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ABSTRACT
We prove that a wide class of quasi-Banach spaces has a unique up to
a permutation unconditional basis. This applies in particular to Hardy
spaces Hp for p < 1. We also investigate the structure of complemented

subspaces of Hp(D). The proofs use in essential way matching theory.

Introduction

In this paper we study the problem of uniqueness up to permutations of uncon-
ditional bases in quasi-Banach spaces. Suppose that X is a quasi-Banach space
(in particular a Banach space) with a quasi-norm |[|.|| and an unconditional basis
(zn)nen. We always assume that the basis is normalised, i.e. ||z,|| = 1 for all
n € N. Let (ym)mem be an unconditional basis in another quasi-Banach space
Y. We say that those bases are equivalent (and write it as (Zn)nenN ~ (Ym)meM)
if there exists a 1-1 and onto map ®: N — M such that the map z, — ygm)
extends by linearity to an isomorphism between X and Y. The terms “permu-
tatively equivalent” or “equivalent up to a permutation” are also used in the
literature. We say that a quasi-Banach space ¥ has a unique unconditional basis
if it has an unconditional basis and all (normalised) unconditional bases in X are
equivalent.
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QOverseas Visiting Scholarship of St. John’s College, Cambridge.
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In the context of Banach spaces it is quite exceptional for a space to have a
unique unconditional basis. What is known can be found in [BCLT] and the
references quoted there, and more examples are given in the paper [CK]. The
general introduction to the problem can be found in [M].

In the context of quasi-Banach spaces which are not Banach spaces the unique-
ness of unconditional basis seems to be a norm rather than an exception. It was
shown in [K] that a wide class of non-locally convex Orlicz sequences spaces,
including £,-spaces for 0 < p < 1, have a unique unconditional basis. The case
of Lorentz sequence spaces was studied by Nawrocki and Ortyniski [NO]. The
uniqueness of unconditional basis in non-locally convex Lorentz sequence spaces
was established in [KLW] Theorem 2.6. Actually in [KLW] it was shown that
(under some assumptions to be explained later), given two unconditional bases
(Zn)nen and (Ym)mem in a quasi-Banach space X, we can partition N into
a finite number of disjoint sets Ny, Na,..., Ni in such a way that each basic
sequence (Tn)nen, 18 equivalent to a subbasis of the basis (ym)mem, and natu-
rally the same holds with roles of the bases reversed. This allowed one to treat
the above-mentioned case of Lorentz sequence spaces and also to obtain non-
isomorphism of Hardy spaces H, for p < 1 in a different number of variables.
We were unable to decide if Hy, has a unique unconditional basis. This problem
was a driving force of the present investigation and we solve it in the affirmative.

Our main technical result is the following

THEOREM 2.9: Suppose X is a natural, quasi-Banach space with strictly
absolute unconditional basis (€, €k, )menm and suppose that (un, uk)nen Is some
other unconditional basis in X. Then we can partition each index set into four
disjoint subsets, Ny, Na, N3, Ny and Mj, Mo, M3, M, in such a way that

(u’n)nENl ~ (en)mEMla
(un)neNq ~ (em)mGM4 ~ (em)mEM;,-a

(un)nENg ~ (un)nENa ~ (em)m€M2~
As a corollary we obtain

THEOREM 2.12: Let X be a natural quasi-Banach space with strongly absolute
unconditional basis (€m)menm. Assume also that X is isomorphic to some of its
cartesian powers X°, s = 2,3,.... Then all normalised, unconditional bases in
X are permutatively equivalent.
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Generally we follow the ideas of [KLW]. The essential new ingredient is combi-
natorial. We use the classical Hall-Kénig Lemma (Marriage Theorem) and some
of its refinements. This is explained in Section 1. Section 2 deals with general
quasi-Banach spaces. Here we prove our main results. The final Section 3 is
devoted to Hardy spaces. We give a simple proof of uniqueness of unconditional
basis in H, and investigate the structure of complemented subspaces of H, for
p < 1. Our results in this section are in the nature of examples, but in our opin-
lon they show that the structure of complemented subspaces of H), is extremally
complicated.

Our notation is rather standard. In combinatorics we follow the expository
article [B] and in the theory of quasi-Banach spaces we follow [KPR]. Let me only
point out that |.| may denote (depending on the context) one of the following:
absolute value of the number, cardinality of a finite set or the Lebesgue measure
of a subset of interval [0, 1].

ACKNOWLEDGEMENT: I would like to express my deep gratitude to Dr Béla
Bollobas for his answers to all my combinatorial questions. In particular he has
shown me the proof of the fundamental Corollary 1.3.

1. Matching in bipartite graphs

A bipartite graph G is a triple (N, A, M) with N and M disjoint sets and A a set
of unordered pairs, one element from N and one element from M. The elements
of the set N U M are called vertices of the graph G and the set N U M of all
vertices is sometimes denoted V(G). The elements of A are called edges and A
is sometimes denoted by E(G) — the edge set of G. We say that two vertices
a,b € V(G) are joined if the pair (a,b) € A. We call a subset 4 C A one-
sided if it is contained either in N or in M. For a one-sided set of vertices A we
denote

¢(A) = {v e V(G): (a,v) € A for some a € A}.

It is clear that ¢(A) is also one-sided and belongs to the different set (N or M)
than A. If A is a one-element set A = {a} then we will use the notation ¢(a) to
denote ¢({a}). With this convention

8(4) = | ¢(a).

a€A
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The degree of a vertex a € V(G) is |#(A)|, the cardinality of #(A), i.e. the
number of vertices joined with a.

Let A C V{(G) be a one-sided set. A matching of Aisa 1l —~1 map ¢: A —
V(G) such that (a,¥(a)) € A for every a € A. Clearly ¥(A) is also a one-sided
set. A one-sided set which has a matching is called matchable.

A necessary and sufficient condition for the existence of a matching of A is
given by the following classical result, called usually the Hall-Kdnig Lemma.

THEOREM 1.1: Suppose G is a bipartite graph such that the degree of each
vertex of G is finite. For a one-sided set A C V(G) there exists a matching of A
if and only if for every finite subset B C A we have

[6(B)| = |B].

It follows easily from Theorem 1.1 that the increasing union of matchable sets
is matchable, so every matchable subset A C V(@) is contained in a maximal
matchable set A;.

The following concept will play a very important role in our considerations:

Definition 1.2: Let G = (N, A, M) be a bipartite graph such that every vertex
has finite degree and let ¢ be a positive number. We say that N satisfies the
c-Hall-Konig condition if for every finite subset A C N we have

|¢(A4)] > clAl.

