ON THE NUMBER OF LATTICE POINTS IN CONVEX SYMMETRIC BODIES AND THEIR DUALS

BY

H. GILLET AND C. SOULÉ *Department of Mathematics, IHES, 35 Route de Chartres, 91440 Bures-sur- Yvette, France*

Let $K \subset \mathbb{R}^n$ be a convex centrally symmetric bounded and absorbing set, $\#(K \cap \mathbb{Z}^n)$ the number of lattice points it contains, vol(K) its standard volume, and K^* its polar convex set. We prove below that the quantity

$$
\#(K \cap \mathbb{Z}^n) / (\#(K^* \cap \mathbb{Z}^n) \cdot \text{vol}(K))
$$

is bounded, above and below, by positive constants, depending on n but not on K (Theorem 1).

This result may be seen as an arithmetic analog of the Riemann-Roch theorem for a bundle E on a smooth projective curve C: K (resp. K^* , $\log(\#(K \cap \mathbb{Z}^n))$, log vol(K)) plays the role of E (resp. $\Omega^1 \otimes E^*$, $h^0(C, E)$, deg(E)). One knows that Minkowski's theorem stating that $K \cap \mathbb{Z}^n \neq \{0\}$ when vol (K) is big enough is analogous to the theorem of Riemann that E has a nontrivial section when $deg(E)$ is big enough. Our result completes this analogy. We also deduce several corollaries of this theorem.

We thank B. Mazur for many conversations and P. M. Gruber for his comments.

1. The main result

1.1. Let K be a convex centrally symmetric bounded and absorbing set in \mathbb{R}^n . We consider two invariants of K , the number of lattice points in K

$$
(1) \t\t M(K) = \#(K \cap \mathbb{Z}^n)
$$

Received November 16, 1990

$$
(2) \tV(K) = vol(K)
$$

for the standard measure on \mathbb{R}^n . When $n = 0$ we take $M(K) = V(K) = 1$.

Let $\langle x, y \rangle = \sum_i x_i y_i$ be the usual inner product on **R**ⁿ and

(3)
$$
K^* = \{x \in \mathbb{R}^n; \sup_{y \in K} \langle x, y \rangle \le 1\}
$$

the polar body of K .

According to Bourgain and Milman [2] there is an absolute constant $c > 0$ such that

$$
(4) \hspace{1cm} V(K)V(K^*) \geq c^n V(B_n)^2,
$$

where B_n is the standard unit ball and

$$
V(B_n)=2\pi^{n/2}\bigg/\Gamma\bigg(\frac{n}{2}+1\bigg).
$$

THEOREM 1. *For any K as above*

$$
6^{-n} \leq \frac{M(K)}{M(K^*)V(K)} \leq 6^n c^{-n} V(B_n)^2.
$$

1.2. To prove Theroem 1 it is enough to get the lower bound

(5)
$$
6^{-n} \le M(K)/\big(M(K^*)V(K)\big).
$$

Indeed, assume (5) holds for all K. Applying this inequality to K^* we get

$$
M(K^{**}) \leq 6^n M(K^*) V(K^*)^{-1}.
$$

But $K \subset K^{**}$ so $M(K) \leq M(K^{**})$. Using (4) we conclude that

$$
M(K) \leq M(K^*)V(K)6^n c^{-n} V(B_n)^{-2},
$$

i.e. the upper bound in Theorem 1.

1.3. REMARKS. (a) When K is an ellipsoid we have

$$
V(K)V(K^*)=V(B_n)^2,
$$

therefore Theorem 1 holds with c replaced by 1.

(b) By the argument in 1.2, we see that Theorem 1 remains valid if we replace K^* by the set K^{\vee} of $y \in \mathbb{R}^n$ such that, for all $x \in K$, $|\langle x, y \rangle| < 1$.

1.4. LEMMA 2. Let $I \subset \mathbb{R}$ be an interval. Then

$$
\#(I \subset \mathbb{Z}) \leq \sup\{\tfrac{3}{2}V(I),2\}.
$$

PROOF. Here $V(I)$ is the usual length of I. Clearly

$$
\#(I \cap \mathbb{Z}) \leq V(I) + 1.
$$

The conclusion follows from the fact that $\#(I \cap \mathbb{Z})$ is an integer.

