ISRAEL JOURNAL OF MATHEMATICS 109 (1999), 151-155

A REMARK ON ALMOST EXTENSIONS OF LIPSCHITZ FUNCTIONS

BY

BORIS BEGUN*

Department of Mathematics Technion -- Israel Institute of Technology, 32000 Haifa, Israel e-mail: begun@tx.technion.ac.il

ABSTRACT

We present a simpler proof of a result of J. Bourgain on almost extensions of functions satisfying a Lipschitz condition on δ -nets.

Theorem 1 of the article [B] is:

Let $S = \{||x|| = 1\}$ be the unit sphere of the *n*-dimensional normed space E, *and let* \mathcal{E}_{δ} *be a* δ *-net in S. Assume that Y is a Banach space and that* $f: \mathcal{E}_{\delta} \to Y$ *is a Lipschitz map with constant L. Let* $\tau > C\delta$. Then there is a map $\bar{f}: E \to Y$ *satisfying*

$$
||f(x) - \bar{f}(x)|| \le \tau L \quad \text{for } x \in \mathcal{E}_{\delta},
$$

$$
||\bar{f}||_{\text{lip}} \le C(1 + \delta \tau^{-1} n)L.
$$

(C is a universal numerical constant.)

The proof in [B] uses ingenious and delicate arguments. The purpose of this note is to give a transparent and natural proof of the crucial step of the theorem. To make this article self-contained, we include a complete proof of Bourgain's theorem.

We begin with some notation.

Let E be a normed space of dimension n, let K be a convex subset of E , and fix $\tau > 0$. Denote by $B(x, \tau)$ the open ball of radius τ in E centered at x, and

^{*} This is part of the author's Master Thesis written at the Technion — Israel Institute of Technology, under the supervision of Prof. Yoav Benyamini. Received July 11, 1996 and in revised form July 30, 1997

put $K_{\tau} = \bigcup_{x \in K} B(x, \tau)$, the τ -neighborhood of K. Denote by μ the Lebesgue measure on E normalized by $Vol(B(0, \tau)) = 1$. We denote by χ the indicator function of $B(0, \tau)$. Let Y be a normed space. For a mapping $f: K \to Y$ its Lipschitz constant on K is

$$
||f||_{\text{lip}(K)} = \sup_{x_1, x_2 \in K} \frac{||f(x_1) - f(x_2)||}{||x_1 - x_2||}.
$$

The result we prove is the following

PROPOSITION: *Fix* $0 < \delta, L < \infty$. Let K be a convex subset of E, and assume *that the map f:* $K_{\tau} \rightarrow Y$ *satisfies*

(*)
$$
||f(x_1) - f(x_2)|| \le L(||x_1 - x_2|| + \delta)
$$
 for all $x_1, x_2 \in K_\tau$.

Then the map $g = f * \chi$, which is well defined from K into Y, satisfies

$$
(**) \qquad \qquad ||g||_{\text{lip}(K)} \leq L\Big(1+\frac{\delta n}{2\tau}\Big).
$$

Proof: Consider two points in K . By translating K we may assume that one of them is the origin and denote the other one by x. Put $B = B(0, \tau)$ and $B_x =$ *B(x, T).* Then $g(0) - g(x) = \int_B f - \int_{B_x} f = \int_M f - \int_{M'} f$, where $M = B \setminus B_x$, $M' = B_x \setminus B$.

Consider the family $\{L_t = t + \mathbb{R} \cdot x\}_{t \in E}$ of straight lines parallel to x. Each L_t intersects M and M' in intervals of the same length (which does not exceed $||x||$, and is exactly $||x||$ in case L_t intesects $B \cap B_x$.

Let $c: M \to M'$ be the transformation which translates each interval $L_t \cap M$ onto the interval $L_t \cap M'$ along L_t (Cavalieri transformation).

