the other hand, again by the Brunn-Minkowski theorem (see for example [2], 

(3.1)), 

( l l )  V(K*) <_ V(K~)V(K~) ). 

Using (9), (10) and (1 l) we conclude that 

M(K)  <_ 6-"V(K*) -1. q.e.d. 

1.6. Let us now consider a general K C R ' .  Let Ao C Z" be the lattice gener- 

ated by K* n z" ,  no its rank, and Eo = Ao ®z R -= R "°. Clearly 

02)  M(K*) = M(K* n Eo) 

and, by applying Proposition 3 to Ao C Eo, we get 

(13) M(K* n Eo) <- V((K* N E0)*)-~6 "o. 

Let /~  = (K*) v C K be the set of x E K such that, for all y E K*, 

I(x,y>l < 1. 

If x E / (  n z"  and y E K* O Z", the integer (x ,y)  must vanish. Therefore x lies 

in the orthogonal subspace E6 t to Eo. We conclude that 

(14) M(K)  > M(I()  = M(I~ O Ed ). 

According to Van der Corput's variant of the Minkowski theorem ([5], II.7.2, 

Theorem 1 or [3], III.2.2, Theorem 2), for any E > 0, M(/~A E6 L ) _> 1 + 2 l+~o-" × 

[ V(/~ O Eo ~ ) - e ]. In particular 

(15) M ( / ( N  E~)  > 6n° - ' V( k  O EoX). 

Combining (12), (13), (14) and (15) we get 

M ( K ) / M ( K * )  > 6 - " V ( K  O E~-)V((K* O Eo)*). 
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But V(/~" N E0 ~) = V(K N E~-) and the closure of (K* N Eo)* is the orthogonal 

projection to E0 of the closure of K. Therefore, by Brunn-Minkowski (see [2], 

(3.1)), 

We conclude that 

v(knE~-)V((K* n Eo)*) V(K). 

M ( K ) / M ( K * )  >_ 6-" V(K),  

i.e. (5) holds and Theorem 1 follows. 

1.7. Notice that, when K A Z" spans the lattice Z", M ( K " )  = 1. Therefore, 

replacing K by K v, we see that Proposition 3 is a special case of Theorem 1. 

2. Some consequences 

2.1. Scaling. For any positive real number )~ denote by )~K the image of K by 

multiplication by ~ in R' .  

PROPOSITION 4. I f  ~, > 1, then 

M(K)  <_ M(XK)  < )~nM(K)(36)nc-nV(Bn) -2. 

PROOF. The first inequality is clear since K C XK. On the other hand ()~K)* is 

contained in K*, so, by applying Theorem 1 twice, 

M(~K)  < M((hK)*)  V(XK)&c -n V(B~) -2 

< M(K*)V(K)Xn6nc -n V(B.)  -2 

< M(K)&X '6" c  -~ V(B~) -2. q.e.d. 

2.2. Blichfledt numbers. Let 

B(K)  = Max #[Kt~ ( x +  Z')] .  
x E R  n 

PROPOSITION 5. 

PROOF. 

M ( K )  < B(K)  <_ M(K) (72) ' c - "  V(Bn) -2. 

Since K is convex and centrally symmetric we have 

M ( K )  <_ B(K)  < M(2K).  
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We can then apply Proposition 4. 

2.3. Successive minima 

2.3. I. W h e n i = l  . . . . .  n le t  

~; = Inf[h  > O/rk()~K N Z") _> i] .  

Assume hk < 1 and Xk+l >- 1 (or k = n). 

PROPOSmON 6. The quotient ~1" • • X k / M ( K )  is bounded above and below by 

constants independent o f  K. 

PROOf. Let Ao C Z" be the lattice generated by K f'l Z n and Ko = K rl (Ao ®z 

R). Since Ao is generated by K0, we have M ( K ~ )  = 1. Therefore, by Theorem 1 

and 1.3, 

M ( K )  = M(Ko)  - V(Ko) 

(where a ( K )  - b (K)  means that a/b  is bounded above and below independently 

of  K).  Since h~ . . . . .  ~,k are all the successive minima of A0, we get, by Minkow- 

ski's theorem on successive minima ([5], II.9, Theorems 1 and 2), 

) x l " "  •k - V(Ko). q.e.d. 

