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QUASI-FACTORS IN ERGODIC THEORY 

BY 

S. GLASNER 

ABSTRACT 

Motivated by the notion of quasi-factor in topological dynamics, we introduce 
an analogous notion in the context of ergodic theory. For two processes, ~f and 
~, we have ~ Z  ~ if and only if ~ has a factor which is isomorphic to a 
quasi-factor of ~f. On the other hand, weakly mixing processes can have 
nontrivial quasifactors which are not w.m. We characterize those ergodic 
processes which admit only trivial continuous ergodic quasi-factors, and use this 
characterization to conclude that a process with minimal selfjoinings is of this 
type. From this we derive the fact that for every such ~f and any ergodic 
either ~f ± 0~ or ~ extends some symmetric product of ~f. 

§1. Quasi-factors 

Motivated  by the not ion of quasi-factor in topological  dynamics  ([1], [2], [3], 

[4]), we int roduce an analogous  not ion in the context  of ergodic theory  as 

follows. Let  ~f = (X, ~, /~,  T)  be a measure-preserving process where  X is a 

compac t  metric space, ~ its Borel  field, /z a probabil i ty measure ,  and T a 

h o m e o m o r p h i s m  of X. We  call such a process topological. Let  ~ ( X )  be the space 

of probabil i ty measures  on X equipped with the weak * topology,  and let q3 be 

the cor responding  Borel  field. T induces an attine h o m e o m o r p h i s m  of ~ ( X )  

which we denote  also by T. 

DEFINITION. We say that  a process ( ~ ( X ) ,  ~, A, T) is a quasi-factor of X if 

A ~ ~ ( ~ ( X ) )  is (i) T- invar iant  and (ii)/~ is the barycenter  of A, i.e., for every 

g @ C(X) (cont inuous functions on X )  

fe,~x~ fx g(x)dv(x)dA(v)=f g(x)dtx(x). 

Our  first goal is to show that a q.f. is an invariant  of  the (measure theoretical)  

process (X, g3,/x, T). 
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For the following lemma we found no reference; the proof given was indicated 

to us by J. Aaronson. 

LEMMA 1.1. Let g~ = (X, 30, I~, T) and ~ = ( Y, ~, 7, T) be two topological 

processes. Suppose there is a measurable isomorphism between g~ and o~, i.e., there 

exist Borel measurable sets X~ C X and Y~ C Y with ~ (X~) = 7? (Y~) = 1 and an 

equivariant 1-1 map X~--~ Y~ such that ~o and ~o -1 are measurable with respect to 

and ~ the completions of ~ and ,~, respectively. Then there exist Borel subsets of 

measure one, XoC X~ and YoC Y6 such that Xo-~ Yo is Borel measurable. 

PROOF. Let  P, = {A..1, A,,2, • • ", A,,k. } be a sequence of partitions of Y where 

for every n, j, A.,i C ~ and diameter (A.,j) < 1/n. Let fi.-.i = q~-lA..J ; then A.,j is 

in ~ and we can choose B.,~ E 30 such that B..i C .4.,j with tz (B..j) = tz (A..j). 

Choose y..l EA. . j  and define p. : [..)~"=lB.,i-* Y by ~o.(x) = y..j if x E B..i. Put 
k 

X'~ = 0~.=~ L.Ji"=.B.. i ; clearly we have/~(Xg) = 1 and lim q~. (x) = q~(x) for every 

x E Xg. Since q~. is Borel measurable on Xg, it follows that ~o ]Xg is Borel 

measurable, and since q~ is 1-1, the set q~(Xg)= Yg is also Borel. Finally, put 

Xo = [") ~ =_~ T"X~, Yo = q~ (Xo). [] 

LEMMA 1.2. Let X be compact metric; then the set {u : v ( f ) >  a } is a Borel 

subset of ~ ( X )  for every a E R  and f a bounded Borel function on X. 

PROOF. Let  @ be the class of bounded functions f on X which are 

v-integrable for every ~, E ~ ( X )  and such that Va ~ R, {~, : ~,(f)> a} is a Borel 

subset of ~ ( X ) .  By the definition of the topology on ~ ( X ) ,  we have C ( X )  C ~. 

