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ABSTRACT 

The lacunary and orbital isomorphism problem is solved for a wide class 

of decreasing sequences of measurable partitions of Lebesgue spaces which 

are finitely isomorphic to the standard Bernoulli sequences. 

In troduct ion  

Let (X, Jr, m) be a Lebesgue space with m X =  1, and let 

o o  
~ = ~ 0 > h  > ~ 2 > " ' ,  ~ = {~L=0 

be a decreasing sequence of measurable partitions of X, where e -- ex denotes 

the partitions of X into separate points. 

The following natural isomorphism relations hold for such sequences. 

Two decreasing sequences of measurable partitions (d.s.m.p.) ~ = {~,~} and 

~' = {~'}, given on spaces (X, 9 c, m) and (X', 9 r ' ,  m'), are called: 

(i) isomorphic (~ / ~'), if O ( ~ )  = ~'~ for all n, where • is an isomorphism 

• : X ~ X ' ,  

(ii) finitely isomorphic (( ~ ~'), if for any n there exists an isomorphism 

~n: X ~ X '  such that ~ ( ~ k )  = ~ ,  k = 1 , 2 , . . . , n ,  

(iii) lacunarily isomorphic (~ ~ ~'), if there exist nl < n2 < n3 < " "  such that 
OO ? OO the subsequences { ~  }k=l and {~k}k=l are isomorphic, 
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(iv) orbitally isomorphic (~ o / ~ ) ,  if the intersections 

n = l  n = l  

are isomorphic, where the partition 0(~) (not necessary measurable) is de- 

fined by 

(x,y)eXxX. 

It is obvious that 

FI  ~ I ~ LI ~ OI. 

A sequence ~ is called e rgod ic  if the measurable intersection An%0 ~n (i.e. the 

measurable hull of 0(~)) is trivial. 

The finite isomorphism problem was solved in [Gu]. The isomorphism problem 

for various classes of finitely isomorphic sequences was considered in [Ve2], IV•3], 

[St], [RUl], [Ru2], [Ru3]. A new application to the measure change problem for 

Brownian motion has been recently discovered [DuFST]. 

A.M. Vershik proved a lacunary isomorphism theorem for the class of diadic 

homogeneous sequences [Vel] and this theorem was extended in [Ru4] and [ViGo]. 

Many important applications of d.s.m.p, are connected with the orbital iso- 

morphism problem for countable ergodic groups of non-singular transformations. 

Let G be such a group; the orbital partition 0(G) is defined as the partition 

of X into the orbits G x - -  {Sx: S E G}, x E X. The group G is called ap- 

p r o x i m a t e l y  f ini te  (AF) if 0(G) = 0(~) for an appropriate d.s.m.p ~ = {~n}, 

i.e. 

Co(~)(x)= U C ~ - ( x ) = G x '  x • X .  
n z l  

The orbital classification problem was solved for a measure preserving AF-group 

in [D1], [D2], for the AF-groups, containing a measure in [Krl], [Kr2] and for a 

class of extensions of AF-groups containing a measure in [Ru4]. 

It should be mentioned that if we consider the orbital isomorphism problem 

with respect to the measure preserving isomorphism, such orbital invariants as 

Krieger's associated flows (see [Kr3]) are not complete orbital invariants of ergodic 

AF-groups. 

We shall consider in this paper the following two problems: 

A. When for ergodic d.s.m.p, does 

FI  + OI ~ LI? 
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B. When are ergodic finitely isomorphic sequences orbitally isomorphic? 

We prove a generalization of Vershik's lacunary isomorphism theorem for a 

wide class of finitely Bernoulli sequences of measurable partit ions (see below). 

The theorem gives a positive answer to Problem A for this class. We also find a 

complete orbital invariant of finitely Bernoulli sequences. This is the associated 

modular action ~, introduced in [Ru4], and thus we obtain a complete solution 

of Problem B. 

The class of finitely Bernoulli (FB) sequences is defined as follows. 

• . =- ~ ( ~ ) ~  be a Let J~, n = 1,2, ., be finite or countable sets, and let p iv  Jn=l 

sequence of probability distributions 

p(,~) l~(~)~ 
~- ~[Pi S i E J ~  

on orn, that  is, 

& ----1, ~ > 0 ,  i E  Jn, n - - 1 , 2 , . . . .  
iEJ~ 

Consider the Cartesian product 

OO 

(xg ,  rag) = 1-I (Jn, ~(n)). 
n = l  

We define the standard Bernoulli sequence ~P = {/3~}~=1, where ~ is the n-th 

tail parti t ion of Xp, i.e. 

x "~ y C===~ xk  = yk, k > n 

for the points x = {xk}~=a and y = {Yk}~=l of Xp. 

A decreasing sequence of measurable partitions ~ -- {~n}~__l will be called 

Be rnou l l i  ( f in i te ly  Bernou l l i )  if it is isomorphic (finitely isomorphic) to the 

standard Bernoulli sequence ~P = {fl~}~=l. 

Denote these classes of d.s.m.p, by B(p)  and F B ( p ) ,  respectively. 

Introduce the full group [~] of ~ E F B ( p ) ,  which consists of all non-singular 

transformations S of X,  such that  

for a.a. x E X and let 

co(e) ( sz )  : co(e)(z) 

[~, m] = { s  e [(]: m o s = m}.  
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We will say that ~ satisfies Krieger's condition (K), if the group [~, m] is ergodic. 

In this case the full group [~] contains the measure m in Krieger's terminology 

[Krl]. 
For instance, tip satisfies (K) if each distribution p('~) appears in the sequence 

p = {p('~)}~=l infinitely many times (in particular, if p('~) does not depend on n). 

If ~ • FB(p) satisfies (K), then tip satisfies (K) too, but  the converse is not 

true in general. 

Denote by a(~) the measurable partition into ergodic components of the group 

[~, m] and let 

x = x , ,  

be the natural projection of (X, m) on the factor-space Xo = X/a(~) with the 

factor-measure me = m/a(~). 
Let also Ap denote the subgroup of the group R~_, generated by the set of 

ratios 

~ ,  i,j • J,~, n = 1,2, . . . .  

