
ISRAEL JOURNAL OF MATHEMATICS 97 (1997), 253-280 

UNIQUENESS OF UNCONDITIONAL 
BASES IN QUASI-BANACH SPACES WITH 
APPLICATIONS TO HARDY SPACES, II* 

BY 

P. WOJTASZCZYK 

Instytut Matematyki Uniwersytetu Warszawskiego 

02-097 Warszawa, ul. Banacha 2, Poland 

e-mail: przemekw@mimuw.edu.pl 

ABSTRACT 

We prove that a wide class of quasi-Banach spaces has a unique up to 

a permutation unconditional basis. This applies in particular to Hardy 

spaces Hp for p ( I. We also investigate the structure of complemented 

subspaces of Hp(D). The proofs use in essential  way ma tch ing  theory. 

Introduction 

In this paper  we study the problem of uniqueness up to permutat ions of uncon- 

ditional bases in quasi-Banach spaces. Suppose that  X is a quasi-Banach space 

(in particular a Banach space) with a quasi-norm II-II and an unconditional basis 

(x~)neg. We always assume that  the basis is normalised, i.e. Ilxnll = 1 for all 

n e N. Let (Ym)meM be an unconditional basis in another quasi-Banach space 

Y. We say that  those bases are equivalent (and write it as (xn)neN ~ (Ym)mEM) 
if there exists a 1-1 and onto map ¢: N ~ M such that  the map xn ~ y¢(,~) 

extends by linearity to an isomorphism between X and Y. The terms "permu- 

tatively equivalent" or "equivalent up to a permutat ion" are also used in the 

literature. We say that  a quasi-Banach space X has a unique unconditional basis 

if it has an unconditional basis and all (normalised) unconditional bases in X are 

equivalent. 
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In the context of Banach spaces it is quite exceptional for a space to have a 

unique unconditional basis. What  is known can be found in [BCLT] and the 

references quoted there, and more examples are given in the paper [CK]. The 

general introduction to the problem can be found in [M]. 

In the context of quasi-Banach spaces which are not Banach spaces the unique- 

ness of unconditional basis seems to be a norm rather than an exception. I t  was 

shown in [K] that  a wide class of non-locally convex Orlicz sequences spaces, 

including tp-spaces for 0 < p < 1, have a unique unconditional basis. The case 

of Lorentz sequence spaces was studied by Nawrocki and Ortyfiski [NO]. The 

uniqueness of unconditional basis in non-locally convex Lorentz sequence spaces 

was established in [KLW] Theorem 2.6. Actually in [KLW] it was shown that  

(under some assumptions to be explained later), given two unconditional bases 

(x~)neN and (Ym)meM in a quasi-Banach space X,  we can parti t ion N into 

a finite number of disjoint sets N 1 , N 2 , . . . ,  Nk in such a way that  each basic 

sequence (Xn)neNs is equivalent to a subbasis of the basis (Ym)mEM, and natu- 

rally the same holds with roles of the bases reversed. This allowed one to treat  

the above-mentioned case of Lorentz sequence spaces and also to obtain non- 

isomorphism of Hardy spaces Hp for p < 1 in a different number of variables. 

We were unable to decide if Hp has a unique unconditional basis. This problem 

was a driving force of the present investigation and we solve it in the affirmative. 

Our main technical result is the following 

THEOREM 2.9: Suppose X is a natural, quasi-Banach space with strictly 

absolute unconditional basis (era, e*n)mE M and suppose that (u . ,  u * )~e N is some 

other unconditional basis in X .  Then we can partition each index set into four 

disjoint subsets, N1, N2, N3, N4 and M1, M2, M3, M4 in such a way that 

(Un)nEN1 ,": (en)rnEM1, 

(Un)nEN4 "~ (em)mEM4 '~ (era)mEM3, 

(Un)nEN2 "~ (Un)nCN3 '~ (ern)rnEU2. 

As a corollary we obtain 

THEOREM 2.12: Let X be a natural quasi-Banach space with strongly absolute 

unconditional basis (em)mEM. Assume also that X is isomorphic to some of its 

cartesian powers X s, s = 2, 3, . . . .  Then all normalised, unconditional bases in 

X are permutatively equivalent. 
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Generally we follow the ideas of [KLW]. The essential new ingredient is combi- 

natorial. We use the classical Hall-K5nig Lemma (Marriage Theorem) and some 

of its refinements. This is explained in Section 1. Section 2 deals with general 

quasi-Banach spaces. Here we prove our main results. The final Section 3 is 

devoted to Hardy spaces. We give a simple proof of uniqueness of unconditional 

basis in Hp and investigate the structure of complemented subspaces of Hp for 

p < 1. Our results in this section are in the nature of examples, but in our opin- 

ion they show that  the structure of complemented subspaces of Hp is extremally 

complicated. 

Our notation is rather standard. In combinatorics we follow the expository 

article [B] and in the theory of quasi-Banach spaces we follow [KPR]. Let me only 

point out that  I.I may denote (depending on the context) one of the following: 

absolute value of the number, cardinality of a finite set or the Lebesgue measure 

of a subset of interval [0, 1]. 

ACKNOWLEDGEMENT: I would like to express my deep gratitude to Dr B@la 

Bollobas for his answers to all my combinatorial questions. In particular he has 

shown me the proof of the fundamental Corollary 1.3. 

1. M a t c h i n g  in b i p a r t i t e  g r a p h s  

A biparti te graph G is a triple (N, A, M) with N and M disjoint sets and A a set 

of unordered pairs, one element from N and one element from M. The elements 

of the set N U M are called v e r t i c e s  of the graph G and the set N U M of all 

vertices is sometimes denoted V(G). The elements of A are called e d g e s  and A 

is sometimes denoted by E(G) - -  the edge set of G. We say that  two vertices 

a,b E V(G) are j o i n e d  if the pair (a,b) E A. We call a subset A C A one -  

s ided  if it is contained either in N or in M. For a one-sided set of vertices A we 

denote 

¢ ( A ) = { v e V ( G ) : ( a , v ) e A  for s o m e a e A } .  

It  is clear that  ¢(A) is also one-sided and belongs to the different set (N or M) 

than A. If  A is a one-element set A = {a} then we will use the notation ¢(a) to 

denote ¢({a}). With this convention 

¢(A) = [_J ¢(a)  
aCz A 
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The degree of a vertex a E V(G) is ]¢(A)[, the cardinality of ¢(A), i.e. the 

number of vertices joined with a. 

Let A C V(G) be a one-sided set. A matching of A is a 1 - 1 map ¢: A - -~  

V(G) such that  (a, ¢(a))  E A for every a E A. Clearly ¢(A) is also a one-sided 

set. A one-sided set which has a matching is called m a t c h a b l e .  

A necessary and sufficient condition for the existence of a matching of A is 

given by the following classical result, called usually the Hall-KSnig Lemma. 

THEOREM 1.1: Suppose G is a bipartite graph such that the degree of each 

vertex o[ G is finite. For a one-sided set A C V(G) there exists a matching of A 

if  and only if for every finite subset B C A we have 

I¢(B)l _> IBI. 

It follows easily from Theorem 1.1 that  the increasing union of matchable sets 

is matchable, so every matchable subset A c V(G) is contained in a maxima! 

matchable set A1. 

The following concept will play a very important role in our considerations: 

Definition 1.2: Let G = (N, A, M) be a bipartite graph such that  every vertex 

has finite degree and let c be a positive number. We say that  N satisfies the 

c - H a l l - K S n i g  condition if for every finite subset A C N we have 

I¢(A)l _> olAf. 