1.5. PROPOSITION 3. Assume that the finite set $K \cap Z^n$ spans the lattice \mathbb{Z}^n . *Then*

$$
M(K)V(K^*)\leq 6^n.
$$

PROOF. We proceed by induction on *n*. When $n = 0$ this is true by convention. Assume the Proposition holds for $n - 1$. Let v be a nonzero primitive element in $K \cap \mathbb{Z}^n$. Define $\Lambda_0 = \mathbb{Z}v$, $\Lambda_1 = \Lambda/(\mathbb{Z}v)$, $E_0 = \mathbb{R}v$, $E_1 = \Lambda_1 \otimes_{\mathbb{Z}} \mathbb{R}$, $p : \mathbb{R}^n \to E_1$ the projection, $K_0 = K \cap E_0$ and $K_1 = p(K)$.

Since $p(K \cap \mathbb{Z}^n) \subset (K_1 \cap \Lambda_1)$ we get

(6)
$$
M(K) = \#(K \cap \mathbb{Z}^n) \leq \#(K_1 \cap \Lambda_1) \times \max_{x \in E_1} \#(p^{-1}(x) \cap K \cap \mathbb{Z}^n).
$$

Given any $y \in \mathbb{Z}^n$ and $x = p(y)$, the map

$$
\varphi : \mathbf{R} \to p^{-1}(x)
$$

mapping $\lambda \in \mathbb{R}$ to $\varphi(\lambda) = y + \lambda v$ is an isomorphism such that $\varphi(\mathbb{Z}) = p^{-1}(x)$ \cap \mathbb{Z}^n and $\varphi^{-1}(p^{-1}(x) \cap K)$ is an interval in **R**. From Lemma 2 we get

(7)
$$
\#(p^{-1}(x) \cap K \cap \mathbb{Z}^n) \leq \sup_{x \in E_1} \{ \frac{3}{2} V(p^{-1}(x) \cap K), 2 \}.
$$

The set $p^{-1}(0)K \cap \mathbb{Z}^n$ contains more than two elements and, by the Brunn-Minkowski theorem,

(8)
$$
V(p^{-1}(x) \cap K) \leq V(p^{-1}(0) \cap K) = V(K_0).
$$

Therefore, by (6) , (7) and (8) ,

$$
M(K) \leq M(K_1) \frac{3}{2} V(K_0).
$$

We may now apply the induction hypothesis to K_1 and the lattice Λ_1 of rank $n - 1$. We get

(9)
$$
M(K) \leq 6^{n-1} \frac{3}{2} V(K_1^*)^{-1} V(K_0).
$$

Since E_0 has dimension one, we have

(10)
$$
V(K_0)V(K_0^*)=4.
$$

On the other hand, again by the Brunn-Minkowski theorem (see for example [2], (3.1) ,

(11)
$$
V(K^*) \leq V(K_1^*)V(K_0^*).
$$

Using (9) , (10) and (11) we conclude that

$$
M(K) \leq 6^{-n} V(K^*)^{-1}.
$$
 q.e.d.

1.6. Let us now consider a general $K \subset \mathbb{R}^n$. Let $\Lambda_0 \subset \mathbb{Z}^n$ be the lattice generated by $K^* \cap \mathbb{Z}^n$, n_0 its rank, and $E_0 = \Lambda_0 \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{n_0}$. Clearly

$$
(12) \t\t\t M(K^*) = M(K^* \cap E_0)
$$

and, by applying Proposition 3 to $\Lambda_0 \subset E_0$, we get

(13)
$$
M(K^* \cap E_0) \leq V((K^* \cap E_0)^*)^{-1} 6^{n_0}.
$$

Let $\mathring{K} = (K^*)^{\vee} \subset K$ be the set of $x \in K$ such that, for all $y \in K^*$,

 $|\langle x,y\rangle| < 1.$

If $x \in \mathring{K} \cap \mathbb{Z}^n$ and $y \in K^* \cap \mathbb{Z}^n$, the integer $\langle x, y \rangle$ must vanish. Therefore x lies in the orthogonal subspace E_0^{\perp} to E_0 . We conclude that

(14)
$$
M(K) \ge M(\check{K}) = M(\check{K} \cap E_0^{\perp}).
$$

According to Van der Corput's variant of the Minkowski theorem ([5], II.7.2, Theorem 1 or [3], III.2.2, Theorem 2), for any $\epsilon > 0$, $M(\mathring{K} \cap E_0^{\perp}) \ge 1 + 2^{1+n_0-n} \times$ $[V(\mathring{K} \cap E_0^{\perp}) - \epsilon]$. In particular