If ( • FB(p) satisfies (K), the corresponding full group can have one of the 

following types: 

(a) type II1 if Ap = {1}, 

(b) typeIII~,  0 < A K l ,  i f A p = { A  ' ~ , n • Z } ,  

(c) type III1 if Ap is dense in R~_. 

It follows from [Krl], [Kr2] that the group Ap is a complete orbital invariant 

for ~ • FB(p) satisfying the condition (K). 

We will suppose in the sequel that the standard sequence tip satisfies (K). 

Denote this condition by p • (K). 

It seems to be a difficult problem to give a comprehensible sufficient and nec- 

essary condition (in terms of p = {P('~)}~=I) under which p • (K). The following 

statements show how wide is this class of p (see [Krl], [Kr2]). 

(1) If p' • (K) for a subsequence p' = {p(~)}~°=l of p and Ap C A¢ ,  then 

p • (K). However, p' • (K) does not imply p • (K) and p • (K) does not 

imply p' • (K) in general. 

(2) If m • N and p' = {p(m+~)}~=D then p • (K) iff p' • (K) and Ap C A ¢ .  

(3) Suppose p' = {p('~)}~°=l and p" = {p(~')}~°=l are two subsequences of p, 

such that 

Az' u At" = N, A; '  n Af" = 0, 
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where 

k N}, jr"={<:, kEN}. 
Then p' E (K) and p" E (K) together imply p E (K). 

The last statement holds also for any finite or infinite number of subsequences. 

We can formulate now our main results. 

THEOREM A: Suppose the sequences ~ E FB(p) and ~' E FB(p) are ergodic 

and the corresponding standard sequence tip satisfies the condition (K). Then 

and ~' are lacunarily isomorphic if[ they are orbitally isomorphic. 

THEOREM B: Let tip satisfy (K). Then: 

(1) For any ergodic ~ E FB(p) there exists an ergodic measure preserving 

action 

We:/% -+ ~4(X~,m~), a = a(~) 

of the group/~p on the space (X~, mo) such that 

= 

for a E Ap, S E [~] and a.a. z E An, where 

{ dm(Sx) } 
A~ = x E X: dm(x) - a . 

(2) Two ergodic sequences ~ E FB(p), ~' E FB(p) are orbitally isomorphic 

if[ their corresponding actions We and W~' are equivalent in the following 

sense: there exists an isomorphism q}: Xo -+ X ' ,  such that 

- 1  = 

for all a E A p. 

(3) For any ergodic m.p. action Wo of the group Ap on a Lebesgue space 

(Xo, mo), there exists an ergodic sequence { E FB(p) such that the 

corresponding action W{ is equivalent to Wo. 

COROLLARY C: A sequence ~ E FB(p) is lacunary isomorphic to the standard 

Bernoulli sequence fl; iff ~ satisfies the condition (K). 

The sequence p = {p(n)} and sequences ~ from the class FB(p) are called 

h o m o g e n e o u s ,  if J~ are finite for all n and 

I&l - ' ,  
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In this case/Xp _- {1}, [~] = [~, m] and ( satisfies the condition (K) iff ~ is ergodic. 

Thus the above corollary implies the following result of Vershik: any ergodic 

homogeneous sequence is laeunarily isomorphic to the correponding standard 

sequence [Vel], [Yea]. 

The main part of the proof of Theorems A and B is Theorem 3.1, which 

shows (provided that  (K) holds) the existence of a special consistent sequence 

?)nl ~ ?)n2 ~-~ " ' "  for { E FB(p) such that 

OO 

(V 
k----1 

This result allows us to reduce our consideration to the so-called ~-extensions 

[Ru4] and to complete the proof of Theorems A and B, using results of [Ru4]. 

Section 2 contains some auxiliary results, in particular, a representation of 

E FB(p) by extensions of the standard sequence go (cf. [Rul]). 

Section 3 deals with the proof of the above-mentioned Theorem 3.1 and Section 

4 contains the proofs of Theorems A and B. 

1. N o t a t i o n  a n d  t e r m i n o l o g y  

Throughout the paper we consider only measure spaces which are Lebesgue 

spaces. We use the terms "homomorphism, isomorphism, automorphism" only 

for measure preserving mappings, and the term "non-singular transformation" 

means that the transformations leave quasiinvariant the considered measures. 

We denote by .A(X) the group of all invertible non-singular transformations of 

a Lebesgue space (X, $-, m), and by A(X, m) the group of all automorphisms of 

(X, iT, rn), i.e. 

A(x,  m) = {s e A(x) :  m o s = m}. 

We use terminology and results of Rokhlin's theory of measurable partitions of 

Lebesgue spaces (see [Rot], [Ro2]). A more modern and detailed explanation of 

the theory can be found in [ViRuFe]. 

Let ~/be a partition of X into mutually disjoint sets C C ¢. The element of 

:ontaining a point x is denoted by C¢ (x). The partition ~ is measurable iff there 

~ists a measurable function f :  X -+ ]R such that  

x ~ y (i.e. Cdx) : cdy)) ¢===*/(x) =/ (y) .  
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Elements of 4 are considered as Lebesgue spaces (C, ~ c ,  mC), C E 4, with the 

canonical system of conditional measures m C, C E 4. We shall denote also by 

m(AIC) the conditional measures m~(A n C) of a measurable set A E 9 v in the 

element C of 4. Thus the function 

x x --, m(AIC (x)) E [01 1] 

is measurable with respect to 4 and 

mA = I x  m(AiC¢(x))dm(x), A E .T" 

o r  

m d = / _ _  mC(d n C)dm¢(C) 
J . X  ¢ 

where m ;  = m/4 is the factor-measure on the factor-space X¢ = X/4  and me = 

mx o 7c~ 1 for the natural projection 7r¢: X --* X¢. 

For a measurable parti t ion 4 we denote by ~(4)  the m-completion of the 

a-algebra of all measurable 4-sets. 

We shall say that  a set A E ~" (a measurable partition 41) is independent of 4 

if the set A (the a-algebra 9c(41)) is independent of the a-algebra 9c(¢). We shall 

use the notations 

A ± 4 ,  41-1-¢ 

in this case. An independent complement of ~ is a measurable parti t ion 71 such 

that  

~h ± ~/, ~IV~--~ 

where s = s x  denotes the partition of X onto separate points (Sv(s) = )r). 