In this paper we are only interested in the case 0 < ¢ < 1.
The following consequences of Theorem 1.1 will be crucial for further
arguments.

COROLLARY 1.3: Suppose G = (N, A, M) is a bipartite graph in which every
vertex has finite degree. Assume also that N satisfies the c-Hall-Konig condition
with ¢ = 1/K for some integer K = 2,3,... . Then
(a) there exists a decomposition N = Ny U---U Nk of N into K disjoint,
matchable subsets,
(b) if we write N = |J,c 4 No with N, disjoint sets with |N,| = K for every
a € A, then there exists a matchable subset N C N such that N, NN # §
for every a € A.

Proof: (a) Let us replace the graph G by the graph Gy = (N, Ay, M;) where
M1 =M x {1,2,...,K}
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and
A = {(n,(m,s)) € N x My: (n,m) € A}.

It is clear that the set N in G satisfies the 1-Hall-Konig condition, so there exists
amatching ¢: N — M;. We define N, = ¢y} (M x{s}) fors =1,2,...,K. The
sets N, are clearly matchable in G; the matching of N is given by ¢s(n) = m
where ¥(n) = (m, s).

(b) Let us replace the graph G by the graph G, = (4, Ay, M) (A is the set of
indices a) where (a,m) € A; if (n,m) € A for some n € N,

The graph G; satisfies the 1-Hall-Kénig condition. To see it let us take any
finite subset B C A. Then

¢B)=Jsx»= J o

a€B a€EBnEN,

s0
@@=k | U o) = K-BIK = |B]
a€BneEN,
So there exists a matching ¢: A — M. This means that (¢, ¥(a)) € A; for
every a € A, so for every a € A there exists n, € N, such that (na,¥(a)) € A.
The set {nq }ac4 is the desired set N |

Let us recall one more classical result of graph theory. Really it is the classical
Schroeder—Bernstein theorem of set theory but with an improvement which has
been observed by Banach in [Ba]

THEOREM 1.4: Suppose (N, A, M) is a bipartite graph such that both N and M
are matchable. Then there exists a matching : N — M such that Yy(N) = M.

Let G = (N,A, M) be a bipartite graph. A path of length k in the graph
G is a sequence (ag, a1, a2,...,ax) of elements of V(G) such that for each j =
0,1,...,k — 1 the vertex a; is joined with the vertex aj;1, i.e. (aj,aj+1) € A.
We will say that such a path joins ap with ax. Given the graph G we can
conisider graphs G* = (N,Ag, M) for k = 0,1,... where (n,m) € Ay if and
only if there exists a path in G of length 2k + 1 joining n with m. Clearly
G° = G. If (ap,a1,-.-,02k41) is a path of length 2k + 1 joining ag with agk41
then (ag, a1, @0,@1,02...,a2k+1) is 2 path of length 2(k + 1) + 1 joining ag with
a2k+1- This means that A CA; C Ay C---.
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LEMMA 1.5: Suppose that the degree of each vertex in G° = (N, A, M) is at most
C. Suppose that B C N is matchable in G* with the matching 1: B — M.
Then there exists a partition of B into at most C** disjoint sets By, ..., B, such
that for each 7 = 1,2,...,s there exist 1-1 maps wlj forl = 2,3,...,2k on B;
such that for every b € B; the sequence (b, w{(b),d)g(b),...,d)gk(b),w(b)) is a
path in G° of length 2k + 1.

Proof: Let 1: B — M be a matching in G*. This means that there are maps
¥, ..., Y9 defined on B such that for each b € B the sequence

(bv 71[)2(1))» LR w2k(b)7 w(b))

is a path of length 2k 41 in G°. Since b is joined with at most C vertices, we can
partition B into at most C sets B, B%,..., B* such that v»|B’ is 1-1 for each
j=1,2,...,3. Now each vertex 1(b) can be joined with at most C vertices so
each set Bl,..., B® can be partitioned into at most C sets on which 13 o 1, is
1-1. Thus we have partitioned B into at most C? sets on each of which both 13

and 13 are 1-1. Continuing in this manner we get the claim. 1

Remark: Let us observe that it is possible to have both conclusions (a) and (b)
of Corollary 1.3. satisfied. We have

PROPOSITION 1.6: Suppose G = (N, A, M) is a bipartite graph such that ev-
ery vertex has finite degree. Assume also that N satisfies the 1/2-Hall-Kénig
condition. Let us have N = |J ¢ 4 No with No’s disjoint and |N,| = 2 for all
a € A. Then there exists a partition N = N, U N, into two disjoint, matchable
subset such that N, " Ny # 0 for all « € A.

Proof: We use Corollary 1.3(a) to partition N as N3 U Ny into two match-
able subsets. Let us fix the matchings ¢;: Ny — M for i = 1,2. Let us
consider the graph G; = (N, Ay, M) where My = 11(N1) U ¢2(Np) and A =
{(n,¥1(n) }nem, U {(n, ¥2(n)) bnen,-

It is clear from the definition that each vertex from N belongs to exactly one
edge in E(G;) and each vertex from M; belongs to either one or two edges.
It follows that N in G, satisfies the 1/2-Hall-Ké6nig condition and that M; is
matchable in G;. Now let us apply Corollary 1.3(b) to obtain N C N matchable
in Gy and such that N N N, # @ for all a € A. Take N; to be a maximal
natchable in G subset on N containing N and let Ny = N\ N;. From 4.9(1)
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of [B] we infer that there exists a matching ¥: N; 2% M;. This implies that
Ay ~{(n,¥(n)}nen, gives a matching of Na. So both Ny and N, are matchable

in G1 so also in G. |

Remark: There is a real need for some kind of argument for Proposition 1.6. In
the situation of Corollary 1.3. with K = 2 we can have N C N satisfying the
conclusion of (b) with N\ N unmatchable. Here is an example: G = (N, A, M)
with N = {1,2,3,4} and M = {a,b} and A = {(1,4a),(2,b), (3,a),(3,b),(4,b)}.
The partition of NV is given by {1,2} and {3,4}. If we take N = {1, 3} we see that
it satisfies the conclusion of Corollary 1.3(b) but N N N = {2, 4} is unmatchable.

2. The general situation

Let (em, € )mem be a biorthogonal system in a quasi-Banach space X, i.e. we

have
1, fm=s,

em(es) = { 0, ifm+#s.

