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A B S T R A C T  

Classical ergodic theory deals with measure (or measure class) preserving 

actions of locally compact groups on Lebesgue spaces. An important tool 

in this setting is a theorem of Mackey which provides spatial models for 

Boolean G-actions. We show that in full generality this theorem does not 

hold for actions of Polish groups. In particular there is no Borel model 

for the Polish automorphism group of a Gaussian measure. In fact, we 

show that this group as well as many other Polish groups do not admit 

any nontrivial Borel measure preserving actions. 
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In troduct ion  

Our motivation is threefold: 

measures. 

invariant measures; Borel liftings; Ganssian 

Invariant measures: By a famous theorem of A. Weil, if a Polish group G 

admits a (~-finite invariant measure then G is locally compact (see Appendix 

B). 
Nonetheless, even if G is not locally compact, a homogeneous space of G 

might even admit a finite invariant measure. For example, the group G of / t -  

preserving homeomorphisms of the Cantor set f~, will act transitively on ft for 

a suitable choice of # (see, for example, [8]). We show that  this never happens 

for some classes of Polish groups G (for instance, the full unitary group of a 

separable Hilbert space), except for the trivial case: a measure concentrated on 

fixed points. 

Borel liftings: Let G be a closed subgroup of the Polish group of all invertible 

measure preserving transformations of (say) [0, 1] with Lebesgue measure. An 

element g C G is an equivalence class of maps [0, 1] -+ [0, 1] rather than a 

single map; thus, g(x) is defined only almost everywhere. Can we define g(x) 
everywhere? More exactly: can we lift the mod0 action to a Borel action? We 

give a general criterion for lifting, and a negative answer for some classes of 

groups including the Gaussian case. 

Gaussian measures: Every Euclidean space carries its standard Gaussian mea- 

sure. However, a separable Hilbert space H (over ]~) does not. The stan- 

dard Gaussian process over H is a linear isometry between H and the subspace 

spanned by a sequence of i.i.d. N(0, 1) random variables in L2 over a probability 

space. Can we implement each point of (some version of) the probability space 

as a function on H or another superstructure over H? Some well-known such 

constructions are 'isotropic', that  is, invariant under the full orthogonal group 

of H.  Others give a standard probability space. We show that  these two de- 

sirable properties exclude each other. Two proofs are given, one via 'invariant 

measures', the other via 'Borel liftings'. 

Having thus stated our goals in outline let us be more precise. Traditionally, 

ergodic theory is treated within the context of locally compact groups acting 

on standard Lebesgue probability spaces. However, it is often the case that  one 

has to deal with near-actions (see definition below) or merely with an action of 

the group on a measure algebra (i.e., the Borel algebra modulo sets of measure 

zero) and it is then desirable to find a standard Lebesgue model, or even better, 
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a Polish (=complete metric, second countable space) or a compact model where 

the group acts continuously. 

Recall that  a B o r e l  a c t i o n  of G on a Borel space (X, 32) is a Borel map 

G • X --+ X (denote it just (g, x) ~ gx) satisfying the two conditions, ex = x 

and g(hx) = (gh)x for all g, h E G and all x C X. Such an object is called also 

a B o r e l  G-space .  

Definition 0.1 (see Zimmer [34, Def. 3.1]): Let G be a Polish group and 

(X, 32, #) a standard Borel space with a probability measure p. By a nea r -  

a c t i o n  of G on (X, X, p) we mean a Borel map G • X --+ X, (g, x) ~ gx with 

the following properties: 

(i) With e the identity element of G, ex = x for almost every x. 

(ii) For each pair g, h E G, g(hx) = (gh)x for almost every x (where the set 

of points x E X of measure one where this equality holds may depend on 

the pair g, h). 

(iii) Each g E G preserves the measure p. 

Let Aut(X) = Aut(X, 32, p) be the Polish group of all equivalence classes of 

invertible measure preserving transformations X -~ X, 

with the neighborhood basis at the identity formed by sets of the form 

N ( A , e )  = {T C A u t ( X ) :  p ( A G T A )  < e}, 

for A E X and c > 0. What  we would like to show next is that  the following 

three notions are equivalent. 

(I) A near-action of G on (X, 32, p). 

(II) A continuous homomorphism from G to Aut(X).  

(III) A Boolean action of G on (X, 32, p), that  is, a continuous homomorphism 

from G to the automorphism group of the associated measure algebra. 

Given a near-action of G, it is easy to check that  the natural mapping from 

G to Aut(X) defines a measurable mapping. That  it is a homomorphism fol- 

lows from the defining property of being a near-action, and since, as is well 

known, measurable homomorphisms of Polish groups are continuous, we get 

(II) from (I). To go in the other direction, we must construct from a continuous 

homomorphism of G into Aut(X),  a near-action of G on (X, 32, p). 

For this we need to define a section on equivalence classes of Borel measurable 

functions where the equivalence relation is that  of equality # a.e. Let (X, X) and 

(Y, y )  be standard Borel spaces and # a probability measure on (X,  X) .  Then 

the set Lo(X,  Y )  = Lo((X,  2(, p), (Y, y ) )  of all equivalence classes (mod0 with 

respect to p) of Borel (or just p-measurable) maps X --+ Y is also a standard 
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Borel space; its a-algebra is generated by functions f ~ #(A N f - l (B ) )  for 

A E X ,  B e y .  

There exists a (highly non-unique) Borel map V: L0(X, Y) x X --+ Y such 

that for every f E L0(X, Y) the function x ~ V(f,  x) belongs to the equivalence 

class f .  For example, assuming X = Y -- (0, 1) (with the usual Borel a-algebra 

and Lebesgue measure #), we may take 

1 fz+e 
V(f ,x)  = limsoU p -~  Jx-e f(xi)dxl .  

The Polish group Aut(X) is a Borel subspace of L0(X, X). Returning now 

to our situation, let r denote a continuous homomorphism of G into Aut(X). 

Composing r with the restriction of V above to Aut(X) x X gives us a Borel 

mapping from G x X to X, and one checks easily that the properties for being 

a near-action are satisfied. Thus (II) implies (I). 

Finally, Aut(X) may be thought of as the automorphism group of the measure 

algebra MALG(X, X, #) = (X, #), where 2( is X' modulo nullsets, and # the 

corresponding measure; automorphisms of the measure algebra must preserve 

Boolean operations and p. Thus (II) and (III) are equivalent. 

This completes the discussion of the equivalence of the various notions of a 

near-action. 

In contrast to near-actions, we define the notion of spatial action. 

Definition 0.2: Let G be a Polish group. By a spatial  G-action we mean a 

Borel action of G on a standard Lebesgue space (X, X, #) such that each g E G 

preserves the measure #. We say that two spatial actions are isomorphic, if there 

exists a measure preserving one-to-one map between two G-invariant subsets of 

full measure in the corresponding spaces which intertwines the G-actions (the 

same two sets for all g E G). 

Every spatial action is also a near-action. In that case the spatial action will 

be called a spatial  model  of the near-action (or the corresponding Boolean 

action). The question is: when does a given near-action admit a spatial model? 

