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ABSTRACT 

We prove implicit function theorems for mappings on topological vector 

spaces over valued fields. In the real and complex cases, we obtain implicit 

function theorems for mappings from arbitrary (not necessarily locally 

convex) topological vector spaces to Banach spaces. 

In troduct ion  

In this article, we prove implicit function theorems (and generalizations) for 

mappings from topological vector spaces over valued fields to Banach spaces. 

Our main results can be summarized as follows. Let (K, I.I) be a (non-trivial, 

not necessarily complete) valued field, E and F be topological ]K-vector spaces, 

U C E and V _C F be open subsets, and f: U • V --* F be a CLmap. Let 

(x0, Y0) E U • V such that d2f(xo, Yo, .) E GL(F). Then, given the respective 

hypotheses stated in the first four columns of the following table, there exists 

an open neighbourhood Q c_ U of x0 and an open neighbourhood B C_ V 

of Y0 such that, for every x E Q, there is a unique element/~(x) c B such that 

f (x ,  ~(x)) = f(xo, Y0), and the mapping ~: Q -~ B so obtained has the property 
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shown in the last column: 

K E F I 

R 
R 

arbitrary 
arb. 

complete 

dim F < oc 
Banach 

C k 

Ck+l 

C k 

C k 

R arb. Banach R-analytic R-analytic 
C arb. Banach C-analytic 

C 1 

C k 

Ck+l 
C 2 
C 2 

S C  ~ 

S C  k 

local arb. dim F < 
local metrizable dim F < cx~ 

complete ultram, metrizable Banach 
]K c_ R metrizable Banach 

arb. arb. Banach 
arb. Banach Banach 

Banach Banach 

C-analytic 
C O 
C k 
C k 
C 1 
C O 

S C  1 

S C  k 

Here k E N t2 {c~}, and Ck-maps are understood in the sense of [2], where a 

differential calculus over arbitrary non-discrete topological fields is developed. 

A map between open subsets of real locally convex spaces is C k in the former 

sense if and only if it is C k in the sense of Michal-Bastiani (i.e., a Keller C~- 

map [29]). Keller's C~-maps are a popular class of maps, which have been used 

as the basis of infinite-dimensional Lie theory by many authors (see, e.g., [13], 

[21], [38], [39], [41], [53]). The symbol S C  k refers to k times strictly differentiable 

mappings, as defined below. 

Our results were inspired by Hiltunen's implicit function theorems, which he 

formulated in the setting of CA-maps on locally convex spaces (see [24] for the 

real case, [25] for the complex case). In contrast to that  paper, we are working 

throughout in the realm of topology; no recourse to convergence structures is 

necessary. Furthermore, we are able to work over valued fields other than R 

or C, and need not assume that  the domains be locally convex. Cf. also [47, 

La.1 and Rem.1] for related results in the convenient setting of analysis. While 

we strive to allow non-Banach domains for Banach space-valued functions of 

interest, other generalizations of the implicit function theorem aim to replace 

Banach space-valued functions by functions into more general spaces. A clas- 

sical example is the Nash-Moser theorem (for maps into tame Fr~chet spaces) 

(see [22] and the references given there). For further generalizations in this 

direction see [37] (complex analytic case) and [26], where also applications of 

generalized implicit function theorems to well-posedness of partial differential 

equations are described. 

THE BASIC IDEA. O u r  approach is based on the classical idea that  every im- 

plicit function theorem has an underlying "inverse function theorem with param- 
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eters" (cf. [45] and [47]). For example, in the case of a Ck-map f :  U • V ~ F,  

where U is a subset of a real topological vector space and F = ~n,  given 

(x0,Y0) E U • V with d2f(xo,Yo,.) invertible, after shrinking U we inter- 

pret f as a family (fx)xev of mappings fx := f(x,  .): V --* F between open 

subsets of the finite-dimensional space F,  to which the classical inverse func- 

tion theorem applies, and then show that  r (x,y) H fx l (y)  makes sense on 

some open neighbourhood of (x0, f(xo, Yo)) and defines a Ck-map there. Then 

y(x) = r f(x0,  Y0)) gives a Ck-solution to the equation f (x,  y) = f(xo, yo). 
Local convexity does not play a role here, and we are also able to tackle the 