We shall repeatedly use the following well known result. 

LEMMA 1.1: Let ~ be a measurable partition. Then the following conditions are 

equivalent: 

(1) 4 admits an independent complement 41, 

(2) almost all elements of 4 are isomorphic among themselves (and to 
(x¢1, 

(3) the mapping 

O: x -* (reX, ~¢~x), x E X 

is an isomorphism of (X, m)onto the direct product (X¢ x X¢~, me x m¢~ ) 

such that 

0 4 : 7I '~-Icx¢,  (I)41 : 71"~IcxQ . 
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The totality of all independent complements of a measurable partition ( is 

denoted by IC(() .  

We shall write 

( 1 ] ( 2  (mod () 

if the partitions (1 and (2 are conditionally independent with respect to (; this 

means that  

m( A M BIC¢(z)) = m( AIC¢(x) ) m( BIC¢(:c) ) 

for all A • $'((1), B • $-((2) and a.a. x • X 

Let G C .A(X) be a countable group of non-singular transformations of X. We 

denote by 0(G) the partit ion of X on the orbits Gx = {Sx, S • G}, x • X of the 

group G, i.e. Ce(c)(x) = Gx. The corresponding full group [G] = [0(G)] consists 

of all S • .A(X) such that Sx • Gx for a . a . x .  

The parti t ion O(G) may be not measurable; its measurable hull coincides with 

the trivial partition u in the case of an ergodic group G. 

The equivalence relation 

Co(a) = = { ( x , y )  • x × x :  x of f )  y } ,  

induced by the orbital partition 0(G), can be equipped with the canonical mea- 

sure #6, such that (6, #6) is measured discrete equivalence relation (see [FM]). 

The full group of a measurable partition ( is defined by 

[(] = {S E A(X):  Sx £ x for a.a. x E X}. 

If almost all elements of ( have discrete conditional measures, then there exists 

a countable subgroup G of ,A(X) Such that  0(G) - ( and [~] = [0(G)]. 

The intersection 0(~) of a decreasing sequence ~ ---- {~}n°°__ 1 of measurable 

partitions ~n is defined as the partition of X (not necessarily measurable) with 

the elements of the form 

= U (x), 
n = l  

that  is 

x E X ,  

e(G) ~ (X, y) E X × X. x ,', yc=:=:~3n:x y, 

If for all n the elements of ~,~ have discrete conditional measures, there exists 

a countable subgroup G C A ( X )  such that  0(~) = O(G). In this case the full 
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group [(] = [0(()] of ( coincides with [G] and the groups G and [G] are called 

a p p r o x i m a t e l y  f ini te  (AF). (See [D~], [D2], [Kr~], [gr~], [gr3], [FM].) 

2. C o n s t r u c t i n g  ex tens ions  

p Throughout this section/~P = {/~ }n=0 is a standard Bernoulli sequence satisfying 

the condition (K), i.e. [/~P, mo] is ergodic. 

For ( • FB(p) and n • N we shall denote by 

the totality of all finite sequences {rlk}~=l of the partitions 

r lk={C} k), i • J k }  

which satisfy for k = 1, 2 , . . . ,  n the following conditions: 

(i) ,k ± 
(ii) rlk V (k = (k- l ,  where ~0 = c, 

(iii) _, ,(k) = p!k), • m ~  i ~ i • Jk. 

We also shall denote by 7?(~) the totality of all sequences 7/ = {r~k}k~__l of 

partitions r/k satisfying (i), (ii), (iii) for all k = 1, 2 , . . . .  

PROPOSITION 2.1: For ~ • FB(p) the classes :D(() and ~n(() ,  n = 1, 2 , . . . ,  are 

not empty. 

Proof." In the case when ~ = {(n} coincides with the standard sequence /3o = 

{~o}, we can construct rl ° = {vo} • :D(~o) putting 

{x { kik=l • Xo: in = i)  i = = i 

for all n and i C J~. 

For arbitrary ~ E FB(p) we can construct the desired rl = {r~k}~=l C :D~(~), 

by using any isomorphism between {~k}~=l and l/~p~n t k J k = l "  

Moreover, for {r~k}~=l E :Pn(~) we can find ~+1  such that  Irlk ln+l 

and so c o n s t r u c t  {?~k}k°°_ 1 • "D(~) .  | 

With ~ = {r1~}~__1 C 7)(~) we consider the measurable partitions 

7)~= ~/rlk and ~)= V v ~ .  
k = l  n = l  
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Then ~)~ E IC(fln), i.e. ~)~ _L fl~ and 7)n V fl~ = e for all n. We shall call the 

increasing sequence {r)n}n~__0 the cons is ten t  sequence  of independent comple- 

ments of {~, induced by r/E ~9({). 

All elements of the partition ~ have the following form: 

C!"),4o i. eJn, 
n = O  

for an appropriate sequence {in}nC~=l EXp. Define the mapping 

rr,7: X --+ Xp 

i ~ ~ C} "). by putting ~,(x) = { n}~=l for x E N,=I  

The orbital partition O(fl p) coincides with the orbital partition of a countable 

ergodic group, which can be defined as follows: 

Let 

: { Z n } n = l  C tij ( { ~ n } n = l )  Xp, 

where 

Then 

j, i f n  = k, in =i, 
~" = i ,  i f  n = k ,  in = j ,  

in, otherwise. 

{ t ! k  ) k = 1 , 2 , .  ,i, j E Jk} 4 3 ' • • 

is a family of non-singular invertible transformations of (Xp, rap), and we denote 

by G(fl p) the subgroup of A(Xp) generated by the above family, and by Gn(fl p) 
the subgroup of A(Xp) generated by 

(k) i , j  E Jk} .  {tlj , k <_ n, 

For g iven ,  = {,n} C :D({), { C FB(p), we can introduce the groups 

G(~,~), Gn(~,7/), n = l , 2 , . . .  

generated by 

and 

{Tff ), k = l , 2 , . . . ,  i , j E J k }  

{T(~ ), k = 1 ,2 , . . . , n ;  i , j  C Jk} 
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respectively, where the non-singular transformations Ti~ ) E A(X) are uniquely 

defined by the following properties: 

7%(T{(t)x) (k) : t~ (~(x) ) ,  x E x 

and T(~ ) E [~k], i.e. 

c(~ (T,~)x) = C(, (x), • e x .  