If f.  ff @ and f = lira/.  (pointwise) is bounded, then Vv, lim u(f . )  = lira u(f) and 

Va, ~,(f)> a ¢:> eventually u ( f . ) >  a. Thus 

{~:~(f)>a}=tA fq{~:~(f.)>a}. 
k = l  n - k  

Whence @ contains all Borel bounded functions, and the proof is completed. []  

PROPOSITION 1.3. Let ~ = (X, ~,  p., T) and ~ = (Y, 7, ~, T) be two topologi- 

cal processes. Suppose there is a measurable isomorphism between ~ and ~ ; then 

to every q.f. of ~ there corresponds a (measure theoretically) isomorphic q.f. of ~. 

PROOF. We observe first that the barycenter equation (ii) holds for every 

Borel bounded function on X. (The class @ of bounded functions for which it 

holds contains C ( X )  and is closed under pointwise limits (bounded), by the 

Lebesgue bounded convergence theorem used twice.) Since ~ and 0~ are 

measurably isomorphic, there exist, by Lemma 1.1, Borel subsets Xo C X, Y0 C Y 
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with ~ ( X o ) = l = n ( Y o )  and a 1-1 Borel isomorphism (Xo,~30,/~,T) -~, 

(Yo, 0%0, ~/, T), where ~o = {B N Xo: B E ~}  and 0%o is defined similarly. Let 

~ o ( ~ )  be the Borel subsets of 3~(X)(~(Y)) which consist of the measures v 

with v(Xo)= 1 (v(Yo)= 1), respectively (Lemma 1.2). Now define q~, : ~o--~ ~ 

as follows, for g ~ C(Y)  

Clearly p , ( v ) :  C(Y)--~ R is a bounded linear functional. Thus ~ , , (v )E  ~ ( Y )  

and moreover q~,(v)E~; .  Also q~, is Borel measurable (Lemma 1.2), and 

T-equivariant. Since (~p,) ' =  (q~ l), exists, q~, is a Borel isomorphism. 

Now let A E ~ ( ~ ( X ) )  be a q.f. of X. Computing the integral of lxo we have 

l=f 1,,oa  = f J lxodvdA(v). 

Thus v(Xo) = I for A-a.e. v and A(~o) = 1. We let A '=  ~¢**(A) E ~ ( ~ ( Y ) ) ,  then 

A' is an invariant measure supported on ~ .  For g E C(Y),  we have 

Thus a '  is a q.f. of og and 

~o, : (~(X) ,  ~d,a, T) -+(~ (Y ) ,  ~' ,a' ,  T) 

is an isomorphism of measure-preserving systems. [] 

We can now define the quasi-factors of any process ~ to be the quasi-factors 

of any topological realization of ~. 

PROPOSITION 1.4. Let g~ = (X, ~, I~, T) and ¢g = (Y, 0%, ~1, T) be topological 

processes with g~ ~ °9 a homomorphism. Then ql is isomorphic to a q.f. of g~. 

PROOF. Let /J = f / z y d ~ ( y )  be a disintegration of/~ over T/ w.r.t, q~. Define 

: Y ~  ~ ( X )  by e(Y) =/~y and let A ~ ~ ( ~ ( X ) )  be the measure ~,(~/). Then 

A is T-invariant and for every g E C(X)  

Thus A is a q.f. of ~ and since ~ is 1-1, ~ is isomorphic to this q.f. [] 
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PROPOSITION 1.5. Let ~ = (X, ~,  tz, T)  and ~ = (Y, ~, 77, T)  be topological 

processes. Then ~T is not disjoint from ~l iff °-31 has a factor which is isomorphic to a 

non-trivial q.f. of :T. 

PROOF. c~ Z °2/ ¢:> there exists an invariant measure O E ~ (X x Y) such that 

rrxO =/z,  ~rrt9 =77 and O ~ / z  x T/. (We say in this case that the process 

(X x Y, ~ (~) ,,% O, T) is a joining of ~ and 0~.) 

Let O = f/xy x 6ydr/(y) be a disintegration of ~ over "q w.r.t. ~ry. Then the 

map ~ : Y-+  ~ ( X )  defined by to(y) =/zy can be used to define the q.f. A = 

to,(r/)  of ;T. In fact, for g E C ( X )  

f. = f ,(x)dO(,,,y)=f g(x)d xO = f gd ,. 
Conversely, if $ : ( Y, ~/)--> ( ~  (X), A ) is a homomorphism of ( Y, 77) onto the q.f. 

A of ~, then the measure O = f t0(y)× 8yd , (y )  is a joining of ~ and ~. 