Fix a hyperplane $Z \subset E$ such that $x \notin Z$, and let P be the projection from E to Z along x, and $w(t)$ ($t \in E$) be the length of $L_t \cap B$. The Lebesgue measure on E is the product of any two appropriately normalized measures on Z and on the line $\mathbb{R} \cdot x$. We normalize the measure on $\mathbb{R} \cdot x$ by setting the measure of $[0, x]$ to be equal to ||x||. This and the choice $\mu(B) = 1$ determine the Lebesgue measure, ν , on Z, and we have

$$
\int_{P(B)} w(z)d\nu(z) = \text{Vol}\,B = 1.
$$

Consider B as the disjoint union of two sets ("wide" and "narrow"):

$$
W = \{t \in B \mid L_t \cap B \cap B_x \neq \emptyset\},\
$$

$$
N = \{t \in B \mid L_t \cap B \cap B_x = \emptyset\} \quad \text{(clearly, } N \subset M).
$$

Thus the length of the intersection $L_t \cap M$ is $||x||$ for $t \in W$ and $w(t)$ for $t \in N$. Also

$$
||t - c(t)|| = \begin{cases} w(t), & t \in W \cap M, \\ ||x||, & t \in N. \end{cases}
$$

Now, we can estimate $||g||_{\text{lip}(S)}$:

$$
||g(0) - g(x)|| = || \int_{M} f d\mu - \int_{M'} f d\mu || = || \int_{M} (f - f \circ c) d\mu ||
$$

\n
$$
\leq \int_{M} ||f - f \circ c|| d\mu
$$

\n
$$
\leq L \int_{M} (||t - c(t)|| + \delta) d\mu(t) = L(\delta \cdot \text{Vol } M + \int_{M} ||t - c(t)|| d\mu(t)).
$$

(The second equality holds because c is measure preserving from M onto M' , and the last inequality follows from the condition (*) of the proposition.)

The last integral will be estimated separately on $W \cap M$ and on N :

$$
\int_{W \cap M} ||t - c(t)||d\mu(t) = \int_{W \cap M} w(t)d\mu(t)
$$
\n
$$
= \int_{P(W \cap M)} ||x|| \cdot w(t)d\nu(t)
$$
\n
$$
= ||x|| \int_{P(W \cap M)} w(t)d\nu(t)
$$
\n
$$
= ||x|| \cdot \text{Vol }W.
$$

(The second equality follows from the normalization of the measures and from the fact that for each t, $W \cap M$ intersects L_t in an interval of length $||x||$.)

$$
\int_{N} ||t - c(t)||d\mu(t) = \int_{N} ||x||d\mu(t) = ||x|| \cdot \text{Vol } N.
$$

Hence

$$
\int_{M} ||t - c(t)||d\mu(t) = ||x|| \cdot (\text{Vol } W + \text{Vol } N) = ||x|| \text{ Vol } B = ||x||.
$$

We also observe that for $||x|| < 2\tau$

$$
\text{Vol } M = \frac{1}{2} \text{Vol}(B \Delta B_x) \leq \frac{1}{2\tau^n} \Big[\Big(\tau + \frac{\|x\|}{2} \Big)^n - \Big(\tau - \frac{\|x\|}{2} \Big)^n \Big] = \frac{n}{2\tau} \|x\| + \theta_{\tau,n}(\|x\|),
$$

where $\theta_{\tau,n}(\|x\|) = o(\|x\|).$

(Indeed, $B \Delta B_x \subset B(x/2, \tau + ||x||/2) \setminus B(x/2, \tau - ||x||/2)$.) Combining all the estimates, we obtain

$$
||g(x) - g(0)|| \le L(\delta \text{ Vol } M + \int_{M} ||t - c(t)||d_{\mu}(t)) \le L\Big(1 + \frac{\delta n}{2\tau}\Big)||x|| + o(||x||)
$$

and the result follows from the convexity of μ (indeed, for h: [0, 1] \rightarrow Y, if

$$
\lim_{s\to 0}\sup\frac{\|h(r+s)-h(r)\|}{s}\leq C\quad\text{ for any }0\leq r\leq 1,
$$

then clearly $||h(1) - h(0)|| \leq C$. This proves the proposition.