Rohlin, in [29], when discussing l~-flows, distinguishes between these two no- 

tions calling our near-actions continuous flows and the spatial actions mea- 

surable flows. He notes there that the theories of these two notions are not 

equivalent. Indeed, already J. von Neumann in his foundational work [24] was 

aware of these distinctions and in footnote 13 writes that he hopes to provide a 

proof that every near-flow has a continuous spatial model. 
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We recall that  a Polish G-space is a Polish space X together with a continuous 

action G • X -~ X of a Polish group G. Such an action will be called a Polish 

action. If, in addition, X is compact, then it is a compact Polish G-space. 

Every Polish action is also a Borel action. In that  case the Polish action will 

be called a Pol i sh  m o d e l  of the Borel action. 

We have the following classical theorems, due to Mackey, Varadarajan and 

Ramsay ([30, Wh. 3.2], [19], [28, Wh. 3.3] and [31]; see also [32] and [5]). 

THEOREM 0.3: Let G be a locally compact second countable topological group. 

(a) Every near-action (or Boolean action) of G admits a spatial model. 

(b) Every spatial action of G admits a Polish model. 

A powerful generalization to Polish groups of Theorem 0.3(b), given in 

[3, Th. 5.2.1], is crucial for our work. 

THEOREM 0.4 (Becker and Kechris): 

(a) Every Borel action of a Polish group admits a Polish model. 

(b) Every Bore1 G-space is embedded (as a G-invariant Bore1 subset) into a 

compact Polish G-space. 

Item (b) above follows from [3, Th. 2.6.6] (which in turn utilizes a theorem 

of Beer [4]). 

In the present work we show that  a full generalization to Polish groups of the 

first part of Theorem0.3 is not possible. Many near-actions (or Boolean actions) 

of Polish groups admit no spatial models. 

In Section 1 we recall the definition of L~vy groups, a class of groups which 

includes Aut(X, X, #) and U(H), the unitary group on an infinite-dimensional 

Hilbert space. We show that  these groups admit no non-trivial spatial actions, 

and discuss some further examples. In Section 2 we take up the general question 

of finding criteria for a near-action to admit a spatial model, or more generally 

a spatial factor. We give a necessary and sufficient condition for this in terms of 

G-continuous functions. These are those functions f E L~176 with the property 

that  f o gn converges to f in L~176 norm whenever gn --+ e, the unit element 

in G. 

In order to apply the criterion of Section 2 we introduce in Section 3 whirly 

actions which may be defined as near-actions of G on (X, X, #) such that  for 

all sets A, B C X of positive measure, every neighborhood of e contains g with 

#(AAgB) > 0. We show that  whirly actions have no non-constant G-continuous 
functions and verify some easy examples of whirly actions. 
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In Section 4 we return to the natural near-action of the Polish orthogonal 

group G = O(H), when H is the "first chaos" Gaussian Hilbert space, and 

show that  this near-action is whirly, thus giving the promised second proof of 

the non-existence of a spatial model for this action. 

Appendix A collects elementary proofs of the L~vy property for many well 

known L~vy families. In Appendix B we provide a proof of the fact, mentioned 

at the beginning of the Introduction, that  a Polish group which admits a Borel 

a-finite invariant measure is locally compact. 

ACKNOWLEDGEMENT: We thank A. Vershik, V. Milman and A. Kechris for 

instructive remarks concerning the historical background of this work. We thank 

V. Pestov for a careful reading of a draft of this paper and for several useful 

remarks. 

1. L~vy g roups  a d m i t  no spa t ia l  ac t ions  

The phenomenon of concentration of mass was first considered by E. Borel in 

his "law of large numbers", where it is manifested in the family of "discrete 

cubes" {0, 1}n equipped with Hamming distance and counting measure. In the 

1930's P. L~vy studied the concentration phenomenon for the family of Eu- 

clidean spheres. Then about 1970 V. Milman in [20] revitalized the area when 

he discovered a new proof of Dvoretzky's theorem using the concentration phe- 

nomenon on spheres. In the work [11] M. Gromov and V. Milman considered 

applications of the concentration phenomenon in topological dynamics. In par- 

ticular, the notion of a L6vy family is introduced in [11]. See [23] and [27] for 

further details on the history of this subject. 

Let (Xn, dE, #n), n = 1, 2, 3 . . .  be a family of metric spaces with probability 

measures #~. Call such a family a L~vy fami ly  if the following condition is 

satisfied. If An C Xn is a sequence of subsets such that  lim inf pn(A,~) > 0, then 

for any r > 0, limp(B~(An)) = 1, where Be(A) is the c neighborhood of A. 

A Polish group G is a L~vy g r o u p  if there exists a family of compact sub- 

groups Kn C Kn+I such that  the group F = [.JneN Ix'n is dense in G and the 

corresponding family (Kn, d, mE) is a L~vy family; here m~ is the normalized 

Haar measure on Kn, and d is a right-invariant compatible metric on G (the 

choice of d does not matter). Using left-invariant metrics instead, we get an 

equivalent definition (just apply the map g ~ g - l ) .  

Here is a list of some Polish groups well-known to be L6vy groups. Refer 

to Milman [21], [22], Gromov and Milman [11], Glasner [7], Pestov [27] and 

Giordano and Pestov [27]; also see Appendix A for more details. 
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�9 The full unitary group U(H) (of a separable Hilbert space H); and the 

full orthogonal group O(H) (of a separable Hilbert space H over ~), 

where both groups are equipped with the strong operator topology. 

�9 The dense subgroup of U(H) consisting of all unitary (or orthogonal) U 

such that  tr((1 - U)*(1 - U)) < oc. 

�9 The group Aut(X) (mentioned in the Introduction). 

�9 The commutative (moreover, monothetic) group Lo([0,1],S 1) of all 

(equivalence classes of) measurable functions [0, 1] -+ S 1, where 81 = 

{z �9 C :  Izl = 1}. 

THEOREM 1.1: Every spatial action of a L~vy group is trivial; i.e., the set of 
fixed points is of full measure. 

Proof: By Theorem 0.4(b), every Borel G-space is embedded into a compact 

Polish G-space. Therefore, it suffices to prove the theorem for a continuous 

action of G on a metrizable compact space X and a G-invariant Borel probability 

measure p. We will see that  G acts trivially on supp p (the support of the 

measure). 

The action is a continuous homomorphism from G to the Polish group 

Homeo(X) of all homeomorphisms of X (as noted in [27, p. 427]). We equip X 

with a compatible metric p, and Homeo(X) with the compatible right-invariant 

metric (f ,g)  ~ maxxex p(f(x),g(x)). Now the homomorphism is uniformly 

continuous, provided that  G is also equipped with a right-invariant metric 

(which will be assumed). 

The family (g ~ g. x)xex of maps G -+ X is equicontinuous. By [11, 2.1], 

it sends the L~vy family (m~) of measures on G to a L~vy family (rn~ - x) of 

measures on X, uniformly in x C X. In other words: for all x l , x2 , . . .  C X the 

family (rnn. xn) is L~vy. 