In both directions A is trivial iff A = & iff to(y) =/~, ~/-a.e. iff O = p~ x ~/. This 

completes the proof. []  

PROPOSITION 1.6. I f  g~ is a Kronecker ergodic process, then every q.f. of ~ is 

isomorphic to a factor of g~. 

PROOF. We can assume that X is a compact abelian topological group, 

Tx = ax where {an}n~z is a dense subgroup of X, and p. is Haar  measure on X. 

Let A E ~ ( ~ ( X ) )  be an ergodic q.f. Let Uo ~ ~ ( X )  be a generic point for A. 

Then Supp(A)C ~(u0) (orbit closure of u0 in ~(X)) .  The action of X on itself 

induces an action of X on ~ ( X )  and it is clear that 0(uo) = {x o vo : x ~ X}. Thus 

~(uo) is a factor group of X and A is Haar measure on ~(uo). []  

The last three propositions demonstrated some aspects of the notion of q.f. 

which make it similar to that of a factor. In the next proposition we will show 

how far can a q.f. be from being a factor. (See [2] for the topological analogue.) 

PROPOSITION 1.7. Let ~ = (X, ~,  tz, T)  be a weakly mixing topological pro- 

cess. Let K be the circle group. There exists a weakly mixing process ~ on 

Z = X x K x K which extends g~ so that ~ possesses a q.f. with an eigenvalue 

PROOF. Let q~ : X--~ K be some continuous function such that the transfor- 

mation T : X x K--~ X x K defined by T(x, k )  = (Tx, kq~(x )), is weakly mixing. 

Next define T : Z --~ Z by 

T(x, k, k') = (Tx, k~p(x ), k ' k  ). 
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We claim that T on Z is weakly mixing. In fact, suppose f E L2(d~l) where 

d~l = dl~dkdk' is an eigenfunction of T with eigenvalue A. Write f(x, k, k ' )= 
E~=_= c, (x, k)k '"  ; then 

A ~, c,,(x,k)k'" = ~ c,(Tx, k~(x))k"k'". 

Hence for every n, Ac, (x, k) = k"c, (Tx, k~(x)). For a fixed n, writing c, (x, k) = 

g(x, k) we have Ag(x, k) = k"g(T(x, k)). Write g(x, k) = E,=_= bj (x)k i, then 

A Ebj(x)kJ=Ebj(Tx)~(x)~kJ÷"; and therefore, for every L Ab~+,(x)= 

bj(Tx)q~(xy. Since IAI = Iq~(x)l = 1, we have flbj+,(x)12dt~ =fJbj(x)12dp,. But 

f I g 12d~ dk = YflbJ 12dp,. Hence for non-zero g this can hold only for n = 0. 

Thus f(x, k, k') = Co(X, k) and Ac0(x, k) = co(T(x, k)). By weak mixing of X × K 

we have that f is a constant, and our claim is proved. 

Consider now the following correspondences for z = (x, k,k'); let ~b~(z)= 

½(6tx.k,k') + 6ix, k,k')) = V, and ~/2(Z) = 1  = ~(6(,.k.~,~ + 6t~,-k.-k')) ~,. Put 

a = ½((q,3, (n)  + ( q , 3 , ( n ) ) .  

Then it is easy to check that A is a q.f. of Y = (Z, ~/, T). Now 

Tv~ - - -  ] ( 6 ( T x , k w ( x ) . k ' k )  + 6(Tx,--kq~(x),-k'k)) = PTz. 

Thus the function F(v~)= 1, F(~,)= -1 ,  Vz EZ,  which is defined A a.e., is an 

eigenfunction of T with eigenvalue - 1. []  

REMARK. The same procedure can be taken with K = { -+ 1}, and we conclude 

that every Bernoulli process has a non-w.m.q.f .  

§2. M- Processes 

Let ~ be an ergodic topological process, let ~¢ (X) and ~ (X) be the 

subspaces of ~ ( X )  consisting of continuous and discrete measures respectively. 

Let A be an ergodic q.f. of ~ and write v = a(v)uc + (1 - a(v))ud, the decompos- 

ition of u into continuous and discrete parts. By ergodicity of A, a ( v ) =  a, 

0 _-< a _-< 1, A-a.e. We then have 

~=f udA(v)=af uAA(v)+(1-a) f vAX(v)=am+(1-a)~. 
By ergodicity of/x,  tzl =/22 = ~. Thus, A induces two q.f., Ac and )ta, supported 

on ~c (X) and ~d (X), respectively. We say that A is discretely (continuously) 
supported if Ac = 0 (Ad = 0). 
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Next  we examine  the na ture  of an ergodic  discretely suppor t ed  q.f. 