In this paper we are only interested in the case 0 < c < 1. 

The following consequences of Theorem 1.1 will be crucial for further 

arguments. 

COROLLARY 1.3: Suppose G = (N, A, M) is a bipartite graph in which every 

vertex has finite degree. Assume also that N satisfies the c-Ha11-K6nig condition 

with e = 1/ K for some integer K = 2, 3, . . . .  Then 

(a) there exists a decomposition N = N1 U . . .  u NK of N into K disjoint, 

matchable subsets, 

(b) if we write N = UReA Na with N~ disjoint sets with [N~[ = K for every 

a E A, then there exists a matchable subset N C N such that N~ A N ~ 0 

for every a E A. 

Proof: (a) Let us replace the graph G by the graph G1 = (N, A1, M1) where 

M I =  M x { 1 , 2 , . . . , K }  
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and 

A1 : { (n , (m , s ) )  • N x MÀ: (n ,m)  • A}. 

It is clear that  the set N in G1 satisfies the 1-Hall-Kbnig condition, so there exists 

a matching ¢: N , M1. We define N~ = ¢ - l ( M x  {s}) fors  -- 1,2, . . . , K .  The 

sets N8 are clearly matchable in G; the matching of N8 is given by ¢~(n) = m 

where ¢(n)  = (m, s). 

(b) Let us replace the graph G by the graph G1 = (A, A1, M) (A is the set of 

indices a) where (a, m) • A1 if (n, m) • A for some n • N~ 

The graph G1 satisfies the l-Hall-Kbnig condition. To see it let us take any 

finite subset B C A. Then 

SO 

¢(B)= U ¢(a)= U U ¢(n) 
c~EB c~.B nF_N,~ 

I¢(B)l >_ K-~l U U ¢(n)l = K-~IBIK = IBI. 
c*E B nE N~ 

So there exists a matching ¢: A , M. This means that  (a, ¢ (a ) )  E A1 for 

every a E A, so for every a E A there exists n~ E N~ such that  (n~, ¢ (a ) )  e A. 

The set {na}c~A is the desired set/Y 1 

Let us recall one more classical result of graph theory. Really it is the classical 

Schroeder-Berustein theorem of set theory but with an improvement which has 

been observed by Banach in [Ba] 

THEOREM 1.4: Suppose (N, A, M) is a bipartite graph such that both N and M 

are matchable. Then there exists a matching ¢: N ~ M such that ¢ (N )  = M. 

Let G = (N, A, M) be a bipartite graph. A path of length k in the graph 

G is a sequence (ao, al,  a2 , . . . ,  ak) of elements of V(G) such that  for each j = 

0, 1 , . . . ,  k - 1 the vertex aj is joined with the vertex aj+l ,  i.e. (aj, aj+l) C A. 

We will say that such a path joins ao with ak. Given the graph G we can 

cor/sider graphs G k = (N, Ak, M) for k = 0, 1 , . . .  where (n ,m)  C Ak if and 

only if there exists a path in G of length 2k + 1 joining n with m. Clearly 

G o = G. If (ao, a l , . . . ,  a2k+l) is a path of length 2k + 1 joining ao with a2k+l 

then (ao, al ,  ao, al, a 2 . . . ,  a2k+l) is a path of length 2(k + 1) + I joining ao with 

a2k+l. This means that A C A1 C A2 C . . . .  
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LEMMA 1.5: Suppose that  the degree of each vertex in G O = (N, A,  M )  is at most  

C. Suppose that B C N is matchable in G k with the matching ¢: B ---* M. 

Then there exists a partition of  B into at most C 2k disjoint sets B1,. •., B~ such 

that for each j = 1, 2 , . . . ,  s there exist 1-1 maps ¢] for l = 2, 3 , . . . ,  2k on By 

such that for every b e Bj  the sequence (b,O{(b),O~(b),. . . ,O~k(b),O(b)) is a 

path in G O of  length 2k + 1. 

Proof'. Let ¢: B ~ M be a matching in G k. This means that  there are maps 

~ 2 , . . . ,  ¢2~ defined on B such that  for each b E B the sequence 

(b, ~b~_(b),..., ¢2k(b), ~b(b)) 

is a pa th  of length 2k + 1 in G °. Since b is joined with at most C vertices, we can 

parti t ion B into at most C sets B 1, B 2 , . . . ,  B ~ such that  ~2[B j is 1-1 for each 

j = 1, 2 , . . . ,  s. Now each vertex ¢2(b) can be joined with at most C vertices so 

each set B I , . . . ,  B ~ can be partit ioned into at most C sets on which ¢3 o ¢2 is 

1-1. Thus we have partit ioned B into at most C 2 sets on each of which both 02 

and ¢3 are 1-1. Continuing in this manner we get the claim. II 

Remark: Let us observe that  it is possible to have both conclusions (a) and (b) 

of Corollary 1.3. satisfied. We have 

PROPOSITION 1.6: Suppose G = (N, A,  M )  is a bipartite graph such that  ev- 

ery vertex has finite degree. Assume also that N satisfies the 1/2-Hall-K6nig 

condition. Let us have N = U~eA N~ with N~'s  disjoint and [N~] = 2 for all 

a E A. Then there exists a partition N = N1 u N2 into two disjoint, matchable 

subset such that N~ N N1 ~ 0 for all a E A. 

Proof." We use Corollary 1.3(a) to partition N as 191 t3 192 into two match- 

able subsets. Let us fix the matchings ¢i: 191 ~ M for i = 1,2. Let us 

consider the graph G1 = (N, AI,  3//1) where M1 = ~1(191)U ¢2(]92) and A1 = 

{(n,  u {(n,  2 
I t  is clear from the definition that  each vertex from N belongs to exactly one 

edge in E(G1) and each vertex from M1 belongs to either one or two edges. 

It  follows that  N in G1 satisfies the 1/2-Hall-KBnig condition and that  M1 is 

matchable in G1. Now let us apply Corollary 1.3(b) to obtain N C N matchable 

in G1 and such that  N N N ~  ¢ 0 for a l l a  E A. Take N1 to be a maximal  

:natchable in G1 subset on N containing/Y and let N2 = N \ N1. From 4.9(1) 
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of [B] we infer that  there exists a matching ¢: N1 o ~  M1. This implies that  

A 1 \ { ( ~ t ,  ¢(n)}n6_N 1 gives a matching of N2. So both N1 and N2 are matchable 

in G1 so also in G. | 

Remark: There is a real need for some kind of argument for Proposition 1.6. In 

the situation of Corollary 1.3. with K = 2 we can have N C N satisfying the 

conclusion of (b) with N \ / V  unmatchable. Here is an example: G = (N, A, M) 

with N = {1,2,3,4} and M = {a,b} and A = {(1, a),(2, b),(3, a),(3, b),(4, b)}. 
The parti t ion of N is given by {1, 2} and {3, 4}. If we take N -- {1, 3} we see that  

it satisfies the conclusion of Corollary 1.3(b) but N \ iV = {2, 4} is unmatchable. 

2. T h e  g e n e r a l  s i t u a t i o n  

Let (era, e~n)rnEM be a biorthogonal system in a quasi-Banach space X,  i.e. we 

have 
1, i f m  = s, 

e~(es) = 0, i f m  :/: s. 