The system (e, €5, )men 18 an unconditional basis in X if for every z € X the
series 3 < as €m (#)em converges unconditionally to 2. This implies that there

exists a constant X such that

Z Brmer (T)em

meM

< K sup |Bm| - [|z||
meM

for all x € X. The smallest such constant X will be called an unconditional
basis constant of the basis (e, X )menm. We will always additionally assume
that ||en]| = 1 for all m € M. Since actually the elements (e,,)men determine
the functionals (e},)men it is customary to speak about {em)men as being an
unconditional basis. We will use this convention sometimes, but very often we will
actually need the biorthogonal functionals. Let (e,,, €% ).,.car be an unconditional
basis in X and let (y,,¥*).en be an unconditional basis in Y. We say that
those bases are equivalent and write (e,,) ~ (yn) if there exists a 1-1 and onto
map ®: M — N such that the map e,, — yg(m) extends by linearity to an
isomorphism between X and Y. We say that (e, e}, )menm is equivalent to a
subbasis of (y,)nen if there exists a 1-1 not necessarily onto map ®: M — N
such that the map e, — ygo(m) extends by linearity to an isomorphism between

X and the closed linear span of (ys)sca(m)-
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The unconditional basis (e, €r,)menm in X is strongly absolute, if for every
€ > 0 there is a constant C. such that for any scalars (a.,)menr, only finitely
many of them non-zero, we have

E Am€m

Z |am| < Ce sup |am|+e
meM meM

meM

This definition was introduced in [KLW]. Its intuitive meaning is that the space
X is far from being a Banach space.

The other notion we will need is that of a natural quasi-Banach space. We
will state this definition very briefly and refer the reader to [K1] or [KIW] for
more details. A quasi-Banach lattice X is L-convex if there exists an € > 0 so
that ifu € X,u>0and jjul| =1thenforanyz; € X,1<i<nwith0<z; <u
and such that 1(z; + 22+ -+ + 2,) > (1 — €)u we have maxicica [|z:l] > €. A
quasi-Banach space Y is called natural if it is isomorphic to a subspace of an
L-convex quasi-Banach lattice. )

Let us simply mention that all function spaces occurring naturally in analysis
and their subspaces are natural. In particular Hardy spaces are natural. In
our proofs this notion enters only once (but in a crucial way) in the proof of
Proposition 2.4. Since I decided to refer the reader for this proof to [KLW]
instead of repeating two pages of arguments, this brevity should not cause any
problems.

If X is a quasi-Banach space, by X we will denote its Banach envelope (cf.
[KPR] p. 27).

In this section we will always consider a natural quasi-Banach space X with
a normalised, strongly absolute unconditional basis (em, €}, )menm. We will also
consider Y, a complemented subspace of X with a normalised, unconditional
basis (un,ul)nen. We will assume that unconditional basis constants of both
bases are at most K. Since (un,ul)nen is assumed to be an unconditional basis
in Y we have u}’s defined only on Y. But Y is assumed to be complemented, so
we can extend u’s to the whole of X. This gives that the projection P: X a2y
is given by the formula

P(z) =Y _ u}(z)un.
neN

We will treat u, and u} as sequences indexed by M. More precisely, since
(€m)mem is an unconditional basis in X we have u, = )_, cps Un(m)er and u;, =
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Y menm Un(m)e;, where naturally u,(m) = €5,(um) and uj,(m) = u;(em). The
reader should note that the first of the above sums is unconditionally convergent
in norm while the second is only w*-convergent. We can consider (em, €}, )mem
as an unconditional basis in X. Since in X it is strongly absolute, in X it is
equivalent to the unit vector basis in ¢;(M). This implies in particular that
there exists a constant C such that |uk(m)| < C foralln € N and m € M.

The numbers U(n, m) = u}(m) - u,(m) will be of fundamental importance in
our considerations, so for future reference let us summarise their properties.
LEMMA 2.1: There exists a constant C such that

(a) for everyn € N we have ), ., U(n,m)=1and )} . |U(n,m)[<C,

(b) for every m € M we have ) . |U(n,m)| < C||P||,

(c) for every € > 0 there exists a 6§ > 0 such that for every n € N we have

Z{m: {U(n,m)<8} ‘U(’Il, m)‘ <e,
(d) for every £ > 0 there exists a § > 0 such that for every m € M we have

Z{n: |U(n,m)|<8} IU(n’m)l <g,
(e) f Y = X, ie. (un)nen Is another unconditional basis in X, then
YonenUln,m) =1 forallm € M.

For each § > 0 we define the bipartite graph B(6) = (N,As, M) by the
condition that (n,m) € A; if and only if |U(n, m)| > 6.

LEMMA 2.2: For every § > 0 there exists a constant C(6) such that the degree
of each vertex in V(B(6)) is at most C(6).

Proof: This follows immediately from Lemma 2.1(a) and (b). |

LEMMA 2.3: There exists a g > 0 such that for all §, 0 < § < §o we have
(a) the degree of each vertex n € N is at least 1,
(b) there exists a c > 0 such that N in B(§) satisfies the c-Hall-Kénig condition.

Proof:  Using the unconditionality of the basis (e, ef, )men and the fact that
it is strongly absolute we have

1=wuy(uy) = ZU(n, m) < ZiU(n,m)l
< Cesup [U(n, m)] +¢| z U(n, m)eml|
< Cesup|U(n,m)| + eCK|| Y un(m)em||

= Cesup |U(n,m)| +eCK.
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If we take ¢ such that eCK < %, then we obtain that for each n

sup |U(n, m)| > = 8.

1
2C,
This proves (a). To prove (b) observe that (because the basis (e, €r )mem
is strongly absolute) for each ¢ > 0 there exists a § = 6(¢) such that for every
x € X we have
Yo len@l <elial.
m: |eX, (z){<8

Take a finite set A C N. We have

Al =13 wiw) =1 Y Un,m)|

neA nEAmeM
<Z Z |U(nm]+z Z |U(n, m)|.
n€A meg(A) nEAmgo(A)

By Lemma 2.1(c) we can find a & such that for § < & the second sum above
will be at most 3|A|. Thus using Lemma 2.1(b) we have

%|A|S Z Z|U(n,m)|§c|¢(/1)|-

mep(A) nEA
This proves (b). |

The importance of all this for the problem of equivalence of unconditional bases
rests on the following

PROPOSITION 2.4: Suppose a subset Ny C N admits a matching ¢: Ny — M
in the graph B(6). Then the basic sequences (un)nen, and (ey(n))nen, are
equivalent.

The proof of this Proposition is the argument given at the end of the proof of
Theorem 2.3 of [KLW].

Now we can appeal to Corollary 1.3(a) to get Theorem 2.3 of [KLW]. Actually
all we did was to rewrite the proof of this Theorem using a bit of the language
of graph theory.