(15)
$$
M(\mathring{K} \cap E_0^{\perp}) \geq 6^{n_0-n} V(\mathring{K} \cap E_0^{\perp}).
$$

Combining (12), (13), (14) and (15) we get

$$
M(K)/M(K^*) \geq 6^{-n} V(\mathring{K} \cap E_0^{\perp})V((K^* \cap E_0)^*).
$$

But $V(\dot{K} \cap E_0^{\perp}) = V(K \cap E_0^{\perp})$ and the closure of $(K^* \cap E_0)^*$ is the orthogonal projection to E_0 of the closure of K. Therefore, by Brunn-Minkowski (see [2], (3.1) ,

$$
V(\mathring{K} \cap E_0^{\perp})V((K^* \cap E_0)^*) \geq V(K).
$$

We conclude that

$$
M(K)/M(K^*)\geq 6^{-n}V(K),
$$

i.e. (5) holds and Theorem 1 follows.

1.7. Notice that, when $K \cap \mathbb{Z}^n$ spans the lattice \mathbb{Z}^n , $M(K^{\vee}) = 1$. Therefore, replacing K by K^{\vee} , we see that Proposition 3 is a special case of Theorem 1.

2. Some consequences

2.1. *Scaling.* For any positive real number λ denote by λK the image of K by multiplication by λ in \mathbb{R}^n .

PROPOSITION 4. *If* $\lambda > 1$, *then*

$$
M(K) \le M(\lambda K) \le \lambda^n M(K) (36)^n c^{-n} V(B_n)^{-2}.
$$

PROOF. The first inequality is clear since $K \subset \lambda K$. On the other hand $(\lambda K)^*$ is contained in K^* , so, by applying Theorem 1 twice,

$$
M(\lambda K) \le M((\lambda K)^*) V(\lambda K) 6^n c^{-n} V(B_n)^{-2}
$$

\n
$$
\le M(K^*) V(K) \lambda^n 6^n c^{-n} V(B_n)^{-2}
$$

\n
$$
\le M(K) 6^n \lambda^n 6^n c^{-n} V(B_n)^{-2}.
$$
q.e.d.

2.2. *Blichfledt numbers.* Let

$$
B(K) = \max_{x \in \mathbb{R}^n} \# \{ K \cap (x + \mathbb{Z}^n) \}.
$$

PROPOSITION 5.

$$
M(K) \leq B(K) \leq M(K) (72)^n c^{-n} V(B_n)^{-2}.
$$

PROOF. Since K is convex and centrally symmetric we have

$$
M(K) \leq B(K) \leq M(2K).
$$

We can then apply Proposition 4.

2.3. *Successive minima*

2.3.1. When $i=1, ..., n$ let

$$
\lambda_i = \text{Inf}\{\lambda > 0/\text{rk}\,(\lambda K \cap \mathbb{Z}^n) \geq i\}.
$$

Assume $\lambda_k < 1$ and $\lambda_{k+1} \geq 1$ (or $k = n$).

PROPOSITION 6. *The quotient* $\lambda_1 \cdots \lambda_k/M(K)$ is bounded above and below by *constants independent of K.*

PROOF. Let $\Lambda_0 \subset \mathbb{Z}^n$ be the lattice generated by $K \cap \mathbb{Z}^n$ and $K_0 = K \cap (\Lambda_0 \otimes_{\mathbb{Z}^n} K)$ **R**). Since Λ_0 is generated by K_0 , we have $M(K_0^{\vee}) = 1$. Therefore, by Theorem 1 and 1.3,

$$
M(K)=M(K_0)\sim V(K_0)
$$

(where $a(K) \sim b(K)$ means that a/b is bounded above and below independently of K). Since $\lambda_1, \ldots, \lambda_k$ are all the successive minima of Λ_0 , we get, by Minkowski's theorem on successive minima ([5], II.9, Theorems 1 and 2),

$$
\lambda_1 \cdots \lambda_k \sim V(K_0).
$$
 q.e.d.

2.3.2. Let $\lambda_1^*, \ldots, \lambda_n^*$ be the successive minima of K^* . By a theorem of Mahler ([5], II.14.2, Theorem 5)

$$
\lambda_i \lambda_{n-i}^* \sim 1.
$$

This, together with $\lambda_1 \cdots \lambda_n \sim V(K)$, shows that Proposition 6 is essentially equivalent to Theorem 1.

Indeed, in the function field case, one may prove directly the analog of Proposition 6 [8] (it is an equality), and Armitage deduced from it the Riemann-Roch theorem on curves [1].