ultrametric case. This is much more difficult, since the absence of a fundamental 

theorem of calculus and mean value theorem in this setting makes it necessary 

to discuss continuous extensions to iterated difference quotient maps, rather 

than the mere existence and continuity of higher differentials. To get from 

the Banach case to implicit functions on open subsets of metrizable topological 

vector spaces over a complete ultrametric field ]K, we exploit the fact that  a 

map on a metrizable space is C k if and only if all of its compositions with 

smooth maps from K k+l to the space are C k [2]. This result can be seen as an 

adaptation of ideas from the convenient differential calculus of Frblicher, Kriegl 

and g ichor  ([10], [31]) to non-archimedian analysis. A similar argument has also 

been used in [47, proof of La. 1] to establish smoothness of implicit functions in 

the convenient sense. 

APPLICATIONS. It is clear that  a generalization of such a central and basic 

result as the implicit function theorem has immediate applications. 

�9 In [16], our ultrametric inverse function theorem with parameters in a 

Fr6chet space is used to prove that  the inversion map Diff(M) --~ Diff(M), 

7 ~-* 7-1 of the diffeomorphism group of a paracompact, finite-dimensional 

smooth manifold over a local field is smooth. Also, composition being 

smooth, Diff(M) is a Lie group. 1 

�9 Let A be a commutative, unital, associative, locally convex and complete 

complex topological algebra whose group of units is open and whose inver- 

sion map is continuous. In [3], our implicit function theorem for analytic 

mappings from complex locally convex spaces to Banach spaces is used 

to prove a sufficient condition for the existence of a solution b E A m to 

an equation f[a, b] = 0 given by multi-variable holomorphic functional 

calculus, where f :  ~ -~ C m is a holomorphic function on an open subset 

1 Cf. also [35], [36] for certain diffeomorphism groups for char K = 0 (mainly 
considred as topological groups). 
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~t C C n • C m and a C A n. 

�9 Our inverse function theorem for S C k - m a p s  between ultrametric Banach 

spaces is used in [18] to construct stable manifolds for dynamical systems 

over ultrametric fields, using Irwin's method (see [27] for the real case). 

Also, pseudo-stable manifolds can be tackled (see [28], resp., [19]). This 

facilitates the calculation of the scale sc(a)  (as introduced in [51], [52]) 

of suitable automorphisms a of finite-dimensional Lie groups G over a 

local field K of positive characteristic, and a diffeomorphic decomposition 

U~Mc~U~-I of an open subset of G into contraction groups and a Levi 

factor (see [20]). 2 These results, in turn, can be used to construct finite- 

dimensional smooth K-Lie groups not admitting a K-analytic Lie group 

structure compatible with the given topological group structure [14]. 

�9 The quantitative information provided by our inverse function theorem 

(with and without parameters) is also used essentially in [15], to establish 

a Ck-compatible K-analytic Lie group structure on each finite-dimensional 

Ck-Lie group over a local field K of characteristic 0. 

STRUCTURE OF THE ARTICLE. The article is structured as follows. Having 

described the precise setting of differential calculus (Section 1), we present our 

results in the real and complex case. We do not try to be self-contained here, but 

rather re-use the standard Inverse Mapping Theorem for real Banach spaces and 

its corollaries (as proved in [32]), which should be well-known to most readers, 

to get to the point as quickly as possible. 