COROLLARY 2.5 (see [KLW] Theorem 2.3): Suppose X is a natural quasi-Banach
space with a strongly absolute, normalised unconditional basis (€m, €y, )meM-
Suppose also that Y is a complemented subspace of X with a normalised
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unconditional basis (tn,u))mem. Then there is a decomposition of N into a fi-
nite union of disjoint sets N1, Na, . .., N, such that each basic sequence (Un)nen;,
j=1,2,...,s is equivalent to a subbasis of the basis (em, €}, )menm- In particular

(Um, ur, ymem is strongly absolute.
Proof: Combine Lemma 2.3(b), Proposition 2.4 and Corollary 1.3(a). ]

From now on we will assume that ¥ = X, ie. that (u,)nen Is another
unconditional basis in X. We would like to show that (u,).en IS equivalent
to a subbasis of (€, )mear- This we are unable to do in general. We can however
show that it is possible to partition N into only two subsets N7 and Ns so that
each (un)nen, 1s equivalent to a subbasis of (€,,)mear. To do this we will consider
paths in a graph.

To our graph B(é) let us apply the procedure described before Lemma 1.5. We
get the following

COROLLARY 2.7: Suppose B C N is matchable in B*(8) with the matching .
Then the basic sequences (up)nep and (ey(n))neB are equivalent.

Proof: 'We use Lemma 1.5. We get a partition of B into B,,..., Bs and we get
maps as described in this Lemma. From Proposition 2.4 we infer that (u,)nep, is
equivalent to (ewg (n))nij. But by the same Proposition (ewg(n))"GBj is equiva-
lent to (u ¢;(n))n€ ;- Continuing in this manner 2k-times we infer that (u,)nes,
is equivalent to (ey(n))neB,;- Since the B;’s form a partition of B and ¢ is 1-1

we infer that (un)nep and (ey(n))nep are equivalent. |

Remark: This Corollary is valid also (with the same proof) when span(u,)nen
is a complemented subspace of X.

Now we will show that for two bases in X, graphs B*(6) can satisfy the c-Hall-
Kénig condition with the constant ¢ as close to 1 as one wants.

PROPOSITION 2.8: Assume that (un)nen and (€,,)menm are two unconditional
and strongly absolute bases in a natural space X. Let us fix &, 0 < a < 1. Then
there exists a 6 > 0 and k such that both N and M in the graph B*(6) satisfy
the a-Hall-Kénig condition.

Proof: Let us start with the argument for N. First we need to visualise the
edges of the graph B*(6) in terms of numbers U(rn,m) analysed in Lemma 2.1.
From the definition of B*(6) we see that (n,m) € E(B*(8)) if there exists a
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sequence 7, M1, N1,-. ., Mk, Nk, Mrt1 Where ng = n and my41 = m such that
fori=0,1,...,k we have |U(n;, miy1)| > 6 and |U(n;,m;)| > 4. Given our a fix
¢ = (1 — a)/6 and fix § so that conditions (c¢) and (d) of Lemma 2.1. hold. We
will show that k > $£2-C% + 1 will work.

Let us fix an arbitrary finite set A; C N and call |A;| = N;. Let

By = ¢(A;1) = {m € M:|U(n,m)| > é for some n € A;}.
Now we form inductively sets
Agq1 = {n: |U(n,m)| > 6 for some m € B,}

and
Bsy1={m: |U(n,m)| > §é for somen € A,41}.

It is clear that Ay C A C -+ and B; € By C ---. Let us call |[4;] = N, and
|Bs| = K,. Sequences N, and K, are increasing. It should be clear from what
we said at the beginning of this proof that

B, ={m € M: (n,m) € E(B*(6)) for some n € A;}.

This means that our goal is to show that K > aN;. From Lemma 2.1(a) we
have

Z ZUnm ZZUnm Z ZUnm

n€A,+1 meB, meB,; nEN mEB; ng A1

=K,— Y > Uln,m).

meB, n¢A,+1

Since for m € B, and n ¢ A,41 we have |U(n,m)| < 6, our choice of § and
Lemma 2.1(d) yields

(1) (1-¢)K, < Z ZU(nm (1+¢)K,.

n€A,41 meB,

Analogously

(2) 1-e)N, < > Y Un,m) < (1+¢)N,
n€A, meB;
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Observe, however, that Lemma 2.1(b) implies

(3) Y S U(n,m) < C|B,| = CK,

n€A, meB,
so from (2) and (3) we get
(4) (1 -¢)N, < CK,.

We have

Z Z U(n,m)

n€As41 N A, mEB, 11 N B,

(zr-rzx s ) v

n€A,41 mEBs,y1  n€A,p1 mEB, nEA, mEB,41 B,

265

Since for each n € A; and m € Byyy ™ B, we have |U(n,m)| < 8, we infer from

Lemma 2.1(c) and (1) and (2) that

() -V -(+K,~eN< Y Y Unm)

TIGA,+1 ~N A, mEBa+1 ~ Bl

<(1+4+€)Ngyy — (1 —e)K,s +eNs.

Since Lemma 2.1(a) clearly implies

> > U(n,m) < ClAg1 ™ As| = C(Nop1 — Ny),
n€EAs41 N A, mEB,41 N B,

from (5) and the monotonicity of N, we get

(6) (1=2e)Noy1 — (1+€)Ky < C(Ngy1 — Ns).
Suppose now that K < aN;. Thus for all s = 1,2,...,k we have

(7 K, <alj.

From (4) we now infer that for s = 1,2,...,k

aC

1—¢

8) N, <

N1
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Summing (6) for s =1,2,...,k — 1 and using (8) we get
k=1 k-1 oC
(9) (1-26)) Noyi—(1+8) > Ko < C(Njy1 —N) < C (ﬁ - 1) Ny
s=1 s=1

Using our supposition (7) and the monotonicity of Nj, the left-hand side of (9)

can be minorised by
(10) (1—-2e)(k—1)Ny — (1 +e)aNi(k—1).

From (9) and (10) and the definition of € we see that

aC 1—-a

O 1 2 [(1-2) = (1 +e)al(k—1) >

(k—1).

This contradicts our choice of ¢ and k and so completes the proof for N. Since
our assumptions and constructions work as well for M as for N, we obtain the

Proposition. 1

THEOREM 2.9: Suppose X is a natural, quasi-Banach space with strictly
absolute unconditional basis (em, €5, )mem and suppose that (un, u))ne N is some
other unconditional basis in X. Then we can partition each index set into four
disjoint subsets, Ny, Na, N3, Ny and M, Ms, M3, M, in such a way that

(un)n€N1 ~ (en)mEMla

(Un)neNs ~ (em)meM, ~ (€m)men;,

(Un)nen; ~ (Un)neNs ~ (em)meM,-
Proof:  'We use Proposition 2.8 to obtain the graph B*(§) where both N and M
satisfy the %—Hall—Kénig condition. It follows from Corollary 1.3 that there are
maximal matchable subsets S C N and V C M such that N~ § and M~V are
also matchable. It follows from [B] 4.9.1 that there exists a matching ¥: § 25 V.
Let us fix matchings ¢1: N~ 8 — M and ¢3: M NV — N. We have

YoM NV)NY Yt (NN S)) = 0.