2.4. *Hermitian modules*

2.4.1. Let F be a number field, θ its ring of integers, $d = [F,Q]$ its degree, r_1 (resp. r_2) its number of real (resp. complex) places ($d = r_1 + 2r_2$), $|D_F|$ the absolute value of its discrimant over Q, and Σ the set of complex imbeddings $\sigma : F \rightarrow$ **C.** A *Hermitian module* $M = (M, h)$ over 0 is a finitely generated 0 module M equipped with a Hermitian scalar product h_{σ} on the complex vector space M_{σ} = $M \otimes_A C$ attached to every $\sigma \in \Sigma$. Furthermore, if $\bar{\sigma}$ is the complex conjugate of σ , $h_{\tilde{\sigma}}$ should be the conjugate of h_{σ} .

Given \overline{M} as above, we denote by $\|\cdot\|_{\alpha}$ the norm defined by h_{α} on M_{α} (i.e. $\|x\|_{\alpha}^2 =$ $h_{\sigma}(x, x)$ and by $h^0(M) = h^0(\overline{M}) \in \mathbb{R}^+$ the logarithm of the number of elements $m \in M$ such that, for every $\sigma \in \Sigma$, $||m||_{a} \leq 1$. Let $n = \dim_F (M \otimes_{\sigma} F)$ be the rank of M, and $M_{\text{tors}} \subset M$ its torsion subgroup. The *degree* of \overline{M} , deg(M) = deg(\overline{M}) \in R, is defined as follows [7]. First

(16)
$$
\deg(M) = \log \#(M_{\text{tors}}) + \deg(\Lambda^n(M/M_{\text{tors}}))
$$

where Λ^n is the *n*-th exterior power of projective 0-modules. Second, when $n = 1$, for any $m \in M/M_{tors}$,

(17)
$$
\deg(M) = \log \frac{\#(M/\mathbb{O}m)}{\log \mathbb{E}} - \sum_{\sigma \in \Sigma} \log \left\| m \right\|_{\sigma}
$$

(this number is independent of the choice of m).

The 0-module

$$
\omega = \text{Hom}_{\mathbb{Z}}(\mathcal{O},\mathbb{Z}),
$$

where $x\varphi(y) = \varphi(xy)$ if $x, y \in \mathcal{O}$ and $\varphi \in \omega$, has rank one. It is generated, up to torsion, by the trace $Tr: \mathcal{O} \rightarrow \mathbb{Z}$. As in [9] we fix a Hermitian metric on ω by deciding that $|\text{Tr}|_{\sigma} = 1$ (resp. $|\text{Tr}|_{\sigma} = 2$) if $\sigma = \bar{\sigma}$ (resp. $\sigma \neq \bar{\sigma}$).

Given \overline{M} , the 0-module $M^* = \text{Hom}_{\Omega}(M, \mathcal{O})$ is equipped with the dual metric, and $M^{\vee} = \omega \otimes_{\mathfrak{S}} M^*$ with the tensor product of the metrics on ω and M^* .

THEOREM 2. *Given any Hermitian module* \overline{M} of rank n over 0, the following *inequalities hold:*

$$
-C(r_1, r_2, n) \le h^0(M) - h^0(\omega \bigoplus_{\alpha} M^*) - \deg(M) - n\chi(0) \le C(r_1, r_2, n)
$$

where

$$
\chi(\mathcal{O})=r_2\log(2)-\tfrac{1}{2}\log|D_F|
$$

and

$$
C(r_1, r_2, n) = nd \log(3) + nr_1 \log(2) - r_1 \log(V(B_n) n!)
$$

$$
- r_2 \log(V(B_{2n})(2n)!) + \log((nd)!).
$$

2.4.2. To prove Theorem 2, we first notice that the number we want to estimate is unchanged when M gets replaced by M/M_{tors} . So we may assume that M is torsion free.