By [11, 2.4] the family of measures is degenerate in the sense that  

f f 
min / p(',y)d(mn .x) = m i n ]  p(g.x,y)dm~(g) -+ 0 
v E X  J X y E X  ,] Ix'~ 

for n --+ oo, uniformly in x C X. The proof is simple. Assuming the contrary and 

using compactness, we choose Xk C X and nk --+ oo such that  measures rank "xk 

converge (weakly) to some measure v on X satisfying mince X f x  P(', y)dv > O, 

which means that  the support of u contains at least two points. Every open set 

A C X such that  u(A) > 0 satisfies v(B~(A)) = 1 for all c > 0; here Be(A) 
is the closed c-neighborhood of A. We get a contradiction by choosing A such 
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that  some points of the support  of u belong to A and some do not belong to the 

closure of A. 

For each n we introduce the subspace Hn C L2(#) of all Kn-invariant func- 

tions, and the corresponding orthogonal projection Qn, 

Qnf(x)= / x  fd(rn,~ . / ) = / K  f(g .x)dmn(g). 

For f E C(X) C L2(X) the degeneracy of measures gives 

f t:f(g" x) (Q~f)(x)I2dm~(g) 0 i --4 

for n --4 cx~, uniformly in x. 

We see this as follows. Denoting by Yn,x the minimizer of fx  P(', y)d(mn, x) 
we have 

f If(g" x) - (Qnf)(x)i2dmn(g) = rain f If(') - ai:d(mn" x) 
J aER J 

Taking lira s u p ~  o lim S U P n ~  supxex ( . . . )  we get 0. 

On the other hand, the integral 

If(g" x) - (Qnf)(:v)12d#(x) 

does not depend on g E Kn and is equal to Iif - QnfH 2. Therefore 

I l f  - Q~fIt 2 = ff If(g" x) - (QnY)(x)12 dm,~(a)d~(z) 0 

for n ~ ~ .  However, the inclusion K~ C K~+I implies H~ D H .+ I  and 

I I f  - 0 n f l l  ~ I l l  - 0 n + l f l l .  So, I l l  - Q J I I  = 0. I t  means that  f is K~- 

invariant, that  is, f(x) = y(g. x) for all x ~ supp~ and all f E C(X). Thus, 

g .  x = x for all such x and all g E (J Kn, therefore all g E G. | 

QUESTION 1.2: Can a LEvy group admit a nontrivial nonsingular ( that  is, 

preserving a measure class) Bore1 action? 
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Remark  1.3: The basic idea in the proof of Theorem 1.1 is derived from Gromov 

and Milman [11] where they show that  LSvy groups have the fixed point on 

compacta property. The question arises whether every group with the fixed 

point property does not admit a nontrivial spatial measure preserving Borel 

action. Now it was shown by Pestov [26] that  the Polish group G = Aut(Q, <) 

of order preserving permutations of the rational numbers, equipped with the 

topology of pointwise convergence (with respect to the discrete topology on Q), 

has the fixed point on compacta property (or is extremely amenable). However 

it is easy to see that  this group also acts ergodically by homeomorphisms on the 

"Q-Bernoulli system" (ft,9 c, #). Here ft = {1,-1}Q,# is the product measure 

# = (1/2, 1/2) Q and G acts on "configurations" w G ft by permuting the indices. 

We therefore conclude that  some Polish groups with the fixed point property 

can have nontrivial spatial actions. 

Remark 1.4: Recall that  a topological group G is a m e n a b l e  if each com- 

pact G-space admits a G-invariant probability measure. Using this definition 

of amenability and the fact that  every compact group is amenable, it is easy to 

deduce that  every L6vy group is amenable. Now if G is a Polish L~vy group and 

(X, G) is a compact G-space, then by amenability of G there is a G-invariant 

probability measure p on X. It can be shown that  (X, G) is represented as an 

inverse limit of a directed system of metrizable G-spaces {(X~,G)}. Let #~ 

be the image of # on X~, then apply Theorem 1.1 to deduce that  supp(#~) is 

a closed nonempty collection of fixed points. It is now easy to conclude that  

the support of p, supp(p), is a nonempty closed subset of X consisting of fixed 

point. Thus the Gromov-Milman theorem that, every L~vy group has the fixed 

point on eompaeta property follows from Theorem 1.1. Of course this is a rather 

circumventive way of proving it. 

Remark  1.5: The following application of Theorem 1.1 was pointed out to us by 

V. Pestov. Some years ago he and M. Cowling conjectured that  every invariant 

mean on the unitary group U(H) is contained in the weak* closed convex hull of 

the multiplicative invariant means. Now for any topological group G the above 

statement holds iff every G-invariant measure on the greatest ambit $(G) of 

G (i.e., the Gelfand space of the Banach algebra B L U C ( G )  of bounded left 

uniformly continuous functions on G) is supported on the set of fixed points. 

Again using the fact that  for a Polish L~vy group S(G) is an inverse limit of a 

directed system of metrizable G-spaces, we deduce from Theorem 1.1 that  every 

invariant mean on a Polish Ldvy g r o w  is contained in the weak* closed convex 

hull of the multiplicative invariant means. 
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Remark 1.6: Note that,  for example, the group Soo of permutations of N (with 

the topology of pointwise convergence) is a nonlocally compact Polish subgroup 

of U(H) which admits nontrivial measure preserving spatial actions. 

Remark 1.1: There are well known examples of Polish groups G which do 

not admit any weakly continuous linear representations on a Banach space; see, 

e.g., [13] and [2]. In the latter Banaszeyk provides, for every infinite-dimensional 

normed space E, examples of the form G = E / K  where K C E is a discrete 

subgroup. It is easy to see that  any such group is moreover monothetic. Of 

course, such "strongly exotic groups" as they are called by Herer, Christensen 

and Banaszcyk cannot admit even a nontrivial near-action. Moreover, every 

nonsingular near-action (preserving a measure class rather than a measure) 

leads, by a standard construction, to a unitary representation. Thus these 

strongly exotic groups cannot admit nontrivial nonsingular near-actions. 

By Theorem 1.1, a nontrivial near-action of a L@vy group cannot admit a 

spatial model. An important example is the automorphism group of an infinite- 

dimensional Gaussian measure. Up to isomorphism, the relevant probability 

space is the product ( ] ~ ,  ~oo) of countably many copies of (]~, 7), where 7 is the 

standard one-dimensional Gaussian measure (normal distribution). The space 

(so-called first  chaos) of all measurable linear functionals on (~oo, 7oo) is 12. 

The action of the full orthogonal group 0(12) on measurable linear functionals 

is well-known to be induced by its near-action on (l~ ~176 , "y~), which is what we 

mean by the automorphism group of the Gaussian measure. (In this sense, 0(12) 

is a closed subgroup of Aut(l~ ~176 , ~/~); see also Section 4.) 