The system (era, e~)meM is an unconditional basis in X if for every x C X the 

* X series ~ m ~ M  era( )era converges unconditionally to x. This implies that  there 

exists a constant K such that  

_< s u p  
1 rnEM 

for all x C X. The smallest such constant K will be called an u n c o n d i t i o n a l  

bas is  c o n s t a n t  of the basis (era, e*~),~M. We will always additionally assume 

that  Ilem[[ = 1 for all rrz C M. Since actually the elements (em)meM determine 

the functionals (e;,d.~eM it is customary to speak about (em)meM as being an 

unconditional basis. We will use this convention sometimes, but very often we will 

actually need the biorthogonal functionals. Let (era, e~),~eM be an unconditional 

basis in X and let (y~,y~)nSN be an unconditional basis in Y. We say that  

those bases are equivalent and write (era) ~ (Yn) if there exists a 1 1 and onto 

map (I): M ~ N such that  the map e,~ ~ y~,(,~) extends by linearity to an 

isomorphism between X and Y. We say that  (e,~, e*)meM is equivalent to a 

subbasis of (Y~)~eN if there exists a 1-1 not necessarily onto map  q): M ~ N 

such that  the map e,~ ~ y~(,~) extends by linearity to an isomorphism between 

X and the closed linear span of (Ys)seq,(M). 
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The unconditional basis (e,~, e*)meM in X is s t r o n g l y  a b s o l u t e ,  if for every 

> 0 there is a constant Cs such that  for any scalars (am)~eM, only finitely 

many of them non-zero, we have 

m E  M "me M 

This definition was introduced in [KLW]. Its intuitive meaning is that  the space 

X is far from being a Banach space. 

The other notion we will need is tha t  of a n a t u r a l  quasi-Banach space. We 

will s ta te  this definition very l~riefly and refer the reader to [K1] or [KLW] for 

more details. A quasi-Banach lattice X is L-convex if there exists an e > 0 so 

tha t  if u E X,  u > 0 and IlulI = 1 then for any xi E X,  1 < i < n with 0 _< xi _< u 

and such tha t  ~(x l  + x2 + . . .  + xn) _ > (1 - e)u we have maxl<i<_n I lXil]  _ > ~. A 
quasi-Banach space Y is called n a t u r a l  if it is isomorphic to a subspace of an 

L-convex quasi-Banach lattice. 

Let us simply mention that  all function spaces occurring naturally in analysis 

and their subspaces are natural.  In particular Hardy spaces are natural.  In 

our proofs this notion enters only once (but in a crucial way) in the proof of 

Proposition 2.4. Since I decided to refer the reader for this proof to [KLW] 

instead of repeating two pages of arguments, this brevity should not cause any 

problems. 

If  X is a quasi-Banach space, by ~7 we will denote its Banach envelope (cf. 

[KPR] p. 27). 

In this section we will always consider a natural  quasi-Banach space X with 

a normalised, strongly absolute unconditional basis (e~, e*)mEM. We will also 

consider Y, a complemented subspace of X with a normalised, unconditional 

basis (us, u*)neN. We will assume that  unconditional basis constants of both  

bases are at most K.  Since (un, u~)neN is assumed to be an unconditional basis 

in Y we have u* 's  defined only on Y. But  Y is assumed to be complemented, so 

we can extend u* 's  to the whole of X.  This gives that  the projection P: X ont? y 

is given by tbe formula 

P(x) = ~ u* (x)un. 
h e N  

We will t reat  u~ and u* as sequences indexed by M. More precisely, since 

(em)meM is an unconditional basis in X we have un = ~meM u~(m)em and u* = 
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EmeM u* (rn)e* where naturally u,~(m) -= e*  (um) and u* (m) = u* (em). The 

reader should note that  the first of the above sums is unconditionally convergent 

in norm while the second is only w*-convergent. We can consider (era, e* )meM 

as an unconditional basis in J(. Since in X it is strongly absolute, in X it is 

equivalent to the unit vector basis in ~I(M). This implies in particular that  

there exists a constant C such that lu*(m)l < C for all n E N and m E M. 

The numbers U(n, m) = u * ( m ) ,  un(m) will be of fundamental importance in 

our considerations, so for future reference let us summarise their properties. 

LEMMA 2.1: There exists a constant C such that 

(a) for every n E N we have Y~meM U(n, m) = 1 and ~ m e M  [U(n, rn) l <_ C, 

(b) for every m E M we have ~ n e N  ]U(n,m)l <_ ctIP]] , 

(c) for every e > 0 there exists a ~ > 0 such that for every n E N we have 

(d) for every e > 0 there exists a 6 > 0 such that for every m E M we have 

(e) if  Y = X ,  i.e. (Un)ne g is another unconditional basis in X ,  then 

~,~eN U(n, m) = 1 for all m E M.  

For each 6 > 0 we define the bipartite graph B(6) = (N, A~, M) by the 

condition that (n, m) E A~ if and only if [U(n, m)[ _> 8. 

LEMMA 2.2: For every 6 > 0 there exists a constant C(6) such that the degree 

of each vertex in V(B(6) )  is at most C(6). 

Proof: This follows immediately from Lemma 2.1(a) and (b). I 

LEMMA 2.3: There exists a 80 > 0 such that for MI 6, 0 < 6 < 80 we have 

(a) the degree of  each vertex n E N is at least 1, 

(b) there exists a c > 0 such that N in B(6) satisfies the c-Ha11-K6nig condition. 

Proof'. Using the unconditionality of the basis (em,e*)m6M and the fact that  

it is strongly absolute we have 

1 : < IV(n, )l 
m m 

< C~ sup IU(n, m)l + ell ~ U(n, m)eml] 
m 

_< sup +  CKII 
m 

m 

= sup IU(n, m)l +  CK. 
m 
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If we take ~ such that  eCK < ½, then we obtain that  for each n 

1 
suplU(n'm)lm > ~ =/50. 

This proves (a). To prove (b) observe that  (because the basis (em, em)mEM 
is strongly absolute) for each e > 0 there exists a/5 = 5(e) such that  for every 

x E X we have 

le*(x)l <_  lixll. 
-~: le;~(x)l<a 

Take a finite set A C N. We have 

iAl = I E = I E E  (n,m)l 
nEA nEA m E M  

<- E E IU(n'm)I + E E IU(n'm)l" 
nEA me¢(A) nEA rn~¢(A) 

By Lemma 2.1(c) we can find a/5o such that  for /5 < /5o the second sum above 

will be at most ½IAI . Thus using Lemma 2.1(b) we have 

 lAl_< IU(n,m)l < CI¢(A)l. 
rnE¢(A) nEA 

This proves (b). I 

The importance of all this for the problem of equivalence of unconditional bases 

rests on the following 

PROPOSITION 2.4: Suppose a subset N1 C N admits a matching ¢: N1 ~ M 

in the graph B(/5). Then the basic sequences (u,~)neN1 a n d  (ega(n))nEN 1 are 

equivalent. 

The proof of this Proposition is the argument given at the end of the proof of 

Theorem 2.3 of [KLW]. 

Now we can appeal to Corollary 1.3(a) to get Theorem 2.3 of [KLW]. Actually 

all we did was to rewrite the proof of this Theorem using a bit of the language 

of graph theory. 