Remark: The formula for Vol M actually yields estimates for g even when K is not convex.

We now reproduce Bourgain's argument for the final part of the proof of his theorem.

Denote the points of \mathcal{E}_{δ} by $\{x_p\}_1^N$. Using a translation in Y we may assume that

$$
||f||_{\infty} := \max_{1 \le p \le N} ||f(x_p)|| \le 2||f||_{\text{lip}} = 2L.
$$

Consider a partition of unity $\{\varphi_p\}$ on S subordinated to the covering ${B(x_p, 2\delta) \cap S}_1^N$. Define $f_1: S \to Y$ by

$$
f_1(x)=\sum_1^N f(x_p)\varphi_p(x).
$$

Then $||f_1||_{\infty} \leq ||f||_{\infty} \leq 2L$, and $||f_1(x) - f(x)|| \leq 2\delta \cdot L$ for any $x \in \mathcal{E}_{\delta}$. For arbitrary $z_1, z_2 \in S$,

$$
||f_1(z_1) - f_1(z_2)|| \le \max\{||f(x_1) - f(x_2)|| \mid x_i \in B(z_i, 2\delta) \cap \mathcal{E}_{\delta}, i = 1, 2\}
$$

\$\le L(||z_1 - z_2|| + 4\delta).

Direct computation shows that if we extend f_1 to all of E by putting

$$
\tilde{f}(x) = \alpha(||x||) \cdot f_1\left(\frac{x}{||x||}\right) \qquad (\tilde{f}(0) = 0),
$$

where $\alpha(t) = \max(1 - |t - 1|, 0)$ $(t \in \mathbb{R}_+)$, then f satisfies

$$
\|\tilde{f}(z)-\tilde{f}(x)\|\leq 4L(\|z-x\|+\delta)
$$

for any $x, z \in E$.

Finally, we use the Proposition. Normalize the Lebesgue measure in E by $Vol(B(0, \tau/8)) = 1$, let χ be the indicator function of $B(0, \tau/8)$, and set $\bar{f} = \tilde{f} * \chi$. Fix any $x \in \mathcal{E}_{\delta}$, then $\tilde{f}(x) = f_1(x)$, hence

$$
\|\bar{f}(x) - f(x)\| \le \|\bar{f}(x) - \tilde{f}(x)\| + \|f_1(x) - f(x)\|
$$

$$
\le 4L(\tau/8 + \delta) + L \cdot 2\delta = L(\tau/2 + 6\delta) < \tau L,
$$

if we choose $\tau > 12\delta$.

By the Proposition (with τ replaced by $\tau/8$, L by 4L, and with $K = E$ -- the whole space),

$$
\|\bar{f}\|_{\text{lip}} \leq 4L\Big(1+\frac{\delta n}{2(\tau/8)}\Big) \leq 16L\Big(1+\frac{\delta n}{\tau}\Big),
$$

as demanded.

Remark: In Bourgain's argument \bar{f} is taken to be $\bar{f} = \tilde{f} * K_{\tau}$ for K_{τ} with special properties, rather than $\bar{f} = \tilde{f} * \chi$. Our proposition shows that one can use the simplest convolution (averaging).

ACKNOWLEDGEMENT: I wish to thank Yoav Benyamini for his sincere interest, helpful advice, and encouragement during all the stages of the preparation of this note. I also thank the referee for pointing out an imprecise formulation.

References

[B] J. Bourgain, *Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms,* in *Geometrical Aspects of Functional Analysis* (J. Lindenstrauss and V. D. Milman, eds.), Proceedings of the GAFA Seminar, 1985-86, Lecture Notes in Mathematics, Vol. 1267, Springer-Verlag, Berlin, 1987, pp. 157-167.