( ~ ( X ) ,  A, T)  of  an ergodic  topological  process  ~T. Let  v ° ~ ~d (X)  be a gener ic  
0 0 n point  for h and write u ° = ET_~ v~ where  u~ = a~ Ej'--1 8~,~, and E~=, n~a; = 1. Le t  

N = U(v °) be the orbi t  closure of v ° in ~a (X).  A typical point  of N has the fo rm 

v = ET=~ v~ where  u~ = a~ E~,_-~ 8~,.;. For  every  i we let 

X~ = X x - . . × X  

and let X ~, = .~  be the quot ient  space of X~ under  the group  S,, of pe rmuta t ions  

of the coordinates .  We  have  a natura l  T -equ iva r i an t  m a p  ~ f rom N into IIE~ .~ .  

Le t  M = ¢ ( N ) ,  a = ¢ , ( A )  and for  every  i let ~'~ : M - - - ~  be the pro jec t ion  

map .  For  every  measu re  ~ on X~, there  is a unique S,, invar iant  measu re  ~ on X~ 

with (¢h) ,~  = ~/. Finally, let ~'~,~ be  the pro jec t ion  of X~ on its j - th coordinate .  

W h e n  n~ = 1, we have  of course  X~ = X~. W e  now claim that  for  every  i, j, (~r~.;), 

((~r~),o') = /z .  (In par t icular  when  n~ = 1, ( ~ ) , o -  = it.) In fact,  we have  for  every  

f ~ c ( x )  

" 

= f (v , )dA(v )  = ai ~'~ f(xi .;)d((~,),o')  
i = l  i = I  j = l  

i = l  j = l  

and the ergodici ty  o f / ~  implies ~ = ( ~ q ) , ( ~ ) ,  Vi, j. 
Let  O ~ ~ ( X  × Y) be a joining of ~ and ~ which is ergodic  on X × Y. Let  

O =f / . t y  ×Syd~/(y)  be its dis integrat ion over  ~/ and suppose  that  the q.f. 

h = ~ , ( n ) ,  as in the p roof  of Propos i t ion  1.3, is discretely suppor t ed  and 

ergodic.  As  above,  let v ° be a gener ic  point  for  A and ~ , (y )=  ET=l v , ( y ) = / ~  a 

typical poin t  of the process  ( ~ ( X ) ,  h, T).  Then  

The  O~ are clearly invar iant  measu res  on X x Y, and if m o r e  than  one a, is 

different  f rom zero,  this contradicts the ergodici ty of O. Thus  there  exists io with 
n o 

a~= I/no and for  all i, i t  io, a; = 0 ;  i.e., v =(llno)E/=~8~j. We proved  the 

following: 

PROPOSITION 2.1. Let ~ and ~J be topological processes, 0 ~ ~ ( X  × Y )  an 

ergodic joining and ( ~ (X),  A, T), where h = d/,( rl ), the corresponding q.f. as in 
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Proposition 1.3. Suppose A is discretely supported ; then there exist a positive integer 
no and a measure o" on the symmetrized product X ~o with (~r~), (6") = t x, 1 <= i <= no 
such that (X  ~o, o', T) is isomorphic to (g~(X), A, T). 

DEFINmON. Let  ~f = (X, 93, IX, T) be a topological process. We say that a 

measurable subset F C X x X is sparse if for every selfjoining on X x X, i.e., 

every invariant probability measure 0 on X x X with (Tri).0 = IX (i = 1, 2), such 

that O(F)= 1, we have in the disintegration 0 = fSx x Oxdl~(x) of 0 over IX, 

that Ix-almost every 0, is discrete. We say that ~ is an M-process if the set 

F = {(x, y) E X x X : (x, y) is not generic fo r /x  x IX } is sparse. 

THEOREM 2.2. The following conditions on an ergodic topological process 
= (X, 93, IX, T) are equivalent. 
(i) ~ is an M-process. 
(ii) Every ergodic continuously supported q.f. (~(X) ,A,  T) is trivial (i.e., 

X = ~ ) .  

(iii) For every ergodic topological process ~ = (Y, ~, ~7, T) and every joining 
O U g~(Xx Y), with O~IX x,1, the measures Ixy in the disintegration 0 = 

f / 4  x 8,dr/(y) have discrete support for 71 a .e .y .  