2.3.2. Let hT, . . . .  h~ be the successive minima of K*. By a theorem of Mah- 

ler ([5], II.14.2, Theorem 5) 

:~i~,n-i- 1. 

This, together with )x~...)~, ~ V ( K ) ,  shows that Proposition 6 is essentially 

equivalent to Theorem 1. 
Indeed, in the function field case, one may prove directly the analog of  Prop- 

osition 6 [8] (it is an equality), and Armitage deduced from it the Riemann-Roch 

theorem on curves [1]. 

2.4. Hermitian modules 

2.4.1. Let F be a number field, 0 its ring of integers, d = [F,Q] its degree, r~ 

(resp. rE) its number of real (resp. complex) places (d = rl + 2r2), [DFI the abso- 

lute value of its discrimant over Q, and r~ the set of complex imbeddings a : F-~ 

C. A Hermitian module M = ( M , h )  over 0 is a finitely generated 0 module M 

equipped with a Hermitian scalar product ho on the complex vector space Mo = 
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M®,4 C attached to every o E I:. Furthermore, if # is the complex conjugate of  

o, h~ should be the conjugate of ho. 

Given .~as  above, we denote by II [[o the norm defined by ho on Mo (i.e. Ilxll  = 

ho(x,x)) and by h°(M) = h°(M) E R + the logarithm of  the number of elements 

m E Msuch  that, for every a E r., ~ml[ ° < 1. Let n = dimF ( M ®  e F)  be the rank 

of M, and Mtors C M its torsion subgroup. The degree of M, deg(M) = deg(M) E 

R, is defined as follows [7]. First 

(16) deg(M) = log#(Mtors) + deg(A"(M/Mtors)) 

where A n is the n-th exterior power of projective 0-modules. Second, when n = 1, 

for any m E M/Mtors, 

(17) deg(M) = log #(M/Om) - ~ logll m I1o 

(this number is independent of the choice of m).  

The 0-module 

(18) w = Homz(0 ,Z) ,  

where x¢(y)  = ¢(xy)  i fx ,  y E 0 and ,p E w, has rank one. It is generated, up to 

torsion, by the trace Tr : 0 --* Z. As in [9] we fix a Hermitian metric on w by de- 

ciding that [Tr [o = 1 (resp. [Tr [o = 2) if a = t~ (resp. a ;~ ~). 

Given AT, the 0-module M* = Homo(M,0)  is equipped with the dual metric, 

and M v = w ®e M* with the tensor product of  the metrics on w and M*. 

TrIEOREM 2. Given any Hermitian module M of rank n over O, the following 

inequalities hold: 

-C(&,r~ ,n)  < h°(M) - h°(w ~ M*) - deg(M) - nx(O) <- C(&,r2,n) 

where 

and 

X(O) = r2 log(2) -- ½1ogIDF { 

C(rl,r2,n) = nd log(3) + n& log(2) - rl log(V(B,)n! ) 

- r21og(V(B2,,)(2n)I) + log((nd) !). 

2.4.2. To prove Theorem 2, we first notice that the number we want to esti- 

mate is unchanged when M gets replaced by M/Mtors. So we may assume that M 

is torsion free. 
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Let 

M a C  (~) M o = M ® z C  
oEl~ 

be the real subspace fixed under complex conjugation, and 

(19) x (M) = - l o g  #(MR~M), 

where # is the measure on MR and MR/M induced by the scalar products ho. If 0 

has the trivial metric, we get 

x(M) = deg(M) + nX(O) (20) 

([71,[9]). The map 

ot : M  v = o~ ®o M* -~ Homz(M,Z)  

sending T ® u to the composition u o T is an isomorphism of  0-modules. For any 

complex imbedding o : F ~  C, the induced isomorphism 

ao ." MoV = OOo ® c  M~ ~ (Homz(M,Z))o  = Mo* 

maps vo = Tr ® Uo to uo (resp. uo + to) if o = O (resp. o #= ~). Since [Trio = 1 

(resp. 2), oto is an isometry. 