In Section 3, we recall the notion of a strictly differentiable mapping from an 

open subset of a normed vector space over a valued field K to a polynormed K- 

vector space (cf. [6]). We show that  any strictly differentiable map is C 1 , and we 

show that  every C2-map from an open subset of a normed K-vector space to a 

polynormed K-vector space is strictly differentiable. In Section 4, we specialize 

to locally compact K. In this case, a map from an open subset of a finite- 

dimensional K-vector space to a polynormed K-vector space is C 1 if and only if 

it is strictly differentiable, if and only if it is "locally uniformly differentiable" 

(an a priori even stronger differentiability property). In Section 5, we introduce 

k times strictly differentiable mappings (SCk-maps). Any such map is C k, and, 

conversely, we show that  every Ck+l-map from an open subset of a normed 

vector space over a valued field K to a polynormed K-vector space is S C  k. 

Recall from [43, Ex. 26.6] that  there is a map f :  Zp ~ Qp from the p-adic 

integers to the p-adic numbers which is totally differentiable at each x E Zp, 

2 Compare [11] and [48] for the case of characteristic 0, which is much easier. 



Vol. 155, 2006 IMPLICIT FUNCTIONS 209 

with f'(x) = 1 (whence f'(x) is invertible and f ' :  Zp ~ Qp continuous), but 

such that f is not injective on any 0-neighbourhood. Thus, in the ultramet- 

ric case, an inverse function theorem cannot be based on the mere existence 

and continuity of differentials. In contrast, the SCk-property is well-adapted to 

inverse and implicit function theorems. An inverse function theorem for once 

strictly differentiable maps between open subsets of Banach spaces over com- 

plete valued fields is well-known (see [6, 1.5.1], where no proofs are given and 

where all Banach spaces over ultrametric fields are assumed ultrametric). In the 

real case, strict differentiability facilitates refined implicit function theorems for 

maps between Banach spaces ([33], [34], [30, Thm. 6.3.6]). Higher order differ- 

entiability in the finite-dimensional ultrametric case has been discussed in [1] 

for implicit functions, in [46] (with merely partial proofs) for inverse functions. 

Getting beyond these known facts, using an inductive argument which goes 

back and forth between inverse functions and implicit functions, we establish 

the Inverse and Implicit Function Theorems for sCk-maps between open sub- 

sets of Banach spaces over complete valued fields (Section 7). Combining these 

results with parameter-dependent Newton approximation (from Section 6) and 

the tools of differential calculus on metrizable spaces outlined above, we ob- 

tain an Implicit Function Theorem for maps from metrizable topological vector 

spaces to (not necessarily ultrametric) Banach spaces over complete ultramet- 

ric fields (see Section 8). To illustrate the use of our results, two applications 

are sketched in Section 9 (smoothness of inversion in diffeomorphism groups; 

existence of stable manifolds). 

In an appendix, we show that, in the real case, every k times continuously 

Fr~chet differentiable map is an sCk-map. For k = 1, the converse also holds [6, 

2.3.3]. 

All results are formulated in a way which transports as much useful infor- 

mation as possible. For example, instead of formulating mere implicit function 

theorems, we explicitly spell out "inverse function theorems with parameters." 

We also provide information concerning the size of images of balls. In this sense, 

the results include "quantitative inverse function theorems." 

Note added in proofs: In the meantime, the results could be strengthened 

further (see arXiv.math.FA/0511218). 

1. Differential calculus over topological  f ields 

In this article, we are working in the setting of differential calculus over non- 

discrete topological fields developed in [2]. In this section, we briefly recall basic 
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definitions and facts. 

Unless stated otherwise, in this section ]K denotes a non-discrete topological 

field. All topological vector spaces are assumed Hausdorff. Before we define 

Ck-maps, we need an efficient notation for the domains of certain mappings 

associated with Ck-maps. 

Definition 1.1: If E is a topological ]K-vector space and U C_ E an open subset, 

we define U [~ := U and 

U [1] :=  {(X, y, t) E U • E • ]K: x + ty E U}, 

which is an open subset of the topological K-vector space E x E • ]K. Having 

defined U [j] inductively for a natural number j >_ 1, we set U [j+ll := (U[Jl)[ll. 

In particular, E [11 = E • E • ]K, E [21 = E • E • ]K • E x E • K x ]K, etc. 