To show this, assume to the contrary that for somem € M~V andne N\ S
we have Ya(m) = ¥1(n). Then we can define matching ¥ on the set SU{n} by
the formulas ¥ = ¢ on the set S ~\{y2(m)}, ¥(¥2(m)) = m and ¥(n) = ¥1(n).
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One checks that it is really the matching, so S was not maximal; a contradiction.
This also implies that 3 (N N S) Nyh(MNV) = 0.
Now we define
Ny = S~{yo(M N V)Uy ™ty (NN S)},
My = VN (NN S)Upha(M NV)},

N3=NX§|
My=M>NV,
Ny =ta(M V),
My =91 (N N S),

Ny =9y g (NN S),
Mz = Yha(M N V).

One easily checks that we get the desired partitionings and that the matchings
we have chosen establish the desired equivalences (use Corollary 2.7). |

PROPOSITION 2.10: Suppose that X is a natural quasi-Banach space with a
strongly absolute unconditional basis (em, €5, )menm- Suppose that (un, u))nen
is another unconditional basis in X. Let s = 2,3,... be given. Assume that
N =Jyea No where N, ’s are disjoint subsets each of cardinality s. Then there
exists a subset V C N such that

(8) (un)nev is equivalent to a subbasis of (em)mem,

(b) VN N, #0 for all a € A.

Proof: It follows directly from Proposition 2.8 and Corollary 1.3 and Corollary
2.7. |

PROPOSITION 2.11: Suppose that X and Y are quasi-Banach spaces with
rormalised unconditional bases (Z,)nen and (Ym)mem respectively. Assume that
(Tn)nen Is equivalent to a subbasis (Yo (n))neN Of (Yn)nen and that (Ym)men is
equivalent to a subbasis (Ty(m))mem Of (Tn)nen. Then the bases (xn)nen and

(Ym)mem are permutatively equivalent; in particular X is isomorphic to Y.

Proof: Let us cousider a bipartite graph G with vertex set N UM ( assumed to
be disjoint sets) and edge set {(n,o(n))}nen U {(m,v(m))}merr- This implies
that in G both n and M are matchable. From Theorem 1.4 we see that there

onto

is a matching ¥: N — M. From the definition of the edge set we see that we
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can split N into N; and N, in such a way that 1|N; = ¢ and ¥|Ny = v~1. This
means that (Zr)nen, is equivalent t0 (Ym)mey(v,) and (Tn)nen, is equivalent to
(Ym)mew(Ny)- Since N = N1 UNp and Ny NNy = 0 and M = 9(N1) U 9p(Ng) we
conclude that (z,)nen and (Ym)menm are permutatively equivalent. 1

Remark: This argument is very general. It applies not only to quasi-Banach
spaces (in particular Banach spaces), but practically to any decent kind of space.
Surprisingly enough Proposition 2.11 seems to be unknown to the specialists.
Usually such conclusions were obtained using the decomposition method, which
requires some additional properties of bases (like being isomorphic to its square
or something similar) (cf. [BCLT] Prop. 7.7).

THEOREM 2.12: Let X be a natural quasi-Banach space with strongly absolute
unconditional basis (€m)menm. Assume also that X is isomorphic to some of its
cartesian powers X°, s = 2,3,.... Then all normalised, unconditional bases in

X are permutatively equivalent.

Proof: Since X* is isomorphic to X we get also that X s is isomorphic to X.
Thus in X there is a normalised, unconditional basis equivalent to the direct sum
of s2 copies of the basis (€m)men- We call this basis (un)nen Where naturally
N = M x § x S where S is a set of cardinality s. We partition N into sets of
cardinality s as N = |J,,,ca..es{m} x {s} x S. Applying Proposition 2.10 (with
the integer s) we realise that the subbasis of (e,,)menr given by this Proposition
has a subbasis equivalent to the direct sum of s copies of the basis (em)men. From
Proposition 2.11 we infer that the basis (em)menm is permutatively equivalent to
the direct sum of s copies of itself. Now let (u,)nen denote any other normalised
unconditional basis in X. It follows from Theorem 2.9 that (u,)nen can be split
into two pieces, each equivalent to a subbasis of (em)men. But as we know,
(€m)menm is equivalent to the direct sum of s copies of itself, s > 2, so actually
we see that (u,)nen is equivalent to a subbasis of (em)mem.

Reversing the role of bases in the above argument we conclude that (em)mem
is equivalent to a subbasis of (4, )nen, 50 by Proposition 2.11 all bases in X are
permutatively equivalent. | |

COROLLARY 2.13: Suppose that X is a natural quasi-Banach space with the
strongly absolute unconditional basis. If for some s = 2,3,... X is isomorphic
to X°, then X is isomorphic to X & X, so X is isomorphic to X* for every
k=1,23,....
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Proof: Let us consider X with the basis (zy)neny and Y = X & X with the basis
(ym)mem = (Tn)neN ® (Zn)nen. Clearly (2,)aecn is equivalent to a subbasis of
(Ym)mem- We know from Theorem 2.12 that (z,)nen is equivalent to the direct
sum of s copies of itself. Since s > 2, it means that (ym)men is equivalent to a
subbasis of (2n)nen. Proposition 2.11 shows that bases (z)nen and (Ym)mem
are equivalent, so X ~ X @ X. |

Remarks: One may be tempted to believe that we do not need Proposition 2.8,
in other words that N satisfies the 1-Hall-Kdnig condition in B(§) for sufficiently
small 6. This however is not the case as the following example shows.

Example 2.14: Let us fix an integer n > 2. In @;‘H consider the following
biorthogonal system:

u = (1,1,0,...,0), wl=(1,0,-1,-1,...,~1),
ug = (1,0,1,0,...,0), uy =(1,-1,0,-1,--- = 1),
up = (1,0,...,0,1), wt =(1,-1,...,~1,0),
1 1 ,
Un4+1 = l,m,...,n_l s un_H:(—(n—l),n—l,...,n—l).