Denote by K C Ma the set of  elements x such that UxiIo - 1 for every o E r~. Its 

dual in H o m z ( M a , R )  is isomorphic by c~ -~ to the set K* C M~ of  elements 

(vo = Tr ® uo) such that, for any (xo) E K, 

~ uo(Xo) + ~,, (uo + f~o)(Xo) I 1. 
o~O I 

Therefore K* is the set of  (vo) E M~t such that 

II yoU - 1. 
oEE 

I f  V(K*) is the volume of  K* for the Haar  measure on M~ which gives M v 

covolume one, Theorem 1 applied to (MV,K *) gives the inequality 

(21) l o g # ( M  v f~ K °) - log # ( M  N K) - log V(K*) >_ -nd  log(6). 

Notice that log # (M N K)  = h°(M) and 

(22) l o g # ( M  v f'l K*)  -< h°(w ®~ M*) .  
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If/z is the measure induced by the scalar product on M~, we have 

(23) log V(K * )  = x ( M  v) + log#(K*) ,  

and it(K*) is the euclidean volume of the set of vectors (xi,yj) E (Rn) r~ × (on)  r2 

such that 

One computes 

(24) 

Using (20) we get 

(25) 

since 

rl r2 

~,, Ix, I + 2 ~ [y~[ _< 1. 
i=l  j = l  

#(K*) = 22r2~(V(Bn)n! )"' (V(B2n)(2n)  ! )r2/ ( tnd)  ! ). 

x ( M  v) = deg(M v) + nx(O) 

= deg(M °) + n deg(o~) + nx(O) 

= - d e g ( M )  - nx(O), 

deg(o~) = log#(o~/0.Tr) - )--], log[Trio 
oE~ 

= loglO, l - 2r2 l o g ( 2 )  

= - 2 x ( O )  

([6], V.2., Lemma 2; [9]). 

From (21), (22), (23), (24) and (25) we conclude that 

(26) h ° ( M )  - h°( w ®o M * )  - deg(M) - nx (O) _ - log I~(K*) + n d  log(6) 

= C(r~ ,r2 ,n) .  

If we replace M by M v in (26) and use (25), we obtain the lower bound in Theo- 

rem 2. 

2.4.3. R~.~,gK. When F = Q, Theorem 2 reads (as in 1.3) 

6 log(n) + log(V(Bn)) -< h ° ( M )  - h ° ( M  *) - deg(M) _< 6 log(n) - log(V(Bn)). 

(27) 
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Given F and M as in Theorem 2, we may apply (27) to M viewed as a module Mz 

of  rank nd over Z. By definition, exp(h°(Mz)) is then the number of elements m 

in M such that 

2.5. Exact sequences 
2.5.1. 

define 

(28) 

Let 

(29) 

Ilmll~ ~ 1. 

m 

Let F be a number field as in 2.4. For any Hermitian module M we 

hi(M) = h°( ~®o M*). 

be an exact sequence of  finitely generated 0-modules, and (h2.~) a Hermitian 

metric on M2. This metric induces metrics (hi,o) on Ml and (h3,~) on M3 (here we 

view M3.o as the orthogonal complement to M~,o in M2.o). We then say that we 

have an exact sequence o f  Hermitian modules 

0 - ~ M l  ~ M2- .  M3-* 0. 

We let ni be the rank of  Mi, i = 1,2,3. 

PROPOSITIOIq 7. For any exact sequence of  Hermitian modules, the following 

inequalities hold: 

(i) 0 < h°(Mi) <_ h°(M2) < h°(Ml) + h°(M3), 

(ii) h°(Ml) - h°(M2) + h°(M3) - hl(Mi) < ~,,~=! C(rl,r2,ni). 

2.5.2. The proof of (i) is easy from the definitions. To check (ii) we apply The- 

orem 2 to M~, M2 and M3: 

hO(M1) - hO(M2) + h°(M3) - hl(Mi) 

-< deg(Ml) + n~x(O) - deg(M2) + n2x(0) + deg(M3) + n3x(O) 

3 
+ h°(M~) + h°(M~) + ~C(r l , r2 ,n i ) .  

i=1 

But the degree and the rank are additive on exact sequences. Furthermore M~' C 

My and the metrics are compatible, therefore h°(M~) <_ h°(M~). This proves 

Proposition 7. 
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2.5.3. In [4] it is proved that an inequality like (ii) holds, with the right-hand 
side replaced by zero, when h°(M) is replaced by the logarithm of the Blichfeldt 
number of the unit ball, and M2,R is equipped with the sup norm of MI,R and 
M3,a (for some R-linear splitting of the exact sequence; see [4] for a more general 
hypothesis). 
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