(i) f f  (ii): Let (~ (X) ,  A, T)  be a continuously supported ergodic q.f. PROOF. 

of ~. Put 

0 j (. x (.). 

Then 0 is a selfjoining on X x X;  let F = {(x, y) E X x X : (x, y)  is not generic 

for IX x/x} and assume O(F) > 0. Since F is an invariant set, the restriction v ~ of 

0 to F, normalized to be a probability measure, clearly is an invariant measure 

with (wJ .O  = /x  (i = 1, 2) (IX is ergodic) and v~(F) = 1. By our assumption then, 

= f 8x x O~dix (x) 

where 0x is discrete for every x E A  C X with IX(A)= 1. Let  F1C F be a 

measurable set with ~I(F,) = A, such that {y : (x, y) E F~} = Fa.x is countable for 

each x E A and vq(F,) = 1. Then 

i =  0 (F1)=  ~,x)f× fx  lF, (x ,y)dv(x)dv(y)dA(v)  
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But f× 1F~.~ (y)dv(y) = 0 for every x E A and A almost every v, since F~.~ is 

countable for all x ~ A and A-almost every v is a continuous measure,  this 

contradiction shows that O(F)  = 0. Since O(F)  = f f  ledv × vdA (v) we conclude 

that for A-almost every v, v × v(F)= 0. Now if (x, y ) ~  F, then for an arbitrary 

continuous function f on X we have 

2Nl ~ f(T"x)f(T~Y)-~}f  f(¢)dlz(¢)] 1. =_~ 

In particular, for A a.e. v this convergence holds v × v-a.e. For such v we 

therefore have 

(,) 1 ~, If If 2 N  + 1 ~ =-N 

For f with ffdtz = 0, we conclude the existence of a subset Jr of Z of density 1 

for which limn~jrffdT"v---~O. Let ~}7=~ be a dense subset of Co(X) = 

{f E C(X) : ffdlz = 0}; then for A a.e. v, the convergence in (*) holds for every 

In particular, we can find Vo which is a generic point for A for which this is t r u e .  

Choose J~ = Jr, as above and let J C Z be of upper  density 1 such that Vi BN~ 

with J fq [ - N~, N~ ]~ C J~ f) [ - N~, N~ ]~, then we have 

lim f [dT"vo = f fdlx for every f E C(X), 
J J 

i.e., 

lim T"vo = tz. 

This clearly implies h = 8, and the proof of (i) ~ (ii) is completed.  

(ii) f f  (iii): Let O ~ ~ ( X ×  Y), O ~ / z  x r/ be a joining of ~ and 0~, O = 

f ~ x ~ydr/(y) and ( ~ ( X ) ,  A, T)  the q.f. of ~ where h = ~ ,  ('0) as in the proof of 

Proposition 1.3. Now (ii) implies that hc = 0 or hc = ~,,. The latter can occur only 

when/zy ->/z for v-a.e, y iff O >>/z x ~7. Thus hc = 0, and/xy is discrete for ~/-a.e. 

y. 

(iii) f f  (i): Assume ~ satisfies (iii) and F = { ( x , y ) E X x X : ( x , y )  is not 

ergodic for /x x/~}. Let  O ~ ~ ( X  × X )  be a selfjoining of ~ with O(F)  = 1. 

Then clearly ~9~/z x /z  and (iii) with ~ = ~ implies tha t /x -a .e .  /z, is discrete 

where 0 --- f6x x Izxdtz(x), i.e., F is sparse. [] 

Consider the following proper ty  of ~f. 
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(iii)' 

f For every ergodic ~ = (Y, :~, r/, T) and every ergodic joining 
a9 ~ ~ (X x Y), # / / x  x r/, there exists an integer 

no----> 1 such that for r/-a.e, y, 

/xy is supported on no points where O = f/xy x 8~d~ (y) 

(i.e., ( X x  Y,u)---~(Y, TI) is no to one r/-a.e.). 

By Proposition 2.1, ( i i i ) ~  (iii)'. By a result of M. Ratner the horocycle 

transformation [6] ~f = (G/F, ix, hi) has property (iii)'. However,  since the set 

{(x, h,x) : x E G/F, t E R} = FI is a subset of the set F of nongeneric points for 
/x ×/x, and since for every probability continuous measure v on R the measure 

q~.(u x tz) E ~ ( G / F  x G/F) (where ~0 :R x G/F---~ G/F is given by q~(t, x) = 

(x, h,x)) is an hi x hl-invariant continuous measure supported on F~, we see that 
is not an M-process. Thus (iii)' ;g~ (iii). 