COROLLARY 2.5 (see [KLW] Theorem 2.3): Suppose X is a natural  quasi-Banach 
space with a strongly absolute, normalised unconditional basis (em, e~n)mEM. 
Suppose also that  Y is a complemented subspace of X with a normalised 
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unconditional basis (u, ,  u~)~eM. Then there is a decomposition of N into a ti- 

nite union of disjoint sets N1, N2,. . . ,  Ns such that each basic sequence (nn)n~N~, 

j = 1, 2 , . . . ,  s is equivalent to a subbasis of the basis (em, e~)meM. In particular 

(u,,, U* )mEM is strongly absolute. 

Proof." Combine Lemma 2.3(b), Proposition 2.4 and Corollary 1.3(a). | 

From now on we will assume that Y = X, i.e. that (Un)nEN is another 

unconditional basis in X .  We would like to show that (u,)n~N is equivalent 

to a subbasis of (em)m~M. This we are unable to do in general. We can however 

show that it is possible to partition N into only two  subsets N1 and N2 so that 

each (u , ) ,EN ~ is equivalent to a subbasis of ( e ~ ) ~ M .  To do this we will consider 

paths in a graph. 

To our graph B(5) let us apply the procedure described before Lemma 1.5. We 

get the following 

COROLLARY 2.7: Suppose B C N is matchable in Bk(6) with the matching ¢. 

Then the basic sequences (u~)n~B and (e¢(n))nCB are equivalent. 

Proof'. We use Lemma 1.5. We get a partition of B into B1 . . . .  , Bs and we get 

maps as described in this Lemma. From Proposition 2.4 we infer that (u,~)~eBj is 

equivalent to (%~(n))neB~" But by the same Proposition (eo~(~)),eBj is equiva- 

lent to (U¢~(~))~Bj. Continuing in this manner 2k-times we infer that  (u~)~cs~ 

is equivalent to (eg)(~))~cBj- Since the Bj's form a partition of B and ¢ is 1-1 

we infer that (Un)ne B and (eo(n))nCB a r e  equivalent. | 

Remark: This Corollary is valid also (with the same proof) when span(u~)~c N 

is a complemented subspace of X. 

Now we will show that for two bases in X, graphs Bk(~) can satisfy the c-Hall 

K6nig condition with the constant c as close to 1 as one wants. 

PROPOSITION 2.8: Assume that (Un)nC g and (em)mEM a r e  two unconditional 

and strongly absolute bases in a natural space X .  Let us fix c~, 0 < a < 1. Then 

there exists a ~ > 0 and k such that both N and M in the graph Bk( f )  satisfy 

the a-Hall-Kfnig condition. 

Proof'. Let us start with the argument for N. First we need to visualise the 

edges of the graph Bk(f) in terms of numbers U(n, m) analysed in Lemma 2.1. 

From the definition of Bk(f) we see that (n,m) • E(Bk(6))  if there exists a 
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sequence no,ml,nl,...,mk,nk,mk+~ where no = n and mk+l  = m such tha t  

for i = 0, 1 , . . . ,  k we have [U(n~, rni+l)l > 6 and IU(ni, rn{)[ > 5. Given our a fix 

s = (1 - a ) / 6  and fix 5 so tha t  conditions (c) and (d) of L e m m a  2.1. hold. We 

will show tha t  k > 11--~C 2 + 1 will work. 

Let us fix an arb i t rary  finite set A1 C N and call IAll = N1. Let 

B1 = ¢(A1) = {m • M:  IU(n,m)l > 6 for some n • A1}. 

Now we form inductively sets 

A~+I = {n: IU(n,m)l > 5 for some m • Bs} 

and 

Bs+l : {m: IU(n,m)l > ~ for some n • A ,+I} .  

I t  is clear t ha t  A1 C A2 C . . .  and B1 C B2 C . - . .  Let us call IAsl = N,  and 

IB,[ = Ks. Sequences N,  and K8 are increasing. I t  should be clear f rom what  

we said at the beginning of this proof  tha t  

Bs={m•M:(n,m)•E(B~(6)) for some n • A 1 } .  

This means tha t  our goal is to show tha t  Kk >_ aN1. Prom L e m m a  2.1(a) we 

have 

E E U(n,m)= E EU(n 'm)-  E E 
nEA~+t rnEB~ rnEBs hEN mEB,  n~A,+l  

• 

rnEB~ nff As+l 

U(n,m) 

Since for m 6 B8 and n ~ As+l  we have IU(n,m)[ < 6, our choice of 6 and 

L e m m a  2.1(d) yields 

(1) ( 1 - e ) K s _ <  E E U(n,m)<_(l+s)Ks. 
nfr_As+1 rnEB, 

Analogously 

(2) (1-e)Ns <_ E E U(n,m)_<(l+e)Ns. 
nEA~, rnCv_ B~ 
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Observe, however, tha t  Lemma 2.1(b) implies 

E E 
nEA,, mEB,, 

so from (2) and (3) we get 

(4) 

We have 

U(n,m) <_ CIB, ] = CKs 

(1 - ~)Ns < C K s ,  

F_, U(n,m) 
nEAs+l  \ As m E B s + l  \ Bs  

n6A.+1 rn6Bs+1 n6A~+1 m6B. n6As m6Bs+1 " B~ 

265 

Since Lemma 2.1(a) clearly implies 

E E U(n, m) <_ CIA~+ 1 \ As l = C(Ns+I - Ns), 
n6As+l  \ A .  m6B, ,+l  \ Ba 

from (5) and the monotonici ty of Ns we get 

(6) (1 - 2¢)gs+l  - (1 + ¢)gs < C(N~+I - Ns). 

Suppose now tha t  Kk <_ aN1. Thus for all s = 1, 2 , . . . ,  k we have 

(7) Ks < aN1. 

From (4) we now infer tha t  for s = 1, 2 , . . . ,  k 

a C  N (8) Ns -< ~Z~_ e 1. 

n6A,+l \ A, m6B,+1 \ B, 

_< (1 + ¢)Ns+l - (1 - s)Ks + ¢Ns. 

(5) (1 - -  ~ ¢ ) N s +  1 - (1 + e)K~ - eN~ <_ E E U(n, m) 

Since for each n 6 As and m E Bs+l \ Bs we have IU(n,m)l < 6, we infer from 

Lemma 2.1(c) and (1) and (2) tha t  
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Summing (6) for s = 1, 2 , . . . ,  k - 1 and using (8) we get 

( 9 )  (I - 2e) - + K ,  S C(N +I - N1) <_ C f - -  1 

Using our supposit ion (7) and the monotonici ty  of N~, the left-hand side of (9) 

can be minorised by 

(lO) (1 - 2e)(k - 1)N1 - (1 + e)aNl(k - 1). 

From (9) and (10) and the definition of e we see tha t  

C( a C  _ l ) > [ ( l _ 2 ¢ ) _ ( l + ¢ ) a ] ( k _ l )  > 1 - a ( k _ l ) .  
1 - e  - - 2 

This contradicts  our choice of ¢ and k and so completes the proof  for N.  Since 

our assumptions and constructions work as well for M as for N,  we obtain  the 

Proposit ion.  | 

THEOREM 2.9: Suppose X is a natural, quasi-Banach space with strictly 

absolute unconditional basis (em, e* )meM and suppose that (un, U* )n6N is some 

other unconditional basis in X.  Then we can partition each index set into four 

disjoint subsets, NI, N2, N3, N4 and M1, M2, M3, M4 in such a way that 

(Un)nEN1 ~ (en)mEM1, 

~ (em)m u4 ~ (em)  u3, 

~ ~ 

Proof: We use Proposi t ion 2.8 to obtain the graph Bk(5) where bo th  N and M 

satisfy the ½-Hall-K6nig condition. It  follows from Corollary 1.3 tha t  there are 

maximal  matchable  subsets S C N and V E M such tha t  N \ S and M \ V are 

also matchable.  It  follows from [B] 4.9.1 tha t  there exists a matching ~b: S o~to V. 