COROLLARY 1.8: The near-action of the automorphism group of the Gaussian 

measure admits no spatial model. 

Remark 1.9: In [32, Theorem 4] A. Vershik states: There is no measurable 

realization of the group U(H), that  is, there is no set of full measure that  is 

invariant under all u E U(H). This would yield Corollary 1.6, however the proof 

given there appears to us to be incomplete. 

Remark 1.10: Another proof of Corollary 1.8 uses the L@vy group L0([0, 1], S 1) 

rather than 0(12). The latter group contains (an isomorphic copy of) the former 

group as a closed subgroup; see, e.g., Lemaficzyk, Parreau and Thouvenot [17]. 

The near-action of (the copy of) L0([0, 1],S 1) on ( 1 ~ , 7  ~176 is nontrivial; by 

Theorem 1.1 it cannot admit a spatial model, which implies Corollary 1.8. 
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Remark 1.11: About the meaning of Corollary 1.8. Almost all points of 

(ll~ ~ , 7 ~)  do not belong to 12 and therefore cannot be interpreted as contin- 

uous linear functionals on 12. One could hope for interpreting them as another 

superstructures over 12 (say, densely defined discontinuous linear functionals) 

that  form a Borel G-space (G being the symmetry group). Corollary 1.8 shows 

that  it is impossible. Maybe, Borel measurability could be weakened (say, to 

universal measurability)? We do not know. Some related ideas can be found in 

[6, Prop. E.2] and [14, Example 1.27]. 

2. W h i c h  ac t ions  a d m i t  spa t ia l  mode l s ?  

In this section we enhance our understanding of the lifting problem by relating 

it to a notion of G-continuity of functions which is reminiscent of the classical 

notion of a rigid action in ergodic theory. 

Definition 2.1: Having a near-action (or Boolean action) of G on (X,#)  we 

say that  f E L~176 is G-cont inuous ,  if f o gn converges to f in L~(p)  norm 

whenever g,~ ~ e. 

The collection A(G) of all G-continuous functions is a G-invariant closed 

subalgebra of L ~ (p). 

THEOREM 2.2: A near-action admits a spatial model if and only if there exists 

a sequence of G-continuous functions that generates the a-algebra (equivalently: 

separates points). 

Proof: Suppose first that  we have a spatial model, that  is, a Borel G-space with 

an invariant measure. By Theorem 0.4(b) this Borel G-space can be embedded 

into a compact Polish G-space X (with an invariant measure). The continuous 

functions on X form a separable Banach space and a dense sequence in C(X)  

will provide a sequence of G-continuous functions in L~(#)  which separates 

points. 

Conversely, suppose there exists a sequence {fn : n E N} C L~176 of G- 

continuous functions that  generates the a-algebra. Let Go C G be a countable 

dense subgroup of G. Let A C L~176 be the smallest closed G0-invariant 

subalgebra containing { f ,  : n E N} and the constant functions. Clearly A is a 

separable subalgebra and the fact that  Go is dense in G implies that  A is in fact 

G-invariant. 

Let Y be the compact metric Gelfand space of A. (Thus the elements of Y 

are the multiplicative linear functionals of norm one on A and the map A 
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C(Y) ,  f ~-~ ] ,  where ](y) = y( f ) ,  is an isometric isomorphism of Banach 

algebras.) Then, for each g E G, the linear action f ~ f o g of g on A defines a 

homeomorphism g : Y --+ Y and f o g = f o g. If Yn --+ Y in Y and gn -+ e in G 

are convergent sequences, then for every ] E C(Y)  we have 

I](gnYn)  -- ] (Y) l  ~ i ] (gnYn)  -- ](Yn)] + ]](Yn) -- ](Y)] 

< - ] i i  + i ] ( y n )  - ] ( y ) i ,  

hence limn-~o~ ]](gnYn) - ](Y)i = 0. It follows that  l im n _ ~  gnYn = Y and we 

conclude that  the action of G on Y is topological. 

The linear functional #: A -+ ~, f ~ f f d# defines a probability measure v 

on Y and the dynamical system (Y, y ,  v, G), where y is the Borel a-algebra on 

Y, yields a Boolean action (y,  v, G) which is isomorphic to the given Boolean 

action. We conclude that  (Y, y ,  u, G) is a spatial model as required, i 

Remark 2.3: In general, when we do not assume that  the G-continuous func- 

tions on the near action (X, X, #, G) separate points, we can still consider the 

smallest a-algebra T) C X with respect to which all the functions in A(G) are 

measurable and then the closed subspace of L 2 (#) consisting of D-measurable 

functions. This subspace defines a factor near-action and it is clear that  this 

factor is the largest factor which admits a spatial model. 

Theorem 1.1 together with Remark 2.3 yield the following: 

COROLLARY 2.4: For a LEvy group G, an ergodic near-action admits only 

constants as G-continuous functions. 

It is an interesting fact that  a seemingly weaker condition already implies 

G-continuity. To see this we first need a lemma. 

LEMMA 2.5: Let X be a Polish space, f: X -~ LI(#) a continuous map such 

that the image f ( X )  is contained in L~176 and that as a subset of the Banach 

space L ~ (#) it is separable. Then f treated as a map X --+ L ~176 (#) is continuous 

at every point of some dense G5 subset of X .  

Proof: Every closed ball in L ~ ( # )  is a closed subset of LI(#).  We choose 

Xl ,X2, . . .  E X such that  f ( xk )  are L~-dense in f ( X ) .  We consider closed balls 

Bn,r in L ~ ( p )  of radius r centered at f (xn) .  Their inverse images f - l ( B n , r )  

are closed in X,  and Un f - l ( B n , r )  = X (for every r > 0). Denoting by Un,~ 

the interior of f - l (Bn , r )  we observe that  [.Jn Un,r is a dense open set in X and 

Nr Un Un,~ is a dense G~ set (Baire's theorem). 
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If y E U~,r and Yk --+ Y, then f (y)  E Bn,r and f(Yk) E Bn,r for large k, 

therefore limsupk Iif(Yk) -f(Y)[[c~ ~ 2r. So, if y E NrOnU~,~ and Yk ~ Y, 

then limsupk I[f(Yk) - f(y)[[o~ = 0. I 

PROPOSITION 2.6: A function f E L~(#)  is G-continuous if and only if its 

G-orbit is a separable subset of L~ 

Proof: The necessity is easy to see. The sufficiency follows from Lemma 2.5, 

applied to the map G --+ L~ g ~ f o g. By homogeneity, its continuity at 

a single point implies continuity everywhere. I 

3. W h i r l y  a c t i ons  

Often one can use the necessary and sufficient condition of Theorem 2.2 to verify 

directly that  a given near-action has no spatial model. This is done most easily 

by the following notion which will guarantee that  a near-action admits only 

constants as G-continuous functions. 

Definition 3.1: A near-action of G on (X, 2(, #) is whi r ly ,  if for all sets A, B E 

2( of positive measure, for almost all g in G with respect to Baire category, 

#(A A gB) > O. 