If we treat £, as a direct sum of countably many copies of 6;“, the above
system yields an unconditional basis in £,. The other basis is the unit vector
basis. It is easy to see that, for any § > 0, the best constant ¢ in the c-Hall-
Konig condition we can get in this situation is 1/n.

Actually this example also shows that Proposition 2.8 does not work when
(un)nen is an unconditional basis in a complemented subspace. Simply consider
the basis which is the infinite direct sum of uy, ug,...,u,. In this case taking
paths does not add a single edge to the graph.

It may be true that for two unconditional bases in X there is a graph B*(6)
which satisfies the 1-Hall-Kénig condition. This would lead to Theorem 2.12
without the assumption that X is isomorphic to X*. It is however relatively easy
to see that in order to prove it one would have to use something more about the
matrix [U(n, m)]neN,menm than is summarised in Lemma 2.1. I also believe that
one really has to use quite big k’s in order to get the conclusion of Proposition

2.8 (for a = § say). Here is a finite dimensional example which shows that B2(8)
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does not work for any 6 > 0. We look at R® and take vectors
(1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), (0,1,1,1,~2).
One checks that, biorthogonal functionals are:

(11 07 _11 _17 _1)7 (1’ _17 07 _la _1)) (1) _la _1, 0> —1)7
(=2,2,2,2,3), (-1,1,1,1,1).
This gives the matrix [U(n, m)] as
1,0,0,0,0
1,0,0,0,0
1,0,0,0,0
-2,0,0,0,3
0,1,1,1,—2
Let us now return to the situation considered at the beginning of this section,
i.e. when (un, u})nen is an unconditional basis in a complemented subspace of a
natural space X with a strongly absolute unconditional basis (e, €5, )mear. It is
very tempting to conjecture that (u,)nen is equivalent to a subbasis of (e, )nen-
Unfortunately, in general we cannot say anything beyond Corollary 2.5. However,
when we compare Corollary 2.5 and Theorem 2.12 we get the following

COROLLARY 2.15: Suppose that X is a natural quasi-Banach space with a
strongly absolute unconditional basis (em)mem and that (u,)nen Is an
unconditional basis in a complemented subspace Y of X. Assume additionally
that X is isomorphic to X* for some s = 2,3,.... Then (un)nen Is equivalent

to a subbasis of (em)mem

3. Hardy spaces

Let us now turn our attention to Hardy spaces H,. We will work exclusively in
the framework of dyadic Hardy spaces.

Let J denote the family of all dyadic subintervals of the interval [0,1] that
is the family of intervals of the form [2", o= ] where n = 0,1,2... and k =
0,1,...,2" — 1. The set J, when ordered by inclusion, forms a canonical dyadic
tree. For each interval J = [, £t € J we define the corresponding Haar
function h; normalised in H, by the formula

v/, if g2k <t < 2

hi(t) = —2n/e, kil < g < Akt
0, otherwise.
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We define H, space as the space of distributions f of the form f = 3" reg arhr
for which the following expression is finite:

& W= |/ (3 arta O] "

Ieg

This definition makes perfect sense for 0 < p < 0o. For 1 < p < o0, ||.|| is really
a norm and H, is a Banach space. When 0 < p < 1, (1) defines a p norm and
the resulting Hardy space H,, is a quasi-Banach space. In the rest of this section
we will always assume that 0 < p < 1.

It is clear from the definition that the Haar system (hr);c7 is a normalised
unconditional basis in H,. This basis is strongly absolute (cf. [KLW]).

We will not use much more about those spaces besides the definition. Let
us note, however, that their origin lies in martingale theory where they play an
important role (cf. [G]). Their importance stems also from the fact (cf. [W])
that they are isomorphic to the classical Hardy spaces, of analytic functions on
the unit disc. For a general theory of those Hardy spaces see [D].

The following properties of the basis (hs);c s in H, are easy and well known.

PROPOSITION 3.1:
(a) If Iy € J, then the system (hi)ic1,, 1 Is equivalent to the Haar system.

(b) The Haar system (hj)je7 Is equivalent to its infinite direct sum in the
£,-sense.

It follows from Corollary 2.5 and the above Proposition that if X is a
complemented subspace of Hy, p < 1, with an unconditional basis (e;);cs, then
the basis (ej);eu is equivalent to the subbasis of the Haar basis.

Our aim in this section (motivated by the above remark) is to study subbases
of the Haar basis. It turns out that they exhibit very complicated structure.
Before we proceed let us point out the following

FAcT 3.2: Every normalised unconditional basis in Hp, p < 1 is equivalent to
the Haar basis.

This is clearly a corollary of Theorem 2.12 and the above Proposition 3.1(b)
but in this particular case the proof can be obtained more easily as follows:

We know from Corollary 2.5 that each unconditional basis in H, is equivales
to a subbasis of the Haar basis. In the other direction we proceed like in t}
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proof of Corollary 2.5, but instead of Corollary 1.3(a) we use Corollary 1.3(b).
The easiest way to see the argument is to assume that K = 2° and take

Ny ={hp: |I| < 2°}
and the remaining N, ’s as

{hi, hryy . hiy_, }

where Iy € J and Iy C [0,27%], and for j = 1,2,...,2°—1 we have I; = [y +j27°.
It is now quite clear that taking one out of each N, we get a basis equivalent to
the Haar basis. The appeal to Theorem 1.4 finishes the proof of the Fact.

Let us introduce now a notation which will be used in the rest of this section.
If A C J then the closed linear span of (hs)re4 in Hp will be denoted by H,(A).
The set of all dyadic intervals of length 2~™ will be denoted by 7,,. Given A C J
by A, we will mean AN 7, and by ¢,(A) the number |4, |2~™. Thus A, is the
portion of A in the n-th level of the dyadic tree and ¢,(A) is the relative density
of A in the n-th level.

LEMMA 3.3: Suppose we have sets Ay C J,, for some increasing sequence of
integers (ny) and let

-1
Iy = Z h[

I€A,

Sh

I€A,

and let us denote |A|2™™ =3, |I| = |suppzk| by ax. Then if inf ax > 0,
(zw) is in H, equivalent to the unit vector basis in £,

Proof: Let xi denotes the characteristic function of supp zx. We easily see that

|z| = aZl/ PXk- From the definition of the norm we get that for any sequence of

scalars ¢ we have

1 p/z 1/P
= / (Z azagz/px;c> .
0 k

This expression clearly increases when we replace each xi by the constant

PR
k

function 1, so

1/2
< (infag)~1/P (Z lak|2) ,

k

o
k
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On the other hand, since the norm of the integral is smaller than the integral of
the norm (use the norm in £;/,), we have

()

1 2/p
< / (Z lakla;prk(t)) dt,
0

1 2/p7P/2
/ ofaztxi(t) dt ]
0

so we have the claim. |

LEMMA 3.4: Let z;, = ZIeLk brhr be a sequence of vectors in H, such that
llzill = 1 for all k and L*’s are disjoint subsets of J. If liminfy |Use s I| = 0
then (z) has a subsequence equivalent to the unit vector basis in £,, so it is not
equivalent to the unit vector basis in £5.