Let us fix matchings ¢1: N \ S ~ M and ¢2: M \ V ~ N.  We have 

¢ 2 ( M  \ V) n ¢ - 1 ( ¢ 1 ( N  \ S)) = 0. 

To show this, assume to the contrary tha t  for some m C M \ V and n C N \ S 

we have ¢~b2(m) = ¢1(n) .  Then  we can define matching ~ on the set S U  {n} by 

the formulas • = ¢ on the set S \ { ¢ 2 ( m ) } ,  tg(¢2(m)) = m and ~ (n )  -- ¢1(n) .  



Vol. 97, 1997 UNIQUENESS OF BASES 267 

One checks that it is really the matching, so S was not maximal; a contradiction. 

This also implies that ¢1(N \ S) cq ga~b2(M \ V) = 0. 

Now we define 

iV 1 = S \{~/)2(M \ V) O ~ - I ~ ) I ( N  \ S)},  

M1 = V " -{¢1(N "- S) U ~b~b2(M "- V)},  

N a = N \ S ,  

M 4 = M \ V ,  

N~ : ~ 2 ( M  \ V), 

M2 = ~ I ( N  \ S),  

M3 = ¢ ¢ 2 ( M  \ V). 

One easily checks that we get the desired partitionings and that the matchings 

we have chosen establish the desired equivalences (use Corollary 2.7). I 

PROPOSITION 2.10: Suppose that X is a natural quasi-Banach space with a 

strongly absolute unconditional basis (era, e*)mEM. Suppose that (un,u*)neN 

is another unconditional basis in X .  Let s = 2, 3 , . . .  be given. Assume tt~at 

N = U~eA N~ where N~ 's are disjoint subsets ea& of cardinality s. Then there 

exists a subset V C N such that 

(a) (Un)nev is equivalent to a subbasis of (em)meM, 

(b) V n N~ # ~ for all a E A. 

Proo£" It follows directly from Proposition 2.8 and Corollary 1.3 and Corollary 

2.7. I 

PROPOSITION 2.11: Suppose that X and Y are quasi-Banach spaces with 

normalised unconditional bases (Xn)ne N and (Ym)meM respectively. Assume that 

(Xn)nE N is equivalent to a subbasis (Ya(n))nEN o[ (Yn)nEN and that (Ym)mEM is 

equivalent to a subbasis (Xv(m))meM Of (Xn)~cN. Then the bases (Xn)ncg and 

(Ym)meM are  permutativeIy equivalent; in particular X is isomorphic to Y .  

Proof: Let us consider a bipartite graph G with vertex set N U M ( assumed to 

be disjoint sets) and edge set {(n, a(n))},~eN U {(m, 7(m))}mcM. This implies 

that  in G both n and M are matchable. From Theorem 1.4 we see that there 

is a matching ¢: N 2_~ M. From the definition of the edge set we see that  we 
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can split N into N1 and N2 in such a way that  ¢IN1 = a and ¢1N2 = 7 -1. This 

means that  (x,~),~eN1 is equivalent to (Ym),~e,~(N2) and (X,~)neN2 is equivalent to 

(Ym)rne¢(g2)" Since g = N1 U N2 and N1 N N2 = 0 and M = ¢(N1) U ¢(N2) we 

conclude that  (x~)neN and (Ym)meM are permutatively equivalent. | 

Remark: This argument is very general. It applies not only to quasi-Banach 

spaces (in particular Banach spaces), but  practically to any decent kind of space. 

Surprisingly enough Proposition 2.11 seems to be unknown to the specialists. 

Usually such conclusions were obtained using the decomposition method, which 

requires some additional properties of bases (like being isomorphic to its square 

or something similar) (cf. [BCLT] Prop. 7.7). 

THEOREM 2.12: Let X be a natural quasi-Banach space with strongly absolute 

unconditional basis (em)mCM. Assume also that X is isomorphic to some of its 

cartesian powers X ~, s = 2, 3 , . . . .  Then all normalised, unconditional bases in 

X are permutatively equivalent. 

Proof'. Since X 8 is isomorphic to X we get also that  X 82 is isomorphic to X. 

Thus in X there is a normalised, unconditional basis equivalent to the direct sum 

of s 2 copies of the basis (em)meM. We call this basis (Un)neN where naturally 

N = M x S x S where S is a set of cardinality s. We partition N into sets of 

cardinality s as N = UmeM,ses{m} x {s} × S. Applying Proposition 2.10 (with 

the integer s) we realise that  the subbasis of (em)mcg given by this Proposition 

has a subbasis equivalent to the direct sum of s copies of the basis (era)me M. From 

Proposition 2.11 we infer that  the basis (em)meM is permutatively equivalent to 

the direct sum of s copies of itself. Now let (un)neN denote any other normalised 

unconditional basis in X. It follows from Theorem 2.9 that  (un)~eN can be split 

into two pieces, each equivalent to a subbasis of (em)meM. But as we know, 

(e,~),~eg is equivalent to the direct sum of s copies of itself, s >_ 2, so actually 

we see that  (un),~eN is equivalent to a subbasis of (em),~eg. 

Reversing the role of bases in the above argument we conclude that  (em)meM 

is equivalent to a subbasis of (U,~),~eN, SO by Proposition 2.11 all bases in X are 

permutatively equivalent. | 

COROLLARY 2.13: Suppose that X is a natural quasi-Banach space with the 

strongly absolute unconditional basis. I[ for some s = 2, 3, . . .  X is isomorphic 

to X ~, then X is isomorphic to X @ X,  so X is isomorphic to X k Eor every 

k - -  1 , 2 , 3 , . . . .  
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Proo~ Let us consider X with the basis (x,~)neN and Y = X@X with the basis 

(Ym)mEM = (Xn)n6_N ~ (Xn)neN. Clearly (Xn)neN is equivalent to a subbasis of 

(Ym)meM. We know from Theorem 2.12 that  (xn)~eg is equivalent to the direct 

sum of s copies of itself. Since s _> 2, it means that  (Ym)meM is equivalent to a 

subbasis of (x,~)neN. Proposition 2.11 shows that  bases (x~)neN and (Ym)meM 
are equivalent, so X ~ X ® X. | 

Remarks: One may be tempted to believe that  we do not need Proposition 2.8, 

in other words that  N satisfies the 1-Hall-K5nig condition in B(5) for sufficiently 

small 5. This however is not the case as the following example shows. 

Example 2.14: Let us fix an integer n _> 2. 

biorthogonal system: 

In 2; +1 consider the following 

ul = (1, 1 , 0 , . . . , 0 ) ,  

u2 --- (1,0, 1 , 0 , . . . , 0 ) ,  

u l =  1 , 0 , - 1 , - 1 , . . . , - 1 ) ,  

u ~ =  1 , - 1 , 0 , - 1 , . . .  - 1), 

un = ( 1 , 0 , . . . , 0 ,  1), 

( 1 _ _  1 )  
Un+l = 1, n - 1'  " " "~ n 1 ' 

u* = ( 1 , - 1 , . . . , - 1 , 0 ) ,  

u*+l = ( - ( n -  1 ) , n -  1 , . . . , n -  1). 