Definition 3.2 (equivalent to 3.1): A near-action of G on (X, 2(,#) is whi r ly ,  

if for all sets A, B E 2( of positive measure, every neighborhood of e (the unit 

of G) contains g such that  #(A M gB) > O. 

Clearly, 3.2 follows from 3.1 (since a neighborhood cannot be Baire-negligibte). 

On the other hand, 3.1 follows from 3.2, since #(AMgB) is a continuous function 

of g, therefore the set V(A,B)  = {g : #(A M gB) > 0} is open. Its closure 

contains e. The same holds for the set V(gA, B) = gV(A, B), which shows that  

V(A, B) is dense in G. 

PROPOSITION 3.3: 

(a) If a near-action is whirly, then all G-continuous functions axe constants. 

(b) A whirly action has no spatial model; moreover, such an action cannot 

have nontrivial spatial factors. 

Proof: (a) Assume that  a G-continuous function f E L~ is non-constant; 

then the sets A = f - l ( ( - e c ,  a)) and B = f - l ( (b ,  +c~)) are of positive measure, 

provided that  a < b are chosen appropriately. All sufficiently small g E G (that 



318 E. G L A S N E R ,  B. T S I R E L S O N  AND B. WEISS Isr. J. Ma th .  

is, close enough to e) satisfy Ill - f o g-l i l  ~ < b - a, therefore #(A M gB) = 0 
and the action cannot be whirly. 

(b) This follows from part  1 and Theorem 2.2. The claim about the factors 

follows from Remark 2.3. I 

Remark 3.4: Here is yet another equivalent definition. A near-action of G 

on (X, X, #) is whirly, iff for every set A E A' of positive measure and every 

neighborhood U of e in G, 

tt(UA) = 1; 

here UA means Un(g~A) where (gn) is a dense sequence in U (its choice does 

not mat ter  mod0). Proof'. #((UA) M B) > 0 ~ 3n#((gnA) M B) > 0 

3g E Up((gA) M B) > 0 ~ 3g E Up(A Mg-IB) > O. 

We will next describe some applications of Proposition 3.3. Our first applica- 

tion will be to the natural near-action (on X) of the group G = Aut(X) of the 

automorphisms of the Lebesgue space (X, A', #). We have already seen that  this 

action has no spatial model since G is a L~vy group. There is, however, a more 

direct proof; we simply verify that  the action is whirly. To this end recall that  

a neighborhood of the identity in G is given by a finite measurable parti t ion of 

X into sets {P1,P2,... ,PN} and ~ > 0 as 

N 

U =  {S �9 G : ~ # ( P j  ASPy)  < c}. 
j=-i 

For any sets A, B �9 2d of positive measure, if Ao C A, Bo C B are measurable, 

disjoint and have the same measure #(Ao) = #(B0) < ~/2, and S is defined to 

be a measure preserving transformation which is the identity on X \ (A0 U Bo) 

and interchanges A0 with B0, then S �9 U and it satisfies #(A M SB) > O. 
The same kind of argument can be given for many subgroups of G and their 

natural  near-action on X.  For example, we can start  with any countable sub- 

group F C G that  acts ergodically on X. The full  g r o u p  of this action, [F], 

consists of all the measure preserving transformations T E G = Aut(X,  X, #) 

such that  for # a.e. x �9 X ,  Tx  �9 Fx. 

PROPOSITION 3.5: The near-action of [F] on X is whirly. 

Proof: The argument given above for the entire group G works here as well, 

almost verbatim. The only place where some change is needed is when we choose 

the transformation S; this time it should be in [F]. Now suppose we are given 
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the open set U = U(Po, P1,..., PN; C) and two positive measure sets A, B �9 X.  

If #(A M B) > 0 there is nothing left to show. Otherwise, the ergodicity of the 

F-action guarantees the existence of a 7 �9 F with #(A M ?B)  > 0. Set A1 = 

A A ? B  and choose any A0 C A1 with 0 < #(A0) < g/2. We let B0 = 7-1A0. 

The transformation S is now defined as the identity on X \ (Ao U B0) and it 

interchanges Ao with Bo by means of 7 and ~-1. Clearly S �9 [F], S �9 U and it 

satisfies #(A M SB) > O. | 

Remark 3.6: Let us note that,  clearly, for every dense subgroup H of G -- 

Aut(X, 2(, it) the action of H on X is whirly. Moreover, it can be shown that  

in the notation of the previous discussion, the group IF] is dense in G when- 

ever F acts ergodically on X. However, proving the latter assertion requires 

a considerably more elaborate argument than the direct proof we provided in 

Proposition 3.5. In addition to the topology of convergence in measure on 

G = Aut(X, 2(, it) one can consider the much stronger uniform topology given 

by the metric d~(S,T) = tt{x �9 X : Sx ~ Tx}. 
Although with respect to this topology G is a non-Polish topological group, 

the subgroup [F] is a closed Polish subgroup (see Hamachi-Osikawa [12], Lemma 

53, or observe directly that  for a countable generating collection of measur- 

able partitions P = {P = (P1 , - . - ,Pn)}  of X and a fixed enumeration F = 

{71,72,---}, the set of elements 

(h(P;kl,k2,. . . ,kn) C [F]: P �9 P ,  (kl,k2,... ,kn) �9 Nn}, 

where 

h(P; kl, k s , . . . ,  kn) I Pj = 7k~, J = 1, 2 , . . . ,  n, 

is a countable dense subset of [F]). We now note that  for both G and [F], our 

proofs show that  their actions on (X, 2(, #) are in fact whirly with respect to 

the uniform topology. Again we are indebted to V. Pestov for pointing this out. 

4. The  a u t o m o r p h i s m  group of  the  Gauss ian  measure  

We now turn back to the full orthogonal group G = O(l 2) acting on (R ~ , ? ~ )  as 

explained before Corollary 1.8. Thus we let 41, ~ , . . - :  X ~ ~ be i.i.d. N(0, 1) 

random variables defined as the coordinate functions on the space of sequences 

X -- R~ equipped with its Borel a-algebra X and the Gauss measure # = ~oo. 

We identify 12 with the closed linear subspace H C L2(#) generated by the 

functions ~1,~2,...; namely, (cl,c2,...) E 12 with c1~1 + c2~2 + . . .  E H.  The 
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near-action is given by 

(c~(1 + c~(2 +-"  ") = (c1(1 + c2~2 + ' "  ") o g whenever (c~, c~,. . .)  = g(cl, c2, . . . )  

for (c l ,c2 , . . . )  6 12, g 6 O(12); we call it the automorphism group of the 

aauss ian measure. 

THEOREM 4.1: The near-action of the automorphism group of  the Gaussian 

measure is whirly. 

The following technical lemma is important for the proof. Basically, it states 

that a remote perturbation of a finite-dimensional condition forces the condi- 

tional probability to be strictly positive. Note that the relation ? (A[ . . . )  > 0 

may be written as sgn?(A[ . . .)  = 1, using the (discontinuous) sign function. 