The next proposition follows directly from the above definitions. 

PROPOSITION 2.2: Let ~ E FB)p) ,  ~ E T)((). Then: 

(1) ?)n E IC(~n),  ~]n / z  ~1, n --~ oo,  rl = r r # l c x ,  • 

(2) # v ,1,, = e, # A ,1,, = ~ g ~ ' ~ ,  

?) _L In(mode) A In). 

(3) 0(G(~,~7)) = 0(~), O(G~(~,?I)) = ~ ,  O(G(SP)) = O(~P), O(G,~(/~P)) =/~n. 

(4) T?) -- ~ for any T E G(~, 77), and the factor transformation t -- T/?) E G(19 p) 

satisfies: 1r v o T : t o ~r~ and 

dm(Tx )  _ dmp(t(lrv(x)) ) 

d.~(x) d.~p(~,(x)) 

for a.a. x E X .  

From the last property (4) we have that the mappings 

TIc: C --+ TC,  C E ~, 

induced by T E G(~, 7) on elements of ?), preserve the corresponding conditional 

measures m C, C E 7. Hence the function 

~(x) = .~c~(~)({~}) 

is invariant with respect to the group G(~, 7/). Since ~ is ergodic the group G(~, 7) 

is ergodic too, and ~o(x) is constant a.e. Hence almost all (C, mC), C E ~, are 

isomorphic among themselves; they are homogeneous Lebesgue spaces. 

Choosing an independent complement ( E IC(7)), we can identify the space 

(X, m) with the direct product 

(Xp × Y, mp x my) 
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where (Y, my) is a homogeneous Lebesgue space which is isomorphic to 

(X/~, m/~) and to almost all (C, me), C E ~. 

Under this identification we have 

O = ¢ X  X g y  

and the group G(¢, ~/) is represented as a Y-extension of G(/3P) with an appro- 

priate cocyele f :  Op -~ A(Y, my),  where ~p is the ergodic measured equivalence 

relation, corresponding to the orbital partition 

o(~p) = 0(a(~p)).  

That  is, G(~, 7/) consists of all transformations of the form t l ,  t C G(~P), where 

t~(x,y) = (tx, f ( t~ ,~)y) ,  (~,y) • xp  × Y. 

The partitions {~,~} and 0(~) may be described now as follows: 

(~1,yl) ~ (x2,y2) ~ : ~  xl  '~ x2, y2 = f (x2 ,x l )y l ,  

(Xl, yl) 0~) (x2, y2) ~ ~ x2, y: = I(x2, ~ )y~ .  

If these relations hold we say that  the sequence ~ = {~,~} (resp. 0(~)) is the 

Y-extension of ~3p _- {13~} (resp. 0(~3P))) induced by the cocycle f .  

It is clear that  the skew products t f  are correctly defined also for all t • [flP] 

and 

{t:, t • [~3P]} = [O(~C)] n g(~)) 

where g(~)) = {S • .A(X): S~) = ~)} is the normalizer of ~). 

In particular we have the following: 

PROPOSITION 2.3: Any ergodic sequence ~ • FB(p) can be represented as a 

Y-extension of the standard sequence/3 p. 

We consider now properties of the partition a = a(~). Recall that  c~ was 

defined as the partition into ergodic components of the group 

[~,~1 = [ ~ ] N A ( x , m ) .  

PROPOSITION 2.4: Let ~3P satisfy the condition (K) (i.e. [~P] contains mp), ~ • 

FB(p) and 7) = {?Tn}n=O • "~(~), ~ = Vn=lrin.oo Then the partitions a and f7 are 

independent, (7 ± ~. 
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ProoF'. By condition (K) the full group [tiP, mp] is ergodic. We can assume that  

is an extension of t p with respect to the factor-mapping Irn. Let f be the 

corresponding cocycle. 

Consider the extension 

H -= {t/, t • [tP,mp]} C [~] N N(7)) 

of [t p, mp]. Since t • [t p, mp] and 

](x, y), (x, y) • ~p 

are measure preserving, we have 

H C [~, m]. 

Any measurable subset A • iT(a) is invariant with respect to [~, m] and, hence, 

with respect to H. The measurable function 

~A(X) = m(AlC~(x)) 

is ~)-measurable and H-invariant. Since the group [t  p, mp] = {t/~, t • H}  is 

ergodic, (PA is constant for a . a . x .  That is, A is independent with respect to ~). 

Thus a J_ ?). | 

COROLLARY 2.5: IC(a(~))  # O. 

Proof  By Propopsition 2.3 almost 

conditional measures. | 

all elements of a(~) have continuous 

3. Special  l a c u n a r y  subsequences 

The aim of this section is to prove the following theorem. 

THEOREM 3.1: Let ~ • FB(p);  ~ is ergodic and t p satisfying the condition (K). 

Then there exists a subsequence ~' = {~n~ }~°=1 of the sequence ~ = {~n}~=l and 

a sequence 

~ ' =  {~} • ~(~') 

o o  
such that for ~' --- Vk=l ~/~ the equality ~' V a(~) = e holds. 
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Remark 3.2: (1) [~] = [('] and, hence, a(~) = a(~ ' ) .  

(2) 7) _1_ a(~) by Proposi t ion  2.4. Thus the theorem states  in fact tha t  ~)' E 

I C ( a ( ~ ) ) .  

(3) If ~ itself satisfies (K) we have a(~) = v and, hence, 7)' = c by the above 

theorem.  This  means  tha t  ~' = {~nk}k~=l and /3' = { ~ k } ~ - I  are isomorphic.  

Thus  Corol lary C is a direct consequence of Theorem 3.1. 

For the proof  of the theorem we need two lemmas.  But  first, introduce 

subsidiary par t i t ions  an,  %~, n -- 1, 2 , . . . ,  in addit ion to a = a(~).  

