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ABSTRACT 

We present a simpler proof of a result of J. Bourgain on almost extensions 

of functions satisfying a Lipschitz condition on g-nets. 

Theorem 1 of the article [B] is: 

Let  S = {[[xll -- 1} be the unit sphere o f  the n-dimensional normed space E,  

and let C~ be a ~-net in S.  A s s u m e  that  Y is a Banach space and that  f :  E~ -+ Y 

is a Lipschitz  m a p  with constant L. Let  T > C5. Then  there is a map  f:  E --+ Y 

satisfying 

]If(x) - f(x)]] ~ ~-L for x E $~, 

[]fillip ~ 6 (1  -{- 5"r- ln)L.  

(C is a universal numerical constant.)  

The proof in [B] uses ingenious and delicate arguments. The purpose of this 

note is to give a transparent and natural proof of the crucial step of the theorem. 

To make this article self-contained, we include a complete proof of Bourgain's 

theorem. 

We begin with some notation. 

Let E be a normed space of dimension n, let K be a convex subset of E, and 

fix T > 0. Denote by B ( x ,  "r) the open ball of radius z in E centered at x, and 
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put K~ = U ~ e g  B(x,~-), the 7-neighborhood of K.  Denote by # the Lebesgue 

measure on E normalized by Vol(B(0, 7)) = 1. We denote by X the indicator 

function of B(0, 7). Let Y be a normed space. For a mapping f :  K -+ Y its 

Lipschitz constant on K is 

] I f ( x 1 )  - f ( x 2 ) l l  
llfllX p(K) ---- sup 

xl,x2EK []XI - -  X2[I 

The result we prove is the following 

PROPOSITION: Fix 0 < 5, L < c~. Let K be a convex subset of E,  and assume 

that the map f: K~ --+ Y satisfies 

(*) I tf(xl)  --  f ( x 2 ) l l  ~ L ( I l x l  - x211 + for all x ,x2 e 

Then the map g = f * X, which is well defined from K into Y ,  satisfies 

6n 
($*) Itglllip(K) ~ L(1 -}- ~TT)" 

Proof: Consider two points in K.  By translating K we may assume tha t  one 

of them is the origin and denote the other one by x. Put  B -- B(0, 7) and Bx -- 

B(x ,  T). Then g(0) - g(x) --- fB f - fB~ f -= SM f - fM' f ,  where U -- B \ B~, 

M '  = B~ \ B.  

Consider the family {Lt = t + IR. X}teE of straight lines parallel to x. Each Lt 

intersects M and M ~ in intervals of the same length (which does not exceed ]Ix]i, 

and is exactly ]]x]] in case Lt intesects B n B~). 

Let c: M ~ M t be the transformation which translates each interval Lt M M 

onto the interval Lt M M ~ along Lt (Cavalieri transformation). 

Fix a hyperplane Z C E such that  x ~ Z, and let P be the projection from E 

to Z along x, and w(t) (t E E) be the length of L t n B .  The Lebesgue measure on 

E is the product  of any two appropriately normalized measures on Z and on the 

line IR- x. We normalize the measure on ]R. x by setting the measure of [0, x] to 

be equal to I]x]l. This and the choice #(B) = 1 determine the Lebesgue measure, 

v, on Z, and we have 

f w(z)dv(z)  -= VolB ----- 1. 

P(B) 

Consider B as ~he disjoint union of two sets ("wide" and "narrow"): 

W = {t E B I L t M B M B ~  ~ 0}, 

N = { t E B I L t M B M B x = O }  (clearly, N c M ) .  



Vol. 109, 1999 ALMOST EXTENSIONS OF LIPSCHITZ FUNCTIONS 153 

Thus the length of the intersection Lt n M is lixll for t E W and w(t) for t C N. 

Also 
w(t), t ~ W N M ,  

l i t -  c(t)ll = IIxll, t E N. 

Now, we can e s t i m a t e  Itglllip(S): 

Hg(O)-g(x)ll = ,l f fd#~- f fdttil = H f (f - f oc)d~ll 
M M ~ M 

<- f llf - f o clid # 
M 

~_ , i(ll,-c(t)ll + a ) d , ( , ) :  s;(a. VolM + j I I t - . ( t ) l ld, ( t ) ) .  
M M 

(The second equality holds because c is measure preserving from M onto M ~, 

and the last inequality follows from the condition (*) of the proposition.) 