Proof: 'We can pass to a subsequence and assume without loss of generality that
vectors x are almost disjoint. Then one easily checks that they span £,.

Our first aim now is to discuss for what sets A C J the space Hp(A) is
isomorphic to H,. By Fact 3.2 it is the same as when the system (h;)reca is
equivalent to the whole Haar system. |

PROPOSITION 3.5: Let the set A C J be given. Suppose that

for every § > 0 and for every natural number s there
*) exists a natural number k = k(6, s) such that for all
n € [k, k + s] we have ¢, (A) < 6.

Then H,(A) is not isomorphic to H,.

Proof: Assume to the contrary that H,(A) is isomorphic to H,. Then by Fact
3.2 there exists a 1-1 and onto map $: J — A which gives the equivalence
of the bases. Now for n = 1,2,... take §, = 1/n and s,, = n and denote the
corresponding k(1/n,n) by k,. Observe that (unless A is empty, but then there
is nothing to do) lim, &, = co.

For 1 € [kn + %,kn + %] = K, let

D b

Iev;

-1
> b

Ievi

T =

where Vi = {I € Ji: |®(I)] > 27%=}. Since ® is 1-1, there is at most 2%=+1
elements in J; which are not in V;. From Lemma 3.3 we infer that the sequence
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(z1), where I € |J;—; Kn, is equivalent in H,, to the unit vector basis in £,. Since
& establishes the equivalence of bases we see that

-1
Z h; Z ha(1)

IeV; Iev

is also equivalent to the unit vector basis in #5. This implies by Lemma 3.4 that
there exists a A > 0 such that )y, [2(I)] > A. So for a fixed n and | € Ko,

we have
> Y le()] > 3A.

leK, IeV,

On the other hand, since each ®(I) in the above sum has |®(I)| > 27*» and
there are very few intervals in A; for ! € [k,, k, + n] we have

> Y@l <n- 42k 3 )

€K, IEV; €K,
<1427 Fnnghnt B4l 1 4 9341
Thus we get A < 2 + 1275+ which is a contradiction. (]

I suspect that condition (*) of Proposition 3.5 is both necessary and sufficient
for the basis (h1)re4 to be not equivalent to the whole Haar basis. This, however,

I cannot prove. The following Theorem is only a partial result.

THEOREM 3.6: Let B = (k,) be a strictly increasing sequence of natural numbers
and let A C J be defined as A = J,—, J«,.. Then Hy(A) is isomorphic to H, if
and only if sup,, (kn+1 — kn) < 00.

In the proof of this Theorem we will need the following

LEMMA 3.7: Suppose that the set A is as in the above Theorem, and given a
natural number r let us define the set A® as|J;~.| Jk.+r- Then the basis (hr)rea
is equivalent to a subbasis of (hr)jec 0.

Proof of the Lemma: The map is given as

s s+1 S s+1
OFn’ GFn | | QFadr? Qhatr |

Since this map is actually a linear change of variables, one easily checks that it

gives an isometric embedding. |
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Proof of the Theorem: If supk,y1 — k., = oo, then Proposition 3.5 clearly
implies that Hy(A) is not isomorphic to Hp. To prove the converse implication,
it suffices to show that the Haar basis is equivalent to a subbasis of (hr)rc4. Let
sup, knt+1 — kn = K. Let us fix an integer r such that 0 < r < K. For each
s = 0,1,2... there is at least one n such that sK + 1 < k, < (s + 1)K +r.
Splitting the integers into at most K parts and aplying Lemma 3.7 we infer that
the basis (hy)sea is (for every r) equivalent to a subbasis of a basis (hr) e a- where
A" = UZ, Jek+-- But the same argument shows that the basis (hr)rca- is
equivalent to a subbasis of (hr)rca. Thus by Proposition 2.11 bases (hr)rc4 and
(hr)rca- are all equivalent. It is easily seen that the basis (hr)se 40 is equivalent

to any of its finite direct sums, so

K K
(B)ieg ~ Y _(Br)rear ~ Y _(hi)reas ~ (hi)reao ~ (hi)rea-
r=0 r=0
This proves the Theorem. |

Remark: This Theorem can be generalised a little. Assume that (k,)52.; is an
increasing sequence of integers such that sup,, kn+1—k» < 0o and that A = |} A,
where Ax, C Ji,. If UIeAkn I = S, is an interval of length > § > 0, then it is
easy to see that (hy)re4 is equivalent to the Haar system. Simply take intervals
from J, with 27" < §/2 and observe that for each S,, there is at least one I € 7.
contained in S,. This implies that (h;);ca contains a subbasis equivalent to the
Haar system, thus is equivalent to the Haar system.

Also if a set A C J contains a set A; such that (hj)reca, is equivalent to the
Haar system, then (hr)rc4 is equivalent to the Haar system.

The following Proposition allows one to tinker a bit with the set A but seems
to be insufficient to decide the general problem.

ProposITION 3.8:
(a) Suppose that the set A satisfies ¢,(A) — 0. Then the basis (hr)ica is
equivalent to a subbasis of the natural basis in the space (3_, Hy),-
(b) fA=BUC, AC J, and Hy(A) is isomorphic to H, and ¢,(B) — 0 as
n — oo, then Hy(C) is isomorphic to Hp.

Proof of (a): This is once more a disjointness argument. Take an increasing
sequence of integers such that ¢,(A4) < 27%+=2 for all s > k41 and write A =
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Aeven U Agqq where

Aeven = U{As: kon <8 <>k2n+l}

n=1
and

o0
Agda = U {As: kont1 < 8 < kang2.

n=0 .

It follows from our choice of k, that

Hp(Aeven) ~ (Z Hp({As: kan <5< k2n+1}))
n=1 p

and -
H,(Agda) ~ (Z Hp({As kany1 <8 < k2n+2})) ,
n=0
S0 we get ’
H,(A) ~ (\2 H,({As: kn < 8 < kn+1})) .
This clearly gives the claim. | ’

In order to prove (b) we will need the following Lemma.