Consider 

u n ( x )  : x e x ,  

i.e. un(x) is the condit ional  measure  of the point  x in the element C(~ (x) of (n, 

which contains x. The  function un(x) is measurable  and un: X -~ [0, 1]. 

P u t  

~'n : ?-tll~[0,1] and fin : 7n V ( n .  

The  following propert ies  of 7n and an are direct consequences of the definition: 

PROPOSITION 3.3: 

(1) an is the smallest subpartition of (n with homogeneous conditional 

measures 

[an] = a l  > > . . . ;  an a. 

(2) For any ~ E IC(~n), ~ A an -= ~/n and ~ _l_ an(mod~,~) .  

(3) For a measurable A E ;: the following conditions are equivalent: 

(a) there exists ~ E IC(~n) such that A E jz((),  

(b) the function vn (x) = m c ~  (~)({x}) is %-measurable. 

LEMMA 3.4: Let  e > 0 and ~ be a finite partition such that ~ _k a. Then there 

exist E C X,  n E N and ~ E IC((n) such that 

m E > l - e ,  ~]E < ~lnIE 

and, hence, ~ <_ ~ln. 

Proo~ Let ~ - -  { A 1 , . . . , A p } ,  mAi > O, P ~i=1 mAi -- 1. Since ~ ± a ,  we have 

m ( A i I C o ( x ) ) = m A i ,  i = l , 2 , . . . , p  

for a.a. x E X .  
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Since a ,  ; o, we have also a.e. convergence of conditional measures: 

un,i(x) ~ m(  AilCo.  (x) ) '~-T--* ~ m(  AilCo(x)  ) = rnAi 

for i = 1 , 2 , . . . , p .  

Consider the function 

331 

(3) 

and 

(4) 

with 

vn,i(x) E , k = 1 , 2  . . . .  ,an(x) 

P 

E vn,~(x) = 1. 
i=1  

= ~ using (1), (2), (3), we can find n and a subset For a given el > O, el 2p+1, 

E1 C X with mE1 > 1 - ¢1 such tha t  

(5) lu,,i(x) - mAil  < ¢1 and Ivn,i(x) - mAi l  < c1 

for i = 1 , 2 , . . . , p  and x E El .  

a~(x)  = IG~(x)I ,  x e x ,  

i.e° a, (x )  is the number  of points in the element Co. (x) of a , .  

The function a .  is ? . -measurab le  and 

1 <_ a,~(z) < c~ 

for a.a. x 

If the condition (K) holds for fiR, almost all elements of the part i t ion cr have 

continuous conditional measures (by Proposi t ion 2.4). This implies with a,~ "N 

that  

(2) a~(x) -~ + ~  

almost everywhere on X.  

We can find "~,~-measurable functions v~,i(x) such tha t  

1 
Iv~,i(x) - mAil < an(x---~ 
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By (4) and (5) we can choose a finite par t i t ion  

¢' = { B 1 , . . . , B p )  

such tha t  

(6) 

and 

v,,,i(z) = rn( BdC~° (x) ) 

m(Ai  M BilC,,,  (x)) < 2cl 

for all i = 1, 2 , . . .  ,p  and x E E l .  

and 

Then  

Taking 

we get 

and 

m(E1 M (A iABi ) )  < 2el 

m A i A B i  < (2p + 1)el = E. 

E = E1 - A~ABI 

m E  > 1 -  ( 2 p +  1)el = 1 -  e 

(7) ¢IE = ¢%.  

Isr. J. Math. 

on account  of (7). I 

LEMMA 3.5: Let  e > 0 and ~ be a finite partit ion. Then there exist n E N, 

~1~ E IC(~n), E E :t= with m E  > 1 - e and a finite partition ( such that 

( < a  and  hie < (~/,, V f) lE.  

Since the  functions (6) are 3,n-measurable, we can apply  Proposi t ion  3.3(3) and 

find an independent  complement  ~/n E IC(~n) for ~,~ such t ha t  (~ < ~/n and,  

hence, 

¢IE < ~.IE 
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Proof: Under  condit ion (K) the par t i t ion  a = a(~) has an independent  

complement  ~ E IC(G) (Corol lary 2.5). Hence we can find increasing sequences 

of finite par t i t ions  {~n} and {(n} such t ha t  

Q _ < a ,  ~ ,_<~ ,  C ~ T a ,  

Then  

~nV~nTo'V~:~, n ~ o o  

and any finite par t i t ion  is "a lmost"  measurable  wi th  respect  to ~ V ~ ,  if n 

is sufficiently large. More exactly,  we can find nl  E N and a subset  E1 with 

mE1 > 1 - ~/2 such t ha t  

 IE, < v 

Since ~,u J- a ,  we can apply  L e m m a  3.4 and find n > nl  and ~ E IC(~n) such 

tha t  

for a sui table E2 C ~- wi th  mE2 > 1 - e/2. 

Then  

and 

Taking ~ -- ~n, and E = Et r? E2 (mE > 1 - ~) completes  the proof. | 

Proof of Theorem 3.1: Consider a sequence {Ak}k°°__l of Ak C 5 c, which satisfies 

the following conditions: 

(a) {Ak, k -- 1 , 2 , . . . }  is dense in 5 c wi th  respect  to the semimet r ic  

d ( A , B ) = m ( A A B ) ,  d, B e ~ .  

(b) Each Ak appears  in the sequence {An}~=I infinitely m a n y  t imes.  

Take ek > 0, ~k --+ 0, k --+ oo. We shall const ruct  sequences 

(8) {nk}~_-l, {~}~°_1, {¢k}~°=l 

which satisfy for all k = 1, 2 , . . .  the following conditions: 

(c) n l  < n2 < . . .  < nk, 
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(d) , k 7) k 

(e) (k is a finite par t i t ion and (k _< a, 

(f) dk  ~ 5c(¢k V r~k), ^' where rlk '̂ = \/kv~=l ~'i. 

If such sequences have been already constructed,  we have 

Further ,  using (b) we find infinitely many j such tha t  

ej 
Ak • 9r((k V 7)~) 

and 

i = 1  

since (k _< e.  