The last integral will be estimated separately on W n M and on N: 

S IIt-c(t)lldt~(t) = S w(t)d#(t) 
ItVAIYI I, V A M  

= S llzltw(t)du(t) 
P ( W A M )  

-= Ilxll S w(t)du(t) 
P ( W N M )  

= Ilxll • Vol w. 

(The second equality follows from the normalization of the measures and from 

the fact tha t  for each t, W N M intersects Lt in an interval of length IixII.) 

J i l t -  c(t)lldv(t) = i Ilxlldv(t) = tlxll" VolN. 

N N 

Hence 

i ll t -c(t)lld#(t ) = Nzll. (Vol W + Vol N ) =  Ilxll VolB = Ilxll . 

M 

We also observe that  for Ilxll < 2~ 
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where 0~,n(llx]]) = o(llx]]). 
(Indeed, BAB~ c B(x/2 ,  r + [Ix[[/2) \ B(x/2,  r - [Ix[[/2).) 

Combining all the estimates, we obtain 

llg(x)-g(O)l[ <_ L(6Vo lM + / [ , t - c ( t ) l , d ~ ( t ) ) <  L(1  + ~) l l x l l  + o(llxll ) 

M 

and the result follows from the convexity of # (indeed, for h: [0, 1] -~ Y, if 

l imsup Ilh(r + s) - h(r)l[ <_ C f o r a n y 0 < r < l ,  
s-+0 8 

then clearly [[h(1) - h(0)[[ _< C). This proves the proposition. 

Remark: The formula for Vol M actually yields estimates for g even when K is 

not  convex. 

We now reproduce Bourgain's argument for the final part  of the proof of his 

theorem. 
Denote the points of E5 by {Xp}~l . Using a translation in Y we may assume 

tha t  

I[f][oo := m a x  [[f(xp)[[ ( 2[[f[[lip -- 2L. 
l (pK_N 

Consider a parti t ion of unity (qOp} on S subordinated to the covering 

{B(Xp,2~) • S}1N. Define fx: S -+ Y by 

N 
f l (x)  = ~ f(Xp)Vp(x). 

1 

Then [Iflllo~ -< Ilfllo~ -< 2L, and Ilfl(x) - f(x)ll <_ 26. n for any x e $~. 

For arbi trary zl, z2 E S, 

IIf,(zl) - fl(z2)[[ _< max{llf(x~) - f(x2)lllx, • S(zi,25) N£~, i  = 1,2} 

_~ L(I[Zl - z2[I q- 46). 

Direct computat ion shows tha t  if we extend f l  to all of E by put t ing 

](X)----- OL(IIX]I) " f l  ( ~ - ~ )  ( f (0)  : 0 ) ,  

where a( t)  = max(1 - ] t  - 11,0 ) (t C R+), then f satisfies 

]If(z) - f (x) l  I <_ 4L([lz - x[] + 6) 
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for any x, z E E. 

Finally, we use the Proposition. Normalize the Lebesgue measure in E by 

Vol(B(0, T/8)) = 1, let X be the indicator function of B(0, Z/8), and set f = fi*X. 

Fix any x E £~, then ](x)  = f l (x ) ,  hence 

IIf(x)  - f (x ) l l  ~ II?(x) - ] (x) l l  + Ilfa(x) - f (x) l l  

< 4L(~-/8 + 5) + L -  25 = L(T/2 + 65) < TL,  

if we choose ~- > 125. 

By the Proposition (with ~- replaced by T/8, L by 4L, and with K -- E - -  the 

whole space), 
( 5n ) ( 5 n )  

]]fillip ~ 4L 1 + 2(--(~/8) -< 16L 1 + T ' 

as demanded. 

Remark: In Bourgain's argument f is taken to be f = ] . K ~  for K~ with special 

properties, rather than f = f . X .  Our proposition shows that one can use the 

simplest convolution (averaging). 
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