Let

$$
M_{\mathbf{R}} \subset \bigoplus_{\sigma \in \Sigma} M_{\sigma} = M \otimes_{\mathbf{Z}} \mathbf{C}
$$

be the real subspace fixed under complex conjugation, and

$$
\chi(M) = -\log \mu(M_{\mathbb{R}}/M),
$$

where μ is the measure on M_R and M_R/M induced by the scalar products h_{σ} . If 0 has the trivial metric, we get

$$
\chi(M) = \deg(M) + n\chi(0)
$$

([71,[9]). The map

$$
\alpha: M^{\vee} = \omega \otimes_{\mathfrak{S}} M^* \to \text{Hom}_{\mathbb{Z}}(M,\mathbb{Z})
$$

sending $T \otimes u$ to the composition $u \cdot T$ is an isomorphism of 0-modules. For any complex imbedding $\sigma: F \to \mathbb{C}$, the induced isomorphism

$$
\alpha_{\sigma}: M_{\sigma}^{\vee}=\omega_{\sigma}\otimes_{\mathbf{C}} M_{\sigma}^{\ast}\rightarrow (\mathrm{Hom}_{\mathbf{Z}}(M,\mathbf{Z}))_{\sigma}=M_{\sigma}^{\ast}
$$

maps $v_{\sigma} = \text{Tr} \otimes u_{\sigma}$ to u_{σ} (resp. $u_{\sigma} + \bar{u}_{\sigma}$) if $\sigma = \bar{\sigma}$ (resp. $\sigma \neq \bar{\sigma}$). Since $|\text{Tr}|_{\sigma} = 1$ (resp. 2), α_{σ} is an isometry.

Denote by $K \subset M_R$ the set of elements x such that $||x||_{\sigma} \le 1$ for every $\sigma \in \Sigma$. Its dual in Hom_z(M_R ,R) is isomorphic by α^{-1} to the set $K^* \subset M_R^{\vee}$ of elements $(v_{\sigma} = \text{Tr} \otimes u_{\sigma})$ such that, for any $(x_{\sigma}) \in K$,

$$
\left|\sum_{\sigma=\tilde{\sigma}}u_{\sigma}(x_{\sigma})+\sum_{\sigma\neq\tilde{\sigma}}(u_{\sigma}+\bar{u}_{\sigma})(x_{\sigma})\right|\leq 1.
$$

Therefore K^* is the set of $(v_{\sigma}) \in M^{\vee}_R$ such that

$$
\sum_{\sigma \in \Sigma} \|v_{\sigma}\| \leq 1.
$$

If $V(K^*)$ is the volume of K^* for the Haar measure on M^{\vee}_R which gives M^{\vee} covolume one, Theorem 1 applied to (M^{\vee}, K^*) gives the inequality

$$
(21) \qquad \log \#(M^{\vee} \cap K^*) - \log \#(M \cap K) - \log V(K^*) \geq -nd \log(6).
$$

Notice that $\log \frac{\mu}{M} (M \cap K) = h^0(M)$ and

$$
(22) \t\t \tlog#(M^{\vee} \cap K^*) \leq h^0(\omega \otimes_{\mathcal{O}} M^*).
$$

If μ is the measure induced by the scalar product on $M_{\rm R}^{\vee}$, we have

(23)
$$
\log V(K^*) = \chi(M^{\vee}) + \log \mu(K^*),
$$

and $\mu(K^*)$ is the euclidean volume of the set of vectors $(x_i, y_j) \in (\mathbb{R}^n)^{r_1} \times (\mathbb{C}^n)^{r_2}$ such that

$$
\sum_{i=1}^{r_1} |x_i| + 2 \sum_{j=1}^{r_2} |y_j| \leq 1.
$$

One computes

(24)
$$
\mu(K^*) = 2^{2r_2n} \big(V(B_n) n! \big)^{r_1} \big(V(B_{2n})(2n)! \big)^{r_2} \big/ \big((nd)! \big).
$$

Using (20) we get

(25)
\n
$$
\chi(M^{\vee}) = \deg(M^{\vee}) + n\chi(0)
$$
\n
$$
= \deg(M^*) + n \deg(\omega) + n\chi(0)
$$
\n
$$
= -\deg(M) - n\chi(0),
$$

since

$$
deg(\omega) = log \#(\omega/0.Tr) - \sum_{\sigma \in \Sigma} log |Tr|_{\sigma}
$$

$$
= log |D_F| - 2r_2 log(2)
$$

$$
= -2\chi(0)
$$

([6], V.2., Lemma 2; [9]).

From (21), (22), (23), (24) and (25) we conclude that

(26)
$$
h^0(M) - h^0(\omega \otimes_0 M^*) - \deg(M) - n\chi(0) \le -\log \mu(K^*) + nd \log(6)
$$

= $C(r_1, r_2, n)$.

If we replace M by M^{\vee} in (26) and use (25), we obtain the lower bound in Theorem 2.