If  we treat ~p aS a direct sum of countably many copies of g~+l, the above 

system yields an unconditional basis in gp. The other basis is the unit vector 

basis. It  is easy to see that,  for any 5 > 0, the best constant c in the c-Hall- 

Khnig condition we can get in this situation is 1/n. 
Actually this example also shows that  Proposition 2.8 does not work when 

(u~)ncN is an unconditional basis in a complemented subspace. Simply consider 

the basis which is the infinite direct sum of ul,u2,...,u~. In this case taking 

paths does not add a single edge to the graph. 

I t  may be true that  for two unconditional bases in X there is a graph Bk(5) 

which satisfies the 1-Hall-Khnig condition. This would lead to Theorem 2.12 

without the assumption that  X is isomorphic to X 8. It  is however relatively easy 

to see that  in order to prove it one would have to use something more about  the 

matr ix  [U(n, m)]nEN,mE M than is summarised in Lemma 2.1. I also believe that  

one really has to use quite big k's in order to get the conclusion of Proposition 

2.8 (for c~ = ½ say). Here is a finite dimensional example which shows that  B2(5) 
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does not work for any 6 > 0. We look at R 5 and take vectors 

(1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), (0 ,1 ,1 ,1 , -2) .  

One checks that  biorthogonal functionals are: 

(1, O, -1 ,  -1 ,  -1) ,  (1, -1 ,  O, -1 ,  -1) ,  (1, -1 ,  -1 ,  O, -1) ,  

( -2,  2, 2, 2, 3), ( -1 ,1 ,1 ,1 ,1) .  

This gives the matrix [U(n, m)] as 

1,0,0,0,0 l 
1 , 0 , 0 , 0 , 0  ] 
1,0,0,0,0 [ . 

- 2 , 0 , 0 , 0 , 3 [  
0, 1, 1, 1, -23  

Let us now return to the situation considered at the beginning of this section, 

i.e. when (u~, u*)~cN is an unconditional basis in a complemented subspace of a 

natural space X with a strongly absolute unconditional basis (era, e~n)mEM. It is 

very tempting to conjecture that (U~)neN is equivalent to a subbasis of (e~)~eN. 

Unfortunately, in general we cannot say anything beyond Corollary 2.5. However, 

when we compare Corollary 2.5 and Theorem 2.12 we get the following 

COROLLARY 2.15: Suppose that X is a natural quasi-Banach space with a 

strongly absolute unconditional basis (em)meM and that (un),~eN is an 

unconditional basis in a complemented subspace Y of X .  Assume additionally 

that X is isomorphic to X ~ for some s = 2, 3 , . . . .  Then (u~)~eN is equivalent 

to a subbasis of (em)mEM 

3. H a r d y  spaces  

Let us now turn our attention to Hardy spaces Hp. We will work exclusively in 

the framework of dyadic Hardy spaces. 

Let f l  denote the family of all dyadic subintervals of the interval [0, 1] that  

is the family of intervals of the form [2k--~, ~ ! ]  where n -- 0, 1, 2 . . .  and k -- 

0, 1 , . . . ,  2 n - 1. The set `7, when ordered by inclusion, forms a canonical dyadic 

tree. For each interval I = [ ~ ,  k2-~!~1 ] E ,7 we define the corresponding Haar 

function hi normalised in Hp by the formula 

2 ~/p, if 2k 2k+1 2~+1 ~ t  ~ 2~+1, 
hx(t) = -2~/P, if 2k+1 < t < ~ ,  

2 ~+1 - -  2 

0, otherwise. 
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We define Hp space as the space of distributions f of the form f = ~ I e J  aihi 

for which the following expression is finite: 

L 0 IcJ 

This definition makes perfect sense for 0 < p < oe. For 1 < p < ee, 11.11 is really 

a norm and Hp is a Banach space. When 0 < p < 1, (1) defines a p norm and 

the resulting Hardy space Hp is a quasi-Banach space. In the rest of this section 

we will a lways  assume that  0 < p < 1. 

It  is clear from the definition that  the Haar system (hl)lE.7 is a normalised 

unconditional basis in Hp. This basis is strongly absolute (cf. [KLW]). 

We will not use much more about those spaces besides the definition. Let 

us note, however, that  their origin lies in martingale theory where they play an 

important  role (cf. [G]). Their importance stems also from the fact (cf. [W]) 

that  they are isomorphic to the classical Hardy spaces, of analytic functions on 

the unit disc. For a general theory of those Hardy spaces see [D]. 

The following properties of the basis (h t ) i~ j  in Hp are easy and well known. 

PROPOSITION 3.1 : 

(a) If lo C if, then the system (hl)1clo, l~y is equivalent to the Haar system. 

(b) The Haar system (h i ) i6 j  is equivalent to its infinite direct sum in the 

~p-sense. 

It  follows from Corollary 2.5 and the above Proposition that  if X is a 

complemented subspace of Hp, p < 1, with an unconditional basis (e j ) j e j ,  then 

the basis (ej)je J is equivalent to the subbasis of the Haar basis. 

Our aim in this section (motivated by the above remark) is to study subbases 

of the Haar basis. It  turns out that  they exhibit very complicated structure. 

Before we proceed let us point out the following 

FACT 3.2: Every normalised unconditional basis in Hp, p < 1 is equivalent to 

the Haar basis. 

This is clearly a corollary of Theorem 2.12 and the above Proposit ion 3.1(b) 

but in this particular case the proof can be obtained more easily as follows: 

We know from Corollary 2.5 that  each unconditional basis in Hp is equivalel 

to a subbasis of the Haar basis. In the other direction we proceed like in tt 
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proof of Corollary 2.5, but instead of Corollary 1.3(a) we use Corollary 1.3(b). 

The easiest way to see the argument is to assume that  K -- 2 ~ and take 

N1 = {hi:  [I[ < 2 8 } 

and the remaining N~'s as 

{h/o, hi1, . . . ,  hI2,_~ } 

where Io E f l  and Io C [0, 2-s], and for j = 1, 2 , . . . ,  2 s -  1 we have Ij = I0 + j 2  -~. 

It is now quite clear that  taking one out of each N~ we get a basis equivalent to 

the Haar basis. The appeal to Theorem 1.4 finishes the proof of the Fact. 

Let us introduce now a notation which will be used in the rest of this section. 

If A C J then the closed linear span of (hi)leA in Hp will be denoted by Hp(A). 
The set of all dyadic intervals of length 2-n will be denoted by Jn.  Given A C J 

by An we will mean A N Jn  and by Ca(A) the number IA~I2 -n.  Thus AN is the 

portion of A in the n-th level of the dyadic tree and Ca(A) is the relative density 

of A in the n-th level. 

LEMMA 3.3: Suppose we have sets Ak C ffn~ for some increasing sequence of  

integers (nk) and let 

l ~ k  hI -1 Xk = ~ hi 
IeAk 

and let us denote [Ak[2 -~k = ~-~leA~ If[ --~ ]suppxk[ by ak. Then ifinfak > O, 

(xk) is in Hp equivalent to the unit vector basis in ~2, 

Proofi Let Xk denotes the characteristic function of supp xk. We easily see that  

[xk[ = akl/PXk. From the definition of the norm we get that  for any sequence of 

scalars ak we have 

Olkxk 
I~01 [ \p/2] 1/p = I ~ a 2 k a k 2 / P x k ) ]  

This expression clearly increases when we replace each ~(k by the constant 

function 1, so 
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On the other hand, since the norm of the integral is smaller than the integral of 

the norm (use the norm in/2/p) ,  we have 

1 12/p 1 p/2 

so we have the claim. | 

LEMMA 3.4: Let xk = ~ I e L  k blhl be a sequence of vectors in Hp such that  

Ilxkll = 1 for all k and Lk's are disjoint subsets of,7.  I f l im in fk  ]UIeL~ II = 0 

then (xk) has a subsequence equivalent to the unit vector basis in ~p, so it is n o t  

equivalent to the unit vector basis in ~2. 