Using ¢j --+ 0, j --* oo, we have 

A k • h c ( a V ~ ) ' ) ,  k = l , 2 , . . .  

and (a) implies 

. r  c . r (a  v ,)'). 

! 04) Thus a V ~)' = e and {rlk}k= 1 is the required sequence. 

The  sequences (8) will be constructed by induction on k. 

For k = 1 we can use Lemma 3.5 with 6 -- {A1, X -  A1}. Thus we find n l  • N, 

a finite par t i t ion  (1 and a par t i t ion rl~ such tha t  

(1 <_ a, ~ • IC([n,), A I ~ . T ' ( ( l V r / ~ ) .  

This is the beginning of an induction. 

Suppose tha t  finite sequences 

n k i k k {(di=l, { '},=1, 

which satisfy (c), (d), (e), (f) for a given k, have been constructed.  

' and (k+l,  consider the par t i t ion In order to find nk+l,  rlk+l 

k 

i----1 
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^ l  First we want to construct a finite partition 6 and D E ~(r/k) such that  

(9) m D  > 1 £ k + 1  
2 

and 

(10) 6 _< ~,~k, Ak+1 Fl D e .7"(6 V 7)~). 

To this end denote 

v k  ^'  = { C 1 , C 2 ,  . . . } ,  

where 

Take so such that  

put 

mCs > 0 ,  s = l, 2, . . . , E mCs  = l" 
s 

so 

E mCs > 1 -  ek+----! 
2 ' 

s-~ l 

80 

D =  U C ~  
s = l  

and let 8 be the finite partition of X generated by the following sets: 

Bs=Tr##(Irnk(Ak+lC/Cs)),  s = l , 2 , . . . , S o ,  

where 7rnk is the natural projection 

7r,,~ : X ~ Xl~n~. 

The set Bs is the least ~n~-set, containing Ak+l A Cs, and the set 

80 

Ak+t N D =  U ( B ~ N C s )  
s = l  

is measurable with respect to 6 V 7)~. 

Thus (9) and (10) hold. Consider, further, the sequence ~ -- {~n}~=l of the 

factor-partitions 

n=1 ,2 , . . .  

on the factor-space X / ~  = 7rn k (X) = .~ with the factor-measure rh. 

Then ~ C F B ( p ) ,  where 
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and  ~ satisfies the condition (K) as well as ~P. 

We apply Lemma 3.5 for 

E F B ( ~ ) ,  5 = 5/~,~, 

to find mo E N, 

(11) 

g t  gk+ l  

~mo E I C ( & o )  and a finite partition ( such that 

Isr. J. Math. 

~(~)lc = ~(~lc), c e ~£. 

In spite of (13) the inequality ¢ < a (recall that  a = ~(~)) does not hold in 

general. But ( is finite and we can take another finite partition Ck+l such that  

(14) (k+l <-- a 

and 

(13) 

since 

(Ic; _< ~(~)lc,, ~ = 1 ,2 , . . . ,  

(___~(~), ~le_ ( (V~o ) l~  

for a sui table/)  C )( with rh/) > 1 - ~'. 

Put  

nk+l  = n k + m o ,  ~k+l n k  ?~mo~ ( = "K . 

We have from the construction 6 = ~r~)5 and 

{ J l k + l  k+ l  
Um=1 e ~({~n,}i=l) '  

and also from (11), that  

(12) 5 = # ~ $ ,  51E < (C V V~+~)lE 

for E = r r ~ / )  with m E  > 1 - e'. 

To find (k+l we again consider the partition ~k" ^' Since ~k̂ ' E I C( ~ k ) ,  the 

mapping 

is an isomorphism for any atom Cs of the partition ~[. This isomorphism transfers 

the restricted sequence ~lCs onto the sequence ~ of factor-partitions ~,~ and, hence, 

it transfers a((Ic . )  onto cr(~). 

Then 

( < o(~) ~ (Ic, < o(~lc,) 
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(Iv, <- ~k+llc,, s = 1 ,2 , . . . , s0 .  

Then 

(15) ([D --< Ck+,ID, 

where m D >  1 - ¢', = 

so 

D= Ucs 
s----I 
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We get now from (10), (12) and (15) that Ak+l M E M D E f ( ( 6  V 7)~)lEnD ) 

and, for ^' ^' ' / ]k+l  = /]k V/]k-I- i ,  

Since 

we see that 

^1 I ^1 ^1 (~V/]k)IEND __ < ((~V / ]k+l  V/]k)lEnD - < (¢k+1 V/]k+l)lEnD" 

m ( E  Cl D) > l - 2e' = l - ¢k+t 

Ak+l ~ 1  ,~(¢k+l V ~k+l)" 

Thus the sequences 
{ ~  l k + l  / ' J ] k + l  f / -  ] k + l  

" 4 J i = 1  , ( a i I i = l  , 1 ~ i + 1 1 i = 1  

satisfy the conditions (c), (d), (e), and (f). The induction is complete, so, as was 

shown earlier, the theorem is proved. I 

4. T h e  invar ian t  ~ and  m o d u l a r  e x t e n s i o n s  

Throughout the section let ~ be an ergodic finitely Bernoulli sequence, ~ E 

FB(p) ,  and we shall assume that the standard Bernoulli sequence ~P satisfies the 

condition (K), i.e. [~P, rap] is ergodic (a(~ p) = u). 

We denote by Ap the countable subgroup of ~ ,  generated by the ratios 

{ (n) t (n ) , - -1  
Pi .(Pj ) , i, j E Jn, n = 1 , 2 , . . . }  

LEMMA 4.1: The group Ap consists of all a E R*+ such that there exists a triple 

u = (A, B, U), satisfying the following conditions: 

(a) A E )  c, B E . ~ ,  m A > 0 ,  m B > O ,  AA_a,  BA_ a .  

(b) U is a non-singular invcrtible mapping U: A ~ B such that UA = B and 

dm(Ux) 
din(x) 
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for a.a. x E A .  
(c) U(OIA ) = OIB (where O = O(~) and a = a(~)). 

Proof'. Consider ~ in the form of an extension of/3p with ~/= {~/n} E 7)(~) (see 

Proposition 2.2). 