LEMMA 4.2: Let A C X be a measurable set of positive probability, and a 6 

(0, ~r/2). Then 

(a) sgnY(A](1 cosa  + (n  sina)  -+ 1 in probability, for n -+ oo; 

(b) for each m = 1, 2 , . . .  

sgn?(A[(1 cosa  + ( n s i n a , . . .  ,(m cosa  + (n+m-1 sina)  --+ 1 for n --+ oo 

in probability. 

Proof'. (a) We introduce functions fn: ~ --+ [0, 1], g,~: ~2 __+ [0, 1] by 

P(A[(1 cos a + (n sin a) = fn((1 COS Oz + (n sin a),  

?(A](1, r = gn((1, (n), 

a n d a s e t B C l ~ b y  

B = {Xl: ]?(A](1 = Xl) > 0}. 

(These fn, g~, B are treated modO, of course.) We have 

]?(A[(,, r ~ ]P(A[r 

in probability (for n -+ c~). On B • ~ we get 

sgngn -+ 1 in measure, 

with respect to 7 • 7, where 7 = N(0, 1) is the one-dimensional Gaussian 

measure. However, any equivalent (that is, mutually absolutely continuous) 

finite measure on B x ~ may be used equally well. 
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Taking into account that  fn results from gn by integration (along straight 

lines orthogonal to the unit vector (cos a, sin a)) we get 

( u - x cos a ) 
sgnfn(U) > esssup~sgngn x, s ina  

The map 
(x, u)~-+ (x ,U--XC~ 

sin a / 
of B x R to itself sends the measure to an equivalent measure. So, 

( u-xcosa)___ 
sgngn x, sin a -~ 1 

in measure, which implies sgnfn ~ 1 in measure (with respect to ~). 

(b) The same as before, but ~ is replaced by ~m, ~ by ]~2m, ~1 by (~1,. �9 ~,~) 

and ~n by (~n,-.-,~n+m--1). 

Proof of Theorem 4.1: Let A E X be a set of positive measure, and U a 

neighborhood of e in G; by Remark 3.4 it is sufficient to prove that  #(UA) = 1. 
Of course, UA is t reated as in Remark 3.4 (and the same about ZA for any 

Z c G ) .  
Ergodicity of G ensures that  #(GA) = 1. Applying the same argument to 

conditional measures we get (Mmost everywhere) 

]?(G,~AI~I,..., ~m) >_ sgn]?(Al~l, . . . ,  ~m), 

where Gm = {g E G : g~l = ~1,.. .  ,g~m = ~m}. For m large enough we have 

Gm C U, therefore 

]?(UA];1, . . . ,  era) :> sgn~(AI ;1 , . . . ,  ~m)- 

However, there is nothing special in ~1, . . . ,  ~m; by the O(/2)-invariance, the same 

holds for ~1 = ~1 cos a + ~n sin a , . . . ,  ~,~ = ~m cos a + ~n+m-1 sin a provided that 

n > m and the corresponding subgroup G,~,~,a = {g E G : g~l = ~l , - -- ,g~m = 
~m} is contained in U. We choose m so large and a so small that  G,~,n,~ C U 

for every n > m (this is possible since for every h E H its distance from the 

span of ~1 , . . . ,  ~m tends to 0 uniformly in n for m --~ c~, a --+ 0). We have 

F(UA[~I , . . . ,  ~m) _> sgnl?(A]~l, . . . ,  ~m) 

for all n > m. For n -~ cx~ the right-hand side converges to 1 in probability 

(therefore, in L 1) by Lemma 4.2. Taking the expectation we get #(UA) = 1. 
| 
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A p p e n d i x  A 

Measure concentration (that is, the property of being a L@vy family or group) 

is proven for various cases by a number of methods [23], [16]. Strong results 

need complicated proofs involving advanced methods (Riemann geometry, rep- 

resentation theory, etc.). More elementary arguments give weaker results which 

are satisfactory for many topological applications such as the ones we needed in 

Section 1. This appendix collects elementary (complete) proofs for many LSvy 

families. 

A. 1. Consider Gaussian measures yn on R n, 

~[n(dx) : (27~)--n/25r--nexp( -- ~22 )dx ~ 

note that 7~(]~ n) = 1 and f Ix127n(dx) = na  2. We claim that (Rn ,dn ,Tnn)  is a 

L@vy family whenever the positive numbers an satisfy an --+ 0; here dn(x,  y) = 

I x - Yl is the usual Euclidean metric on ~n. (Only the case an = n -1/2 will be 

used.) 
According to the well-known relation between L@vy families and Lipschitz 

functions [16, Sect. 1.3], it suffices to prove the inequality 

/ f2d7;~ <_ ~2llfll~ip 

for all functions f :  I~ n ~ I~ such that  f f dT~  = 0 and 

I f (x )  - f(Y)l 
llfilLip = sup I x - y l  < ~ "  xC:y 

Here is a proof. We introduce functions r u: ~n • (0, a2) ~ IK 

Jx~: 
r t) = (27r)-n/2t-n/ :exp( - - ~ - ] ,  

u(x ,  t) = [ f ( y ) r  - x, a 2 - t)dy; 
J 

they satisfy the (famous) partial differential equations 

1 
= 0 ,  + = 

here A = 02/Ox 2 + " "  + 02/OX2n . Note that u(0 ,0+)  = f f d v  n = 0 and 

u(x ,  a 2 - )  = f ( x ) .  It remains to prove the inequality 

f <_ 
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for 0 < t < (72, assuming IlfllLip _< 1, that  is, IVu(x, t ) l  ~ 1 for all x,t; here V 

is the gradient (in x). For t --+ 0+ the integral tends to u2(0,0) = 0. We have 

d 

which completes the proof. 

See also [16, pp. 42, 49]. 

A.2. Euclidean spheres S n-1 = {x E R n : Ix I -- 1} are a L@y family, since a 

random point of S n-1 can be obtained from a Gaussian random vector ~ E 1R n 

distributed 7~/x/~ by the normalization map ~ ~ ~ ;  the map belongs to Lip(2) 

as far as I~1 -> 1/2. The other case, I~1 < 1/2, may be ignored, since its 

probability tends to 0 for n -+ oo. The argument works also when the radius rn 

of the sphere is not just 1 but satisfies r~ = o(x/~). See also [11, 2.1, 2.3], [16, 

Prop. 2.10], [10, 3�89 
An alternative, comparably elementary way to A.1 and A.2 is first proving 

A.2 via the spectral gap of the Laplace operator on the sphere [11, 4.2(a)], [16, 

Th. 3.1 and p. 49] and then deriving A.1 from A.2 [16, p. 28]. 

A.3. The Stiefel manifolds W~ = {(xl, x2) E S n-1 • S n-1 : @1, x2) = 0} are a 

L@y family, since a random point of W~ can be obtained from a 2n-dimensional 

Gaussian random vector (~1, ~2) e R ~ | n distributed "~ln/v/-~(~)~/ln/x/~ by normal- 

ization, subsequent orthogonalization (~1, ~2) ~ (~1, ~2 - (~2, ~1)~1) and normal- 

ization again. The Lipschitz property is ensured as far as 1(~1,~2)1 _< c21~111~21 

and I~11, 1~21 C [1 - ~ 2 ,  1 + c2], where ~2 is an appropriate absolute constant. 