Proo~ We can pass to a subsequence and assume without loss of generality tha t  

vectors xk are almost disjoint. Then one easily checks tha t  they span gp. 

Our first aim now is to discuss for what sets A C ,7 the space Hp(A) is 

isomorphic to Hp. By Fact 3.2 it is the same as when the system (hl)teA is 

equivalent to the whole Haar system. | 

PROPOSITION 3.5: Let the set A C f f  be given. Suppose that  

for every 6 > 0 and for every natural number s there 
(*) exists a natural number k = k(6, s) such that  for all 

n E [k ,k+s]  wehave¢,~(A) < 6. 

Then Hp(A) is not isomorphic to Hp. 

Proo~ Assume to the contrary that  Hp(A) is isomorphic to H n. Then by Fact 

3.2 there exists a 1-1 and onto map O: f f  ~ A which gives the equivalence 

of the bases. Now for n = 1, 2 , . . .  take 6,~ = 1/n and sn = n and denote the 

corresponding k(1/n, n) by kn. Observe that  (unless A is empty, but  then there 

is nothing to do) lim,~ kn -- c~. 

For l e [kn + ~, kn + 9 ]  = Kn let 

IEh, -1 E Xl = hi 
IEVI 

where Vl = { I  E ~ :  [O(I)[ > 2-k~}. Since • is 1-1, there is at  most  2 k~+l 

elements in 3~ which are not in Vt. From Lemma 3.3 we infer tha t  the sequence 
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(xl), where l E Un°°=l K~, is equivalent in Hp to the unit vector basis in g2. Since 

establishes the equivalence of bases we see that 

l~EV~ hI -1 E he(i) 
IEV~ 

is also equivalent to the unit vector basis in g2. This implies by Lemma 3.4 that  

there exists a A > 0 such that ~-]~Iey~ I~(I)[ > A. So for a fixed n and l E Kn, 

we have 

Z 1 (I)1 > n:, 
- -  3 " 

IEK,, IEVI 

On the other hand, since each ~( I )  in the above sum has [g2(I)[ > 2 -kn and 

there are very few intervals in Al for l E [k~, kn + n] we have 

1 2-k~-n ~ I¢'(I)l < n . -  + " ~ 1¼1 
n 

IEK,~ I E VI IE K,~ 

< 1 + 2-k~-n2 k " + ~ + l  = 1 + 2 -~+ l .  

Thus we get A _< 3 + 12-~+1~ which is a contradiction. I 

I suspect that  condition (*) of Proposition 3.5 is both necessary and sufficient 

for the basis (hi)lEA to be not equivalent to the whole Haar basis. This, however, 

I cannot prove. The following Theorem is only a partial result. 

THEOREM 3.6: Let B = ( kn ) be a strictly increasing sequence of natural numbers 

and let A C J be defined as A = U~°~=l Jk~. Then Hp(A) is isomorphic to Hp if  

and only i f  supn(kn+x - ks) < c~. 

In the proof of this Theorem we will need the following 

LEMMA 3.7: Suppose that the set A is as in the above Theorem, and given a 

natural number r let us define the set A ° as U~__ l f f  k~ +~ . Then the basis ( h I ) I E A 

is equivalent to a subbasis of (hi)ieAO. 

Proof of  the Lemma: The map is given as 

2k. ' 2k. j ~-* 2k:-+~, ~-g.+~j" 

Since this map is actually a linear change of variables, one easily checks that  it 

gives an isometric embedding. I 
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Proof of the Theorem: If supkn+l - k,  = co, then Proposition 3.5 clearly 

implies that Hp(A) is not isomorphic to Hp° To prove the converse implication, 

it suffices to show that the Haar basis is equivalent to a subbasis of (hi)leA. Let 

s u p n k n + l - k ~  = K. Let us fix an integer r such that 0 _< r < K. For each 

s = 0, 1,2,~.. there is at least one n such that s K  + r <_ k ,  < (s + 1)K + r. 

Splitting the integers into at most K parts and aplying Lemma 3.7 we infer that  

the basis (hl)1eA is (for every r) equivalent to a subbasis of a basis (hi)ieA~ where 

A ~ = U~=I,7~K+~. But the same argument shows that the basis (hl)leA~ is 

equivalent to a subbasis of (hx)ieA. Thus by Proposition 2.11 bases (hI)IeA and 

(hl)leA~ are all equivalent. It is easily seen that the basis (hl)ieAO is equivalent 

to any of its finite direct sums, so 

K K 

( h , ) i e j  ~  (h,)leA- ~  (h,)/eAo ~ (h,) eAo 
r=0 r=0 

This proves the Theorem. | 

Remark: This Theorem can be generalised a little. Assume that (k~)n~__l is an 

increasing sequence of integers such that sup.  k,~+l - k n  < co and that A = U Ak~ 

where Ak~ C Jk~. I f  UIEA~ I = S ,  is an interval of length > 6 > 0, then it is 

easy to see that (hI)IeA is equivalent to the Haar system. Simply take intervals 

from `7~ with 2 -~ < 5/2 and observe that for each S~ there is at least one I E `7~ 

contained in S~. This implies that (hi)leA contains a subbasis equivalent to the 

Haar system, thus is equivalent to the Haar system. 

Also if a set A C ,7 contains a set A1 such that (hl)IEA1 is equivalent to the 

Haar system, then (hi)leA is equivalent to the Haar system. 

The following Proposition allows one to tinker a bit with the set A but seems 

to be insufficient to decide the general problem. 

PROPOSITION 3 .8 :  

(a) Suppose that the set A satisfies Cn(A) --+ 0. Then the basis (hx)1eA is 

equivalent to a subbasis of the natural basis in the space (~-~n H~ )P. 

(b) I r A  = B U C, A C ,7, and Hp(A) is isomorphic to H v and Cn(B) -~ 0 as 

n ~ oo, then Hp(C) is isomorphic to H v. 

Proof  of  (a): This is once more a disjointness argument. Take an increasing 

sequence of integers such that ¢8(A) < 2 - k ' - 2  for all s > k,~+x and write A = 
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o o  

Aeven ----- U {As: k2, _< s < k2n+l} 
n----1 

Aodd = 0 {As: k2~+1 _< s < k2,~+2. 
"n,----0 

I t  follows from our choice of k~ that  

Hp(A~ven)"~ ( ~-~Hp((AS:n=I k2n ~_ s < k2n+l}))p 

and 

so we get 

Hp(Aodd) ~ As: k2n+l < s < k: ,+2 , 
~ p  

This clearly gives the claim. | 

s < k.+l}))p 

Isr. J. Math  

In order to prove (b) we will need the following Lemma. 

LEMMA 3.9: For any B C J such that  ¢,~(B) ~ 0 there exists a subset B1 C 
J \ B such that 

(1) irA E B1 then I C [0, 1/2], 

(2) Hp(B1) is isomorphic to (En H~)p, 
(3) B l n B = 0 .  