Definition 1.2: Let E and F be topological ]K-vector spaces, and f :  U --* F 

be a mapping, defined on an open subset U C_ E. We say that  f is of  class 

C ~ if f is continuous, we set f[01 := f and call f[0] the 0-th extended difference 

quotient map of f .  If f is continuous and there exists a continuous mapping 

f[1]: U[I] ___+ F such that  

1 
(1) ~ ( f ( x + t y )  - f ( x ) )  = f[1](x,y , t )  for all ( x , y , t )  E U [1] such that  t # 0, 

we say that  f is of  class C~, and call f[1] the (first) e x t e n d e d  d i f fe rence  

q u o t i e n t  m a p  of f .  Here f[1] is uniquely determined, as K is non-discrete. 

Recursively, having defined C J-maps and j - th  extended difference quotient maps 

for j = 0 , . . . ,  k - 1 for some natural number k > 2, we call f a mapping of  

class C~ if f is of class C k-1 and f[k-1] is of class C~. In this case, we define 

the k-th extended difference quotient map of f via 

f[k] :=_ (f[k-1])[ l ] :  U[k] ~ F. 

The mapping f is of  class C ~  (or ]K-smooth) if it is of class C~ for all k E No. 

If ]K is understood, we simply write C k instead of C~, and we call f smooth or 

of class C ~ if it is ]K-smooth. 

1.3. For example, every continuous linear mapping A: E -+ F is smooth, with 

,~[1] (x, y, t) = ,~(y) for all (x, y, t) C E x E x ]K. If V, W and F are topological 

]K-vector spaces and ~: V • W ~ F is a continuous bilinear map, then/3  is 

smooth, with 

/~[1] (iv, w), (v', wt), t) = fl(v, w t) + fl(v t, w) + tZ(v t, w t) 
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for all v, v' E V, w, w' e W, and t C K (ef. [2]). 

1.4. If k > 2, then a map f is of class C~ if and only if f is of class C~ and 

f[ll is of class C~-1; in this ease, f N  _- (f[tl)[k-ll [2, Rein. 4.2]. 

1.5. Given a CA-ma p f :  U ~ F as before, we define 

dr(x, v) := lim l ( f ( x  + tv) - f ( x ) )  = f[1](x, v, 0) 
O#t--*O 

for (x, v) C U x E. Then dr: U x E ~ F is continuous, being a partial map 

of fill ,  and it can be shown that the "differential" dr(x, ~ E ~ F of f at x is 

a continuous K-linear map, for each x E U [2, Prop. 2.2]. If f is of class 6 '2, we 

define a continuous mapping d2 f : U x E 2 --~ F via 

d2 f (x , v l , v2 )  := lim 1. (df(x + tv2,vl) - df(X, Vl)) = f[2]((X, Vl,O), (v2,0,0),0). 
t---*O t 

Similarly, if f is of class C~, we obtain continuous maps dJf: U • E j ~ F 

for all j E N0 such that j < k (where d~ := f) .  It can be shown that  

dJf(x ,  .): E j ~ F is a symmetric j-linear map [2, La. 4.8]. 

Our discussion of implicit function theorems in the real case will be made 

easy by the following fact ([2, Prop. 7.4]): 

PROPOSITION 1.6: Let E be a real topological vector space, F a locally convex 

real topological vector space, U c_ E an open subset, f :  U ~ F a map, and 

k E No 0 {oo}. Then f is of class C~ if and only i f  it is a Ck-map in the sense 

of Michal-Bastiani, i.e., f is continuous, the differentials dJ f:  U x EJ ~ F 

described in 1.5 exist for all j E N such that j <_ k, 3 and are continuous. 

In more general situations, it is necessary to work with the functions f[J], 

since the differentials alone do not encode enough information. For example, 

dJf  = 0 for all j _> 2 if K is a non-discrete topological field of characteristic 2 and 

f any smooth function on K (cf. [2, Thin. 5.4]). Even worse, injeetive smooth 

functions f :  Zp --~ Qp are known to exist whose derivative vanishes identically 

[43, Exercise 29.G]. 