The other case may be ignored, since its probability tends to 0 for n --+ c~. 

The orthonormalization commutes with the natural action of O(n); thus, O(n)- 

invariance of the Gaussian measure ensures O(n)-invariance of the measure on 

W~ ~. The same argument (with ~k in place of ~2) works for 

Wff : {(Xl, . . .  ,Xk) E (sn-1) k : (Xi,Xj) : 0 for 1 _< i < j < k}. 

See [21], [22]. The proof in [11, 3.3] is somewhat less elementary. 

A.4. The full orthogonal group O(H)  of a separable infinite-dimensional 

Hilbert space H over ]R is a L@y group. 

Pro@. We equip O(H)  with a left-invariant metric and consider the subgroups 

O(n) = {g E O(H)  : gen+l = e~+l,gen+2 = en+2,. . .} where e l , e~ , . . ,  are a 

chosen orthonormal basis of H. Let An C O(n), liminfm,~(A~) > 0. Given 

> 0, we take k and 8 such that  

@~ -~%112 + .  + @~ -~%11 ~ < ~ ~ d(~,~') < 
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for all g,g' E O(H). The maps Tn: O(n) --+ W~. , T,(g) = (gel , . . .  ,gek) satisfy 

dist(Tn(g),Tn(g')) < ~ ==> d(g,g') < c 

for all g, g' E O(H). Therefore 

B~(An) D T~I(B~(Tn(An))).  

It remains to apply A.3. 

A.5. The commutative Polish group L0([0, 1], S 1) is a L~vy group. It con- 

sists of all equivalence classes of measurable functions [0, 1] ~ S 1, where S 1 = 

{z E C : Izl = 1}, and is in fact monothetic [7]. The following proof of its L~vy 

property is basically an extract from [16, Sect. 1.6, 4.1]. See also [16, p. 31] and 

[7]. 

Let G be a commutative Polish group with a compatible invariant metric d, 

and # a Borel probability measure on G; we define 

VarLip(p) = sup{x/f  f2d#l Ilfl]Lip ~ 1, f f d #  = 0}. 

Clearly, 

VarLip(p) _< diamsupp(#)  

(the diameter of the support). It is easy to see that 

, ~2 H1/2 
VarLip(#) = sup lift * ~ - ( f  * •J ,,sup, 

f ]l filLip 

where ( f  �9 #)(x) = f f ( x  - y)#(dy), Ilfllsup -- supx~c If(x)l,  and the squares 
are taken pointwise. For any two measures #, v 

Ilf 2 .  # *  v -  ( f * # *  v):llsu p 

< i i ( f 2 ,  ~ _ ( f ,  ~ ) 2 ) ,  vllsup + l i f t  * ~)2 * ~ - ( f  * ~ * v)2II~up 

< IIf 2 * ~ - ( f  * ~)2IIsup + VarLip~(L')llf * ~ll~ip 

VarLip 2 (#)Ilfll~ip + VarLip 2 (v) llfll~ip, 

thus 
VarLip(p * v) _< v/VarLip2(#) + VarLip2(v). 

The argument is applied to G = L0((0, 1) ,S 1) as follows. We choose the 

Ll-metric 

/o 1 d(x,y) = Ix(t) - y(t)ldt. 
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For each n we consider the n-dimensional compact subgroup 

t ( - n  = K n , 1  + " ' "  -t- K n , n  C a 

where /(n m is the one-dimensional group of functions constant on (m-1 m~ , k n ' n ] 

( m - 1  m) The corresponding invariant measures are and equal to 1 on (0, 1) \ ---C- n " 

related by 

r n K , ~  = m K n , 1  * " " " * m K , ~ , n  �9 

However, 

VarLip(mK ..... ) _< diam(Kn,,~) _< 2In, 

therefore VarLip2(mKn) _< n .  (2/n) 2 -+ 0 for n --+ c~. It remains to use the 

relation between L4vy families and Lipschitz functions mentioned in A.1. 

A.6. The Polish group G = Aut([0, 1]) is a L@vy group. It consists of all equiv- 

alence classes of invertible transformations [0, 1] --+ [0, 1] preserving Lebesgue 

measure. Its L~vy property may be proven by the argument of A.5, general- 

ized to an arbitrary (not just commutative) Polish group G with a compatible 

right-invariant metric d (that is, d(glh, 92h) = d(91,92)). Still, 

VarLip2(# * u) _< VarLip2 (#) + VarLip2 (u) 

1/2 
where VarLip(#) is defined as  s u p f  [ i f2 ,  # _ ( f ,  it)2llsup/l[fllLip ' f ,  # is de- 

fined by ( f  * #)(x) = f f ( x y - 1 ) # ( d y ) ,  and # * v is defined by f f d ( #  * u) = 
f f (xy)#(dx) , (dy) .  However, the inequality VarLip(#) _< diamsupp(#) need 

not hold, since the map y ~-+ xy -1 need not be isometric. If the metric d is 

bi-invariant (that is, d(glh, g2h) = d(gl,g2) = d(hgl, hg2)), then VarLip(#) _< 

diam supp(#). 

We apply the argument to the group Sn of all permutations of { 1 , . . . , n }  

equipped with the Hamming metric 

d(g,h) = # ( k :  g(k) r h(k)} 
n 

Its invariant measure ms ,  is the convolution of n measures, each concentrated 

on transpositions (that is, g such that  d(g, e) <_ 2/n). Indeed, Sn-1 is naturally 

embedded into Sn, and ms,~ = ms,,_1 * it where it is distributed uniformly on 

transpositions of n and k for k -- 1 , . . .  ,n.  So, VarLip2(ms,) < n - ( 4 / n )  2 -+ 0 

for n --+ oo. 

It remains to note that  there exists a natural embedding of the inductive 

limit group S = lim,~-~oo $2~ as a dense subgroup of G = Aut([0, 1]). Here 
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the group $2,, is embedded into $2n+1 as the subgroup of permutations # of 

{ 0 , 1 , . . . , 2  n+l - 1} of the form &(2k) = 2a(k) and &(2k + 1) = 2a(k) + 1, 

k = 0, 1 , . . . ,  2 n - 1, a E $2,,. Then, for each n, the group $2~ is identified as 

the subgroup of G = Aut ([0, 1]) which consists of the transformations permuting 

the 2 n dyadic sub-intervals of [0, 1] by translations. It can be easily seen that  

the restriction of the uniform metric du(S,T) = It{x E X : Sx ~ Tx}  on G 

to $2~ is the Hamming metric. Thus with respect to this metric and using the 

estimation for VarLip 2 (rnsn) we see that  S is a L@vy group. Since the identity 

map from (S, d~) to G is continuous and since S is dense in G, we can finally 

conclude that  also G is a L@vy group. See [9] and also [16, Corollary 4.3]. 