Proof'. Since ¢8 (B) ~ 0 for every integer n we can find an integer k such that  

Ck(B) • 2 k-1 -b Ck+l(B) • 2 (k+l)-I  + ' "  q- Ck+n(B) • 2 (k+n)-I < 2 k-1. 

Thus we can find at least one s, 0 < s < 2 k-1 such that  no interval from 

Bk,  B k + l , .  • •, B~+n 

is contained in r 8 8+11 t ~ ,  -~-].  This means that  

s s + l  B~= I : I c  , ~-~ a n d l E  J~ N B = O .  
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Since Hp(B~) is naturally isometric to Hp we can continue in this way (taking 

k = k(n) rapidly increasing) to obtain B1 = JAm B~' satisfying conditions of the 

Lemma. | 

o n t o  Proo[o[ (b): Since Hp(A) is isomorphic t o H p  there exists a 1-1 map ~: A 

.7 establishing equivalence of bases. Since Hp(B) does not contain a subspace 

isomorphic to e2 from Lemma 3.3 we infer that  ¢~(¢(b)) --* 0. Aplying Lemma 

3.9 we get a subset B1 C J ,  B1 N ~(B)  = 0, such that  bases (hl)IEB1 and 

(hx)ie~(B) are equivalent. Let us say that  (bl: B1 ~ ~(B)  establishes the 

equivalence. This implies that  the map ~2 : ,7  ~ ,7 defined as 

¢1(I) ,  if I E B1 

¢2(I)  = ¢ 1 ' ( I ) ,  i f I  e ¢ (B)  

I,  otherwise 

is well defined and establishes an isomorphism of Hp. Thus the map ¢2 o ¢: A 

,7 also establishes the equivalence of bases (hl)ieA and (hi)Icy. But ¢2o¢(C)  D 

{I • `7: I C [1/2, 1]}. This shows that C contains a subbasis equivalent to the 

Haar basis so is equivalent to the Haar basis. | 

The rest of this section deals with some examples of subbases of the Haar basis. 

We will deal only with subbases consisting of full levels of the dyadic tree J .  For 

any number a > 1 we consider the set 

A.= O ,TEnol 
n----1 

and the corresponding spaces Hp(As). We have the following 

THEOREM 3.10: For every a > 1 the space Hp(As) (0 < a < 1)is not isomorphic 

to any of its powers. I[a ¢ t3 the spaces Hp(As) and Hp(A~) are not isomorphic. 

Proof: If Hp(As) is isomorphic to some of its powers, then by Corollary 2.13 it 

is isomorphic to its square and, by Theorem 2.12, Hp(As) has a unique uncondi- 

tional basis. Thus there exists a map ¢: As ~ As ~ As establishing the isomor- 

phism. Let us consider all intervals I • J [~ ]  ~ ,7In-] such that  ]¢(I)[ _< 2 -[n~]. 

Since the number of intervals in As whose length is at most 2 -['~=] does not 

exceed 

E 2 [k"] _ 2 [~] + n2 [(n-lF] 

k--1 
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for each n there is a subset B~ C ~ 1  • J [ ~ ]  of cardinality at least 

2In ~1 _ n2[(,~-1) ~] 

such that  I~(I)l < 2 - [ ~ ]  for all I E B~. Since 

2-[~1 • IB~l _ 1 - n2 [(n-1)~l-['~] 

and the right-hand side tends to 1 as n --* ce, we infer from Lemma 3.3 that  

[I ~IeB~ hIl[ -1 ~-]~IeB~ hi is (at least for n greater than some integer no) equiv- 

alent in Hp(A~) @ Hp(A~) to the unit vector basis in g2. On the other hand 

I supp E h~(I) l ~ E IO(I)[ 
I E B,~ I E B,~ 

_~ 2-[(n+1)~1 • I B +n I ~ 2 . 2  [n~] • 2 -[("+1)"1 --* 0 as n tends to c~. 

By Lemma 3.4 this means that  [[ ~IeB. hi1] -1 ~-~IeB. h¢(i) is not equivalent to 

the unit vector basis in g2. This contradicts the assumption that  • establishes 

the equivalence of bases and shows that  Hp(A~) is not isomorphic to any of its 

powers. 

Now let us take two real numbers ~ > a > i and suppose that  Hv(Az) is 

isomorphic to Hv(A~ ). It  follows from Theorem 2.9 that  the natural  basis in 

Hv(A~ ) is equivalent to a subbasis of the natural  basis in Hv(A,) @ Hp(A,). Let 

~: Am ~ A n ® A n establish the equivalence. I t  follows from Lemmas 3.3 and 

3.4 that  there exists a 5 > 0 such that  for each natural  number N 

N 

n = l  I E J [ ~  l 

But the left-hand-side sum in (*) does not exceed the sum of lengths of 2 . 2  [N~] 
longest intervals in A n @ A n. This in turn equals at most twice the number of 

levels in A n before the cardinality of the level reaches 2- 2 [N~I, which is at most 

CN ~/~. Since a/~ < 1 we reach the contradiction. | 

Remark: 1. Similar arguments can  be applied to other increasing sequences 

of natural  numbers, not only to [n~]. This choice was simply the easiest way 

to provide a collection of continuum non-isomorphic complemented subspaces of 

H,. 
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2. The alternative (although related) proof of the non-isomorphism of HB(A~) 
for different (~s can be obtained using the invariant bN(X) defined in Theorem 

3.2 of [KLW]. One gets that  bN(Hp(A~)) ,.~ ( logN) ~(½--}). 

3. The spaces HB(A~) are in a sense big. It  is easily seen that  they con- 

tain a subspace isomorphic to the whole Hp. Such a subspace cannot be com- 

plemented. We can form a "local" version of spaces Hp(A~), tha t  is spaces 
n Z~ = ( ~  Hp(An))p where A M = [-Jk=l':7[k~]" Those spaces can also be repre- 

sented as spaces spanned by a subbasis of the Haar basis. It  follows from Propo- 

sition 2.11 that  each X~ is isomorphic to its square. Since bN(Hp(A~)) = bN(X~) 

we infer that  the X~ 's  are mutually non-isomorphic. 

k Given an increasing sequence of natural  numbers ( ,~),~=1 let us form two 

subsets of ,7, namely 

k2n+2 ]¢2~+1 

A I = U  U Js and A 2 =  U U Js ,  
n s -~k2n+lq-1  n s ~ k 2 ~ q - 1  

and let us consider corresponding spaces Hp(A1) and Hp(A2). Clearly Hp = 

Hp(A1) ® Hp(A2). If we assume additionally that  kn+l - k,~ ~ oc we infer from 

Proposition 3.5 that  neither Hp(A1) nor Hp(A2) are not isomorphic to Hp. Let us 

concentrate our attention on the family of sequences k (~) = [n ~] for n -- 1, 2 , . . . ,  

and denote the corresponding sets by A~ and A~. Using arguments analogous 

to the arguments used to prove Theorem 3.10 above we can show that  spaces 

Hp(A~) are pairwise non-isomorphic for i = 1, 2 and a > 1. Thus HB admits a 

continuum of different splittings into a direct sum of two subspaces. In the above 

examples those subspaces are non-isomorphic. It  is unknown if there exists a 

space X non-isomorphic to Hp such that  X G X is isomorphic to Hp. 

Added in proo~ After this paper  was accepted for publication I have learned 

that  Proposition 2.11 was proved by M. W6jtowicz in On permutative equivalence 

of unconditional bases in F-spaces, Functiones et Approximatio X V I  (1988), 51- 

54. Our proof is an exact repetition of his argument. 
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