COROLLARY 2.3. Let g~ be an M-process. 

(1) If  g~--~, o~ is a factor, then ~o is a.s. n to 1. In particular, ~ has a nontrivial 

prime factor. 

(2) There are only countably many ergodic selfjoinings on g~ x g~. 

(3) There are only countably many measure-preserving transformations, S on X 

with ST  = TS. 

PROOF. (1) Follows from (iii)' and Proposition 1.4. (2) Let ~9 be the convex 
compact set of T x T invariant measures on X × X with marginals/z. Then the 

set ~ of ergodic joinings on ~f x ~ is the set of extreme points of & If the latter 

is uncountable, then 5~ must contain measures 0 for which (iii) cannot be 

satisfied. (3) This is a consequence of (2) since for every such S the measure 
(I x X)/xa is al~ergodic selfjoining on ~f x ~. [] 

Consider ~f = (X, 90,/~, T) an ergodic topological process such that (a) Z ( T )  = 

{S : S is a measure-preserving transformation of X with ST = TS} is countable 

and (b) every ergodic measure 0 on X" (for every n) with marginals/x, is (after a 

change of coordinates) of the form 

0 = ~ ~ x IZl (I x S,.1 x . . .  x S,.. ) (~  ~..) 
i = l  

where k + J Ei=l ni = n, Si,j E Z ( T )  and p~,, is the diagonal measure on X",. 

Call a process ~f which has such a topological realization primitive. Clearly 
every process with minimal selfjoinings in the sense of [7] is primitive. We now 

have the following theorem which was proved first by D. Rudolph and del Junco 

[51. 
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THEOREM 2.4. Let  ~T be primitive; then ~T is an M-process, and for every 

ergodic process ~,  either ~ is disjoint f rom ~ or ~ admits  the process ( X  ~, pc ~ ) as a 

factor for some n >- 1. (Here tz ~ is the image of  tx x • • • x Iz in X~.) 

PROOF. The fact that ~ is an M-process  follows immediately from the 

definitions of primitive and M-processes.  Now use Theorem 2.2 and the remark 

which follows it to conclude that ~ has proper ty  (iii)'. So let ~ = (Y, ~,  77, T) be 

ergodic and not disjoint from ~, and let 0 E ~ ( X  x Y) be an ergodic joining 

¢ / z  x ~ .  Write 0 = f /xy  x~yd'rl(y ) and let 0 :  Y - - - ~ ( X ) : O ( y ) = l x y ,  h = 

O.(rl) .  Then ~---~ ( ~ ( X ) ,  h, T) is a homomorphism,  and by property (iii)' and 

Proposition 2.1, ( ~ ( X ) , A , T )  is isomorphic to a process (X~ ,o - ,T )  with 

(Tr~).(~-) =/x, 1 _-< i N n. (Recall that 6 is the unique lift of o- to X n invariant 

under S,.) Let o-o be an ergodic component  of 6"; then by primitivity m, is a 

product of the form /x k xI]l_~ (r~, where (rl = ( I  x S~.~ x - - .  x S,.,,)/x~. If k = n, 

then o- = /x  ~ ; otherwise, since o-~ is isomorphic to/z,  we actually have ~f itself as 

a factor of ~. [] 

I would like to thank H. Furstenberg and B. Weiss for helpful suggestions and 

conversations. The history of the results in the second section is somewhat  

involved. In an a t tempt  to prove Theorem 2.4 for the Chacon transformation,  I 

formulated a variant of the definition of an M-process .  In fact, I showed A. del 

Junco and M. Kean how Theorem 2.4 will follow for every process ~ for which 

the set F of nongeneric points in X x X is such that Vx F~ is countable, and 

asked them whether  this is the case for the Chacon transformation.  They 

succeeded in proving it for this t ransformation (thus showing that it satisfies the 

conclusion of Theorem 2.4). However ,  D. Rudolph then showed that Theorem 

2.4 holds for any process with minimal selfjoinings. I realized later on that a 

weakening of my original definition of proper ty  M, t h e  present  one will still 

suffice for proving Theorem 2.4 and is actually equivalent to having only 

discretely supported q.f. (Theorem 2.2). I wish to thank also A. del Junco and M. 

Keane.  Their  result about  the Chacon transformation has not been published. 
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