A p p e n d i x  B 

The theorem stated below is well known and widely used. However, it seems 

that  complete proofs are not easily found. The proof we provide is from Oxtoby 

[25] where it is at tr ibuted to Ulam. 

THEOREM B.I :  A Polish topological group G which admits a Borel a-finite 

(either right or left) invariant measure class is locally compact. 

Proof: Let It be a a-finite measure on G such that  

It(B) > 0 r It(gB) > 0, V measurable B, Vg E G. 

Let A be a measurable subset of G with 0 < #(A) < co. Since every Borel 

measure on a Polish space is regular, there exists a compact set K C A with 

0 < It(K) < oo. Let H < G be the subgroup of G which is generated by 

L = K U K -1. Clearly H = U{L n : n e N} is a a-compact group. If G / H  is 

uncountable, then there are uncountably many distinct cosets of H in G and, in 

particular, uncountably many pairwise disjoint translations of K.  This, however, 

contradicts the a-finiteness of It and we conclude that  G / H  is countable. Now 

Baire's theorem implies that  intL n 7~ ~ for some n and we conclude that  G is 

locally compact. | 

Remark B.2: In [18, theorem 7.1] Mackey proved a more general theorem. He 

showed that  if G is an analytic Borel group (no topology is given) which admits 

an invariant a-finite measure class, then there exists a unique locally compact 

topology on G whose Borel structure is the given one and under which G is a 

topological group. His proof relies on Weil's theorem, [33]. Finally, we note that  

in [1] A. D. Alexandroff proved a related result (he is not assuming a-finiteness 
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of the invariant measure but, instead, the existence of an open set with finite 

positive measure). 

References 

[1] A. D. Alexandroff, On groups with an invariant measure, Doklady Akademii Nauk 
SSSR 34 (1942), 5-9. 

[2] W. Banaszczyk, On the existence of exotic Banach-Lie groups, Mathematische 
Annalen 264 (1983), 485 493. 

[3] H. Becker and A. S. Kechris, The descriptive set theory of Polish groups, London 
Mathematical Society Lecture Notes 232, Cambridge University Press, 1996. 

[4] G. Beer, A Polish topology for the closed subsets of a Polish space, Proceedings 
of the American Mathematical Society 113 (1991), 1123-1133. 

[5] A. Danilenko, Point realization of Boolean actions of countable inductive limits of 

locally compact groups, Matematicheskaya Fizika, Analiz, Geometriya 7 (2000), 
35-48. 

[6] R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks/Cole, 
Pacific Grove, CA, 1989. 

[7] E. Glasner, On minimal actions of Polish groups, Topology and Its Applications 
85 (1998), 119-125. 

[8] E. Glasner and B. Weiss, The universal minimal system for the group of homeo- 

morphisms of the Cantor set, Fundamenta Mathematicae 176 (2003), 277-289. 

[9] T. Giordano and V. Pestov, Some extremely amenable groups, Comptes Rendus 
de l'Acad6mie des Sciences, Paris 334 (2002), 273-278. 

[10] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, 

Birkh~iuser, Basel, 1999. 

[11] M. Gromov and V. D. Milman, A topological application of  the isoperimetric 
inequality, American Journal of Math 105 (1983), 843-854. 

[12] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's 

theorems, Seminar on Mathematical Sciences, 3. Keio University, Department of 
Mathematics, Yokohama, 1981. 

[13] W. Herer and J. P. R. Christensen, On the existence of pathological submeasures 

and the construction of exotic topological groups, Mathematische Annalen 213 
(1975), 203-210. 

[14] S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997. 

[15] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 
156, Springer-Verlag, Berlin, 1991. 



328 E. GLASNER, B. TSIRELSON AND B. WEISS Isr. J. Math. 

[16] M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical 
Society, Providence, RI, 2001. 

[17] M. Lemaiiczyk, F. Paxreau and J.-P. Thouvenot, Gaussian automorphisms whose 

ergodic self-joinings axe Gaussian, Fundamenta Mathematicae 164 (2000), 253- 
293. 

[18] G. W. Mackey, Borel structure in groups and their duals, Transactions of the 
American Mathematical Society 85 (1957), 134-165. 

[19] G. W. Mackey, Point realizations of transformation groups, Illinois Journal of 
Mathematics 6 (1962), 327 335. 

[20] V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex 

bodies, Functional Analysis 5 (1971), 28-37. 

[21] V. D. Milman, Asymptotic properties of functions of several variables that are 
defined on homogeneous spaces, Soviet Mathematics Doklady 12 (1971), 1277- 
1281; translated from Doklady Akademii Nauk SSSR 199 (1971), 1247-1250. 

[22] V. D. Milman, On a property of functions defined on infinite-dimensional 

manifolds, Soviet Mathematics Doklady 12 (1971), 1487-1491; translated from 
Doklady Akademii Nauk SSSR 200 (1971), 781-784. 

[23] V. D. Milman, The heritage of P. Ldvy in geometrical functional analysis, Col- 
loque Paul L6vy sur les Processus Stochastiques (Palaiseau, 1987), Asterisque 
157-158 (1988), 273-301. 

[24] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Annals 
of Mathematics 33 (1932), 587-642. 

[25] J. C. Oxtoby, Invariant measures in groups which are not locally compact, 
Transactions of the American Mathematical Society 60 (1946), 215 237. 

[26] V. Pestov, On free actions, minimal flows, and a problem by Ellis, Transactions 
of the American Mathematical Society 350 (1998), 4149-4165. 

[27] V. Pestov, Topological groups: where to from here?, Topology Proceedings 24 
(1999), 421-502. 

[28] A. Ramsay, Virtual groups and group actions, Advances in Mathematics 6 (1971), 
253-322. 

[29] V. A. Rohlin, Selected topics from the metric theory of dynamical systems, 

Advances in Mathematics (Russian) Uspehi Matematicheskii Nauk (N.S.) 4 
(1949), 57-128; American Mathematical Society Translations, Series 2, 49 (1966), 

171-240. 

[30] V. S. Varadarajan, Groups ofautomorphisms of Borel spaces, Transactions of the 
American Mathematical Society 109 (1963), 191-220. 

[31] V. S. Varadaxajan, Geometry of Quantum Theory, Vol. II, Van Nostrand, 
Princeton, 1970. 



Vol. 148, 2 0 0 5  AUTOMORPHISM OF GAUSSIAN MEASURE 329 

[32] A. M. Vershik, Measurable realizations of automorphism groups and integral 
representations of positive operators, (Russian) Sibirskii Matematicheskii Zhurnal 
28 (1987), 52-60; English translation: Siberian Mathematical Journal 28 (1987), 
36-43. 

[33] A. Well, L 'intbgration dans les groupes topologiques et ses applications, Hermann 
et Cie, Paris, 1940. 

[34] R. J. Zimraer, Extensions of ergodic group actions, Illinois Journal of Mathe- 
matics 20 (1976), 373-409. 