Since/3 p satisfies the condition (K), [/3 p] contains mp (see [Kr2]). 

Then for any a E A v  and for any Ao, Bo E U satisfying 

mBo = a . mAo > 0 

there exists t E G(~ p) such that 

(tIAo)(Ao) = Bo. 

Take 

A=~r~lAo, B=zr~IBo, U = T]A, 

where T E G(~, ~/) such that t = T/¢I. Then A _1_ a, B 1 a (Proposition 2.4) and 

(A, B, U) is a desired triple. 

Conversely, let (A, B, U) satisfy (a), (b), and (c). By (c) we can find T E G(~, r/) 

and A1 C A with reAl > 0 such that T]Ao = U[Ao. Then for t = T/¢/E G(~p) 

dmp(t(r,(x))) dm(Tx) dm(Ux) 
- -  - -  - -  - -  a 

dm(1%(z)) dm(x) din(x) 

for x E Ao and 
dmp(txo) I 

mp x o E X o :  dmp(xo) = a >0. 

Hence a E /kp. I 

Denote by b/~ the totality of all triples u = (A, B, U) satisfying the above 

conditions (a), (b), and (c) with fixed a E Ap and 

U =  U U~. 
aEAp 

LEMMA 4.2: For any u = (A, B, U) E L/, 

Proo[: If S E [~,m]lA, then U S U  -1 C:. [~]IB by (c) and U S U  -1  E [~,m]la by 
(b). Hence U ( [ ~ , m ] [ A ) U  -1  = [~,m]]B and U(a]A)  = a[B. I 



Vol. 97, 1997 LACUNARY ISOMORPHISM PROBLEM 339 

LEMMA 4°3: For any u = (A ,B ,  U) C lda there exists qa~(a) G A ( X o , m o )  such 

that 
= 

for a.a. x G A .  

Proof: Since A i (7 and B _l_ a, 

7to(A) = 7to(B) -= Xo, 

~a~ (a) is correctly defined by Lemma 4.2 and invertible, and for any measurable 

subset E C Xo we have 

1 -1 m~(qa~(a)-l E) = m(~r~l(qa~(a)-l E) ) = -~m(Tro  (~a~(a)-IE) N A) 

A 1 mA . 1 = m(U-l(~roE fl B)) - mA  - ~ m ( z r ~  E A B) 

= m( glE) = 

Hence ~ ( a )  is a m.p automorphism of (Xo,mo).  | 

LEMMA 4.4: ul C b/a, u2 E Ua ~ qa~ (a) = ~ :  (a). 

Proo~ Let Ul = (A1, B1, U1) and u2 = (A2, B2, U2). Consider several cases. 

CASE 1: Ul _< u2, that  is, 

A1 C A2, B1 C B2, U1 = U2[A1. 

In this case the equality ~ 1  (a) = ~a~ (a) follows directly by definition. 

CASE 2 : A 1  = A2. In this case, we consider partial transformation U1 o U~ -1, 

which preserves the measure m, because of condition (c). Then u3 = 

(B2, A:, U1 o U21) satisfies conditions (a), (b), and (c) with a = 1. Hence 

qa~3 (1) = id and qa~(a).~a~2(a) -1 = id, i.e. qo~ (a) = qa~,~(a). 

CASE 3 : m A 1  = mA2. Since A1 _k a, A2 A_ a there exists T E [~, m] such that  

TA2 = A1. Considering u~ = (A2,B1, U1 o T]A2), we see that  u~ E /ga and 

~ 1  (a) = ~ i  (a). But ~ i  (a) = ~ (a) by case 2. 

GENERAL CASE: For arbitrary Ul, u2 belonging to/Z~ one can find u~ _< Ul and 

u~ _< u2 such that  

I I I I I I I 
ul(A1,B1, UI), u2=(A2 ,  B2, U~), m A i = m A  ;. 
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Then 

from the above. 
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~ (a) -- ~ i  (a) -= ~ (a) -- ~ 2  (a) 

| 

We can write now ~(a) instead of ~u(a). 

LEMMA 4.5: 9~(ab) = ~(a).~(b). 

Proof.- Using the previous lemma, we can assume with no loss of generality that  

~(a) = ~u~ (a), ~(b) = ~ ( b )  

The equivalence class of the action ~ is an invariant of orbitally 

isomorphic sequences ~ E FB(p) .  

Proof: Let ~ • FB(p) ,  and ~' • FB(p)  be two ergodic sequences ~ = {~n},~¢~= 1 

and ~' = {~}~=1 defined on the spaces (Z,  m) and (X', m'). 

for all a E A. 

LEMMA 4.6: 

and A2 -- B1. But in this situation we take 

¢p(ab) = ~ a  (ab), u3 = (A1, B2, U2 o U1) 

and the required equality is obvious. | 

We have thus constructed the action 

~: A .  ~ a ~ ~(a) • A (X~ ,  mo) 

of the group Ap on the factor-space (Xo, mo). 

We shall call ~ the m o d u l a r  ac t ion ,  associated with ~, and write ~ -- ~ to 

indicate the dependence on ~. 

It  is easy to see that  ~ (Ap) is ergodic, because of the ergodicity of ~. 

Two actions ~1, ~2 of a group A, 

~ :  A --~ A ( X i , m i ) ,  i = 1,2, 

are called equ iva len t  if there exists an isomophism S: X1 --* X2 such that  

S ~ l ( ~ ) s  -~ = ~2(a) 
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Denote a = a(~), a '  = a(~') and let 

U =  U Ua, 
aEAp 
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u,= U U'a 
hEAp 
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belongs to H i and 

u' = (SA, SB,  SUS -1) = (A', B', U') 

~ , ( a ) S * ( ~ , ( x ) )  = ¢ ~ , ( a ) ~ , ( S ~ )  = . o , ( U ' S x )  

for a.a. x E A. Thus 

~u,(a)S* = S* ~n(a), a E Ap 

for appropriate u E Ua and u' E L/~ and hence 

~ , (a )S*  = S* ~ ( a ) ,  a E Ap. I 

MODULAR v-EXTENSIONS. Consider an arbitrary ergodic m.p. action ~: Ap --, 

.4(]I, m r )  on a space (]I, my) ,  and let r be the modular cocycle, r: ~p --* ~_ ,  

defined on the ergodic equivalence relation 6p = 6zp of the standard sequence ~P 

by 

r(gx, x) - dm(gx) 
din(x)  ' ~ e X ,  g • [Z~]. 