2.4.3. REMARK. When $F = Q$, Theorem 2 reads (as in 1.3)

 $6 \log(n) + \log(V(B_n)) \le h^0(M) - h^0(M^*) - \deg(M) \le 6 \log(n) - \log(V(B_n)).$ (27)

Given F and M as in Theorem 2, we may apply (27) to M viewed as a module $M_{\rm Z}$ of rank *nd* over **Z**. By definition, $exp(h^0(M_Z))$ is then the number of elements m in M such that

$$
\sum_{\sigma \in \Sigma} \|m\|_{\sigma}^2 \leq 1.
$$

2.5. *Exact sequences*

2.5.1. Let F be a number field as in 2.4. For any Hermitian module \overline{M} we define

$$
(28) \t\t\t h1(M) = h0(\omega \otimes_{\mathcal{O}} M^*).
$$

Let

$$
(29) \t\t\t 0 \to M_1 \to M_2 \to M_3 \to 0
$$

be an exact sequence of finitely generated 0-modules, and $(h_{2,\sigma})$ a Hermitian metric on M_2 . This metric induces metrics $(h_{1,\sigma})$ on M_1 and $(h_{3,\sigma})$ on M_3 (here we view $M_{3,\sigma}$ as the orthogonal complement to $M_{1,\sigma}$ in $M_{2,\sigma}$). We then say that we have an *exact sequence of Hermitian modules*

$$
0 \to \overline{M}_1 \to \overline{M}_2 \to \overline{M}_3 \to 0.
$$

We let n_i be the rank of M_i , $i = 1,2,3$.

PROPOSITION 7. For any exact sequence of Hermitian modules, the following *inequalities hold:*

(i)
$$
0 \le h^0(M_1) \le h^0(M_2) \le h^0(M_1) + h^0(M_3)
$$
,
\n(ii) $h^0(M_1) - h^0(M_2) + h^0(M_3) - h^1(M_1) \le \sum_{i=1}^3 C(r_1, r_2, n_i)$.

2.5.2. The proof of (i) is easy from the definitions. To check (ii) we apply Theorem 2 to M_1 , M_2 and M_3 :

$$
h^{0}(M_{1}) - h^{0}(M_{2}) + h^{0}(M_{3}) - h^{1}(M_{1})
$$

\n
$$
\leq \deg(M_{1}) + n_{1}\chi(0) - \deg(M_{2}) + n_{2}\chi(0) + \deg(M_{3}) + n_{3}\chi(0)
$$

\n
$$
+ h^{0}(M_{2}^{V}) + h^{0}(M_{3}^{V}) + \sum_{i=1}^{3} C(r_{1}, r_{2}, n_{i}).
$$

But the degree and the rank are additive on exact sequences. Furthermore M_3^{\vee} \subset M_2^{\vee} and the metrics are compatible, therefore $h^0(M_3^{\vee}) \leq h^0(M_2^{\vee})$. This proves Proposition 7.

2.5.3. In [4] it is proved that an inequality like (ii) holds, with the right-hand side replaced by zero, when $h^0(M)$ is replaced by the logarithm of the Blichfeldt number of the unit ball, and $M_{2,R}$ is equipped with the sup norm of $M_{1,R}$ and $M_{3,R}$ (for some **R**-linear splitting of the exact sequence; see [4] for a more general **hypothesis).**

REFERENCES

I. J. V. Armitage, *Algebraic functions and an analogue of the geometry of numbers." The Riemann-Roch theorem,* Arch. Math. 18 (1967), 383-393.

2. J. Bourgain and V. D. Milman, *New volume ratio properties for convex symmetric bodies in* Rⁿ, Invent. Math. 88 (1987), 319-340.

3. J. W. S. Cassels, *An Introduction to the Geometry of Numbers,* Springer-Verlag, Berlin, 1959.

4. H. Gillet, B. Mazur and C. Soulé, *A remark on a classical theorem of Blichfeldt*, Bull. London Math. Soc., to appear.

5. P. M. Gruber and C. G. Lekkerkerker, *Geometry of Numbers,* North-Holland, Amsterdam, 1987.

6. S. Lang, *Algebraic Number Theory,* Addison-Wesley, Reading, Mass., 1970; reprinted by Springer-Verlag, Berlin, 1985.

7. S. Lang, *Introduction to Arakelov Theory,* Springer-Verlag, Berlin, 1988.

8. K. Mahler, *An analogue to Minkowski's geometry of numbers in afield of series,* Ann. Math. 42 (1941), 488-522.

9. L. Szpiro, *Degrés, intersections, hauteurs*, in "Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell", Astérisque 127 (1985).