1.7 (CHAIN RULE). If E, F,  and H are topological K-vector spaces, U C_ E 

and V C_ F are open subsets, and f :  U ~ V C_ F,  g: V ~ H are mappings of 

class C k, then also the composition g o f :  U ~ H is of class C k. If k _> 1, we 

have ( f ( x ) , f [ l l ( x , y , t ) , t )  E V [11 for all ( x , y ,Q  E U [11, and 

(2) (g O I)[1](X, y, t) = g[1](f(x),  f[1](X, y, t), t). 

3 That is to say, all limits occurring in the recursive definition of the differentials 
d3 f exist. 
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In particular, d(gof)(x,  y) = dg(f(x) ,  df(x, y)) for all (x, y) �9 U • E [2, Prop. 3.1 

and 4.5]. 

We recall from [2, La. 4.9] that  being of class C k is a local property. 

LEMMA 1.8: Let E and F be topological K-vector spaces, and f: U --~ F be a 

mapping, defined on an open subset U of E. Let k E N0 t2 {co}. If  there is an 

open cover (U{)iel of U such that flus: Ui --~ F is of class C k for each i E I, 

then f is of class C k. 

Definition 1.9: A va lued  field is a field K, together with an absolute value 

1.1: K ~ [0, oo[ (see [50]); we require furthermore that the absolute value be 

non-trivial (meaning that it gives rise to a non-discrete topology on K). An 

u l t r a m e t r i c  field is a valued field (K, I.I) whose absolute value satisfies the 

ultrametric inequality 

Ix + y I <_ max{Ixl,lyl} fo ra l l x ,  y e K .  

Locally compact, totally disconnected, non-discrete topological fields will be 

referred to as local  fields. 

Remark 1.10: It is well-known that every local field K admits an ultrametric 

absolute value defining its topology [49]. Fixing such an absolute value on K, 

we can consider K as an ultrametric field. 

Remark 1.11: Note that we do not require that valued fields (nor ultrametric 

fields) be complete (with respect to the metric induced by the absolute value). 

Whenever our results depend on completeness properties of the ground field, we 

will state these explicitly. 

1.12. Recall that a topological vector space E over an ultrametric field K 

is called loca l ly  c o n v e x  if every zero-neighbourhood of E contains an open 

O-submodule of E, where O := {t C K: Itl ~ 1} is the valuation ring of K. 

Equivalently, E is locally convex if and only if its vector topology is defined 

by a family of ultrametric continuous seminorms 7: E ~ [0, co[ on g (cf. [40] 

for more information). Let K be a valued field. We call a topological K-vector 

space p o l y n o r m e d  if its vector topology is defined by a family of continuous 

seminorms (which need not be ultrametric when IK is an ultrametric field). This 

terminology deviates from the one in Bourbaki [6], where only polynormed vec- 

tor spaces over ultrametric fields are considered whose topology arises from a 

family of continuous ultrametric seminorms, and which therefore are precisely 
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the locally convex spaces over such fields in our terminology. Ultrametric semi- 

norms are called "ultra-semi-norms" in [6] and [7]. Occasionally, we shall write 

[I.1[~ for a continuous seminorm ~/. 

1.13. A B a n a c h  space  over a valued field K is a normed K-vector 

space (E,I[.[[) (see [7, Ch. I, w no. 2]) which is complete in the metric 

associated with [[.[[. Given a normed K-vector space (E, [[.ID, a point x �9 E 

and r > 0, we let BE(x) := {y �9 E: [[y - x[[ < r} be the open ball of ra- 

dius r around x. We write Br(x) := BE(x) when no confusion is possible. 

B~(x) := {y �9 E: [[y - xl[ _< r} denotes the corresponding closed ball. 

1.14. We shall not presume that normed spaces (nor Banach spaces) over 

ultrametric fields be ultrametric, unless saying so explicitly. For example, gl(Qp) 

is a non-ultrametric (and non-locally convex) Banach space over Qp. 