Since r(x,  y) • Ap for a.a. (x, y) • 6p we can introduce the cocycle 

o r: 6 .  --* A ( Y ,  m~.) 

and construct the Y-extension of/3P (see Section 2). Denote this Y-extension of 

/3P by (~ {(n }~=i" We shall call the m o d u l a r  ~-extension of ~P. 

PROPOSITION 4.7: The associated modular action ~ o[ ~ ~ is equivalent co ~z. 

= ~ , ( s u x )  = s * ~ o ( u x )  = s * ( ~ ( a ) ( ~ o ( ~ ) )  

be the correponding classes of triples for ~ and ~', respectively. 

Suppose S(O(~)) = 0(~') for an isomorphism S: Z --* X'.  Then S(a) = a', 

since m o S -1 = m'. Let S*: X~ --- X~, be the factor-isomorphism of S. For any 

triple u = (A, B, U) E/Ca, a E /~p, the triple 
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Proo~ In accordance with the definitions ~o = {(n }n=l is defined on the space 

(Xp x Y, mp x my)  by 

(Xl,Yl) ~ (z2, Y2) ~ Xl fl''~ x2,Y2 ~-- ~ ( r ( x2 ,X l ) ) ( y l ) .  

Then  

and 

(x~,~) 0(£~) (x:,v:) ~ (~,x2) e 9.,y: = ~(~(~:,~))(y~) 

(xl ,yl)  [¢~m] (x2,Y2) ¢=~ (Xl,X2) E ~p,r(xl,x2) = 1, Yl = Y2 

with m ---- mp× my.  

Hence 0([~ ~, m]) _> vx, × cy and a > vx, × cy. On the other  hand,  the group 

[/3 p, mp] is ergodic, and this implies a _< uxp × ¢x .  Thus  a = ux ,  × cy  and we 

can identify (Xo, mo)  with (Y, my).  Under this identification we have for 

u = ( A x Y ,  B x Y ,  U) ebl~, aE/kp 

and a.a. (x ,y)  E A × Y tha t  

since 
dm(U(z, U)) 

- - a ,  

dm(x, y) 

Thus ~ = ~. | 

As a consequence we have obta ined the following classification of modula r  

extensions. 

COROLLARY 4.8: For tWO ergodic measure preserving actions ~1 and ~2 the 

following conditions are equivalent: 

(1) ~1 and ~2 are equivalent, 

(2) ~1 L ~2,  
(3) ~ ~ ~ ,  
(4) ~+' ~ ~2. 

Proof: (1) ==~ (2) ~ (3) ==~ (4) is obvious and (4) :=:v (1) because of L e m m a  

4.6 and Proposi t ion  4.7. | 
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PROPOSITION 4.9: Let ~ be ergodic, ~ • FB(p)  and let ~P satisfy the condition 

(K). Then: 
(1) ~ is isomorphic to a modular extension of tiP if[ there exists ~1 C 19(~) such 

that a(~) V ~ = e. 
(2) { is lacunarily (and hence orbitally) isomorphic to the ~o[-extension of l3p. 

Proof." (1) If  er({) V ~ = ~, then 7) • IC(~({)) by Proposi t ion  2.4, and we 

can identify ( X , m )  with the direct p roduc t  (Xp x Xo,mp  x too) under the 

i somorphism 

X ~ x -* (~r~x, 1tom) • Xp x Xo 

where 7r~ is the fac tor -mapping,  described in Proposi t ion  2.2 and 7to is the na tura l  

projection.  

Under  this identification 

~(¢) = ~x~ x ~xo, ~ = ~x, x ~Xo 

and there exists a eoeycle f: gp -~ A(X°,  ma) such that 

(xl, yl) ~ (x2, y~) -: :- ( ~  ~ ~ ) ,  y~ = f ( ~ ,  ~ )y l  

almost  everywhere on Xp x Xo. 

Consider now for all i, j • J~ and n • N the triples 

^(~) 

, , ~ i j  - =(~) 
u i J  i Pi 

where 

and 

C [  n) - 1  (n) ^(n) • oe 
: 7~7 5i , ci  = {Xl  : ( ~ k } k = l  • X p :  i n : i } ,  

ti j(n).. Ci-(n) ---+ Cj-(n) , Ti j(n) : C}n) --,C~(n) 

are defined as in Section 2. 

Then  for a.a. (x, y) E C~ ~) we have 

_- t(~) (n) (T~)(x,y) (~j x,f(t~j x,x)y)= 

and 

f ( tx ,  x) = ~ ( r ( t x ,  x)) 

(,(~) (~) ~q x,~(aq )y) 

a . e .  

~('~) because of r ( t~)x ,x )  -(~) holds for t = tij and a.a. x C c~ , = Ui j  • 
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Thus f = ~e o r, i.e. ~ is a ~e-extension of t ic  

The inverse statement is obvious. 

(2) By Theorem 3.1, for any ergodic ~ E F B ( p )  one can find a subsequence 

~' = {(~k }k=l°° and 7' = {~k}k=l/oo E/)(~ ' )  such that a V ~' = e, where a = a(~) = 

o-((') and r ) '=  V~=l ~/~. 
p c~ Hence {' is isomorphic to the ~o-extension of {fl~k}a=l (by part (1)), and 

itself is lacunarily isomorphic to the ~-extens ion of tip (here 9~ = ~ , ) .  | 

We have now got all parts of the proof of Theorems A and B. 

Part  (1) of Theorem B follows from Lemmas 4.1-4.5. 

The "only if' part of Theorem B, part (2) follows from Lemma 4.6. 

The "if" part  of Theorem B, part (2) follows from Corollary 4.8 and Proposition 

4.9(2). 

Part  (3) of Theorem B follows from Proposition 4.7. 

Theorem A follows from Proposition 4.9(2) and Corollary 4.8. 
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