LEMMA 3.9: For any B C J such that ¢,(B) — 0 there exists a subset By C
J ~ B such that

(1) ifI € By then I C [0,1/2],

(2) Hp(By) is isomorphic to (3, Hy)p,

(3) BinB=§

Proof: Since ¢,(B) — 0 for every integer n we can find an integer £ such that
dr(B) - 2571 4 dpy1 (B) - 2501 o 4yt (B) - 20T < k-1
Thus we can find at least one s, 0 < s < 2¥~1 such that no interval from
B, B4,y Betn

is contained in {3, &i]. This means that

k+n
1
B{‘={I:IC [fg%} and I € U:/;}nB=(0.

r=k
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Since Hp(BY) is naturally isometric to Hy we can continue in this way (taking
k = k(n) rapidly increasing) to obtain B; = |J,, B} satisfying conditions of the
Lemma. ]

onto

Proof of (b): Since H,(A) is isomorphic to Hy, there exists a 1-1 map ®: A —
J establishing equivalence of bases. Since Hy(B) does not contain a subspace
isomorphic to 5 from Lemma 3.3 we infer that ¢,(®(b)) — 0. Aplying Lemma
3.9 we get a subset By C J, By N ®(B) = 0, such that bases (hr)rep, and
(hr)res(s) are equivalent. Let us say that ®;: By — ®(B) establishes the
equivalence. This implies that the map ®;: J ~— J defined as

@1([), ifl € By
(1) =< ®7Y(I), ifIed(B)
I, otherwise

is well defined and establishes an isomorphism of Hy. Thus the map $;0%: A —
J also establishes the equivalence of bases (hr)re4 and (hr)reg. But $202(C) D
{I € J: I cC [1/2,1]}. This shows that C contains a subbasis equivalent to the
Haar basis so is equivalent to the Haar basis. |

The rest of this section deals with some examples of subbases of the Haar basis.
We will deal only with subbases consisting of full levels of the dyadic tree J. For
any number o > 1 we consider the set

Ao = L_Jl Jine

and the corresponding spaces H,(A,). We have the following

THEOREM 3.10: For every a > 1 the space Hp(As) (0 < a < 1) is not isomorphic
to any of its powers. If a # 3 the spaces H,(Ao) and Hy,(Ap) are not isomorphic.

Proof: If Hy(Aq) is isomorphic to some of its powers, then by Corollary 2.13 it
is isomorphic to its square and, by Theorem 2.12, H,(A,) has a unique uncondi-
tional basis. Thus there exists a map ®: A, ® A, — A, establishing the isomor-
phism. Let us consider all intervals I € Jjsa} ® Jjna) such that |®(I)| < 2-I*°1,
Since the number of intervals in A, whose length is at most 2~I*"] does not

exceed
n

321 < 9n"] 4y ppltn=7)
k=1
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for each n there is a subset B, C Jjne} @ Jjn] of cardinality at least

9] _ pol(n-1)7]
such that |®(I)| < 2~I*"] for all I € B,,. Since
271 B, > 1 - n2l(n=1%]=[n"]

and the right-hand side tends to 1 as n — oo, we infer from Lemma 3.3 that
1> ren, M7 X1ep, hi is (at least for n greater than some integer ng) equiv-
alent in H,(As) ® Hp(Aa) to the unit vector basis in £5. On the other hand

|supp Z hon| < Z |2(1)]

I€B, I€B,
<27l +D% B 4 | < 2207 271+ D], 0 a5 n tends to oo.

By Lemma 3.4 this means that || Y g hrll™' 3 jcp. har) is not equivalent to
the unit vector basis in £5. This contradicts the assumption that ® establishes
the equivalence of bases and shows that Hy(Aq) is not isomorphic to any of its
powers.

Now let us take two real numbers 8 > o > 1 and suppose that H,(Ag) is
isomorphic to H,(Ay). It follows from Theorem 2.9 that the natural basis in
H,(A,) is equivalent to a subbasis of the natural basis in H,(Ag) ® Hp(Ag). Let
o: A, 53 Ap © Ap establish the equivalence. It follows from Lemmas 3.3 and
3.4 that there exists a § > 0 such that for each natural number N

N
*) >N jew) > 6N.

n=1 Iej[n“]

But the left-hand-side sum in (*) does not exceed the sum of lengths of 2 - 2[N°]
longest intervals in Ag @ Ag. This in turn equals at most twice the number of
levels in Ag before the cardinality of the level reaches 2 - 2IV°], which is at most
CN*/8, Since a/B < 1 we reach the contradiction. |

Remark: 1. Similar arguments can be applied to other increasing sequences
of natural numbers, not only to [n*]. This choice was simply the easiest way

to provide a collection of continuum non-isomorphic complemented subspaces of
H,.
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2. The alternative (although related) proof of the non-isomorphism of Hp,(Aq)
for different o’s can be obtained using the invariant by (X) defined in Theorem
3.2 of [KLW]. One gets that by (H,(Aq)) ~ (log N) = =%,

3. The spaces Hp(Ao) are in a sense big. It is easily seen that they con-
tain a subspace isomorphic to the whole H,. Such a subspace cannot be com-
plemented. We can form a “local” version of spaces Hp(A,), that is spaces
Xo = (3 Hp(AZ))p where AZ = {Ji_; Jik=]- Those spaces can also be repre-
sented as spaces spanned by a subbasis of the Haar basis. It follows from Propo-
sition 2.11 that each X, is isomorphic to its square. Since by(Hy(Aq)) = bn(Xa)
we infer that the X,’s are mutually non-isomorphic.

Given an increasing sequence of natural numbers (k,)5%, let us form two

subsets of J, namely

k2ni2 k2n+1
a=U U & ad 4=J U 7
n s=kany1+1 n s=kgy,+1

and let us consider corresponding spaces H,(A;) and Hy(Az). Clearly H, =
H,(A1) ® Hp(A2). If we assume additionally that k,4+1 — k, — 00 we infer from
Proposition 3.5 that neither H,(A;) nor H,(A2) are not isomorphic to H,. Let us
concentrate our attention on the family of sequences k) = [n*] forn=1,2,...,
and denote the corresponding sets by Af and AS. Using arguments analogous
to the arguments used to prove Theorem 3.10 above we can show that spaces
H,(AY) are pairwise non-isomorphic for ¢ = 1,2 and o > 1. Thus H, admits a
continuum of different splittings into a direct sum of two subspaces. In the above
examples those subspaces are non-isomorphic. It is unknown if there exists a
space X non-isomorphic to H, such that X & X is isomorphic to H,.

Added in proof: After this paper was accepted for publication I have learned
that Proposition 2.11 was proved by M. Wéjtowicz in On permutative equivalence
of unconditional bases in F-spaces, Functiones et Approximatio X VI (1988), 51-
54. Our proof is an exact repetition of his argument.
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