The following fact ([2, Thm. 12.4]) is essential for our discussion of implicit 

function theorems over ultrametric fields: 

PROPOSITION 1.15: Let (K, [.D be either g{, equipped with the usual absolute 

value, or an ultrametric field. Let E and F be topological K-vector spaces 

(which need not be locally convex when K = IR), f: U ~ F be a mapping, 

defined on a non-empty open subset U C_ E, and s C No. If E is metrizable, 

then the following conditions are equivalent: 

(a) f is a mapping of class C~. 

(b) The composition foe :  K k+l ~ F is of class C~, for every smooth mapping 

c: K k+l --* U. 

In particular, f is smooth if and only if f o c is smooth, for every k E N and 

every smooth map c: K k ~ U. 

Finally, let us recall the basics of real and complex analytic mappings. 

Definition 1.16 ([4, Defn. 5.6]): Let E be a complex topological vector space, 

F be a locally convex complex topological vector space, U C_ E be an open 

subset, and f :  U ~ F be a map. Then f is called c o m p l e x  a n a l y t i c  if it is 

continuous and, for every x E U, there exists a zero-neighbourhood V C_ E such 

that  x + V C_ U and continuous homogeneous polynomials t3,: E ~ F of degree 

n E N0 such that  

Oo 

f ( x  + h) = Z ~n(h) for all h �9 V 
n = 0  

as a pointwise limit. 
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Real analytic mappings are defined as follows: 

Definition 1.17: Let E be a real topological vector space, F be a locally convex 

real topological vector space, U C_ E be open, and f :  U ~ F be a map. Then 

f is called real analytic if it extends to a complex analytic mapping V ~ Fc, 

defined on some open neighbourhood V of U in Ec. 

Remark 1.18: Real analyticity of a mapping f :  U --~ F is a local property 

in the sense that  real analyticity of fIvj for an open cover (Uj)jcj of U en- 

tails real analyticity of f .  In fact, if f is real analytic locally, then for ev- 

ery x E U we find an open, balanced zero-neighbourhood Wx C C_ E such that  

x + Wx C_ U and flx+w~ = gxlx+w~ for some complex analytic mapping 

gx: V~ := (x + W~) + iW~ --* Fc. Given x, y C U, we have Vz,y := Vx N Vy = 

((x + Wx) N (y + Wy)) + i(Wx N Wy), where Wx N Wy is a balanced open 

0-neighbourhood and thus connected. Hence, the connected components of 

V~,y are of the form C + i(Wx N Wy), where C is a connected component 

of (x + W~) A (y + Wy). Since gx and gy coincide on C, they coincide on 

C + i(Wx A Wy) by the Identity Theorem [4, Prop. 6.6II]. Thus gx I v~.~ = gy I v,,~ 

for all x, y C U, whence g := [Jx~u gz: UxcV V~ ~ Fc is a well-defined complex 

analytic mapping extending f .  

As a consequence of [2, Prop. 7.7 and La. 10.1], we have: 

LEMMA 1.19: Every real or complex analytic map f :  U --~ F as before is of 

class C~. 

For the next observation, see [2, Prop. 7.7]: 

LEMMA 1.20: Let E be a complex topological vector space, F be a locally 

convex complex topological vector space, U c_ E be open, and f: U ~ F be a 
C ~ if and onty i[ map. Then f is complex analytic if and only if f is of class c , 

f is of class C ~  and dr(x, .): E ~ F is complex linear for each x C U. 

The Chain Rule for C~~ readily entails that  compositions of com- 

posable complex analytic (resp., real analytic) mappings are complex analytic 

(resp., real analytic). 

2. General ized implicit funct ion theorem in the  real and complex  case 

We begin with a preparatory result, providing continuous implicit functions in 

very general situations. A mapping from an open subset of a normed real vector 

space to a real locally convex space will be called an FCk-map if it is k times 

continuously differentiable in the Fr~chet sense (cf. [6, 2.3.1]). 
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PROPOSITION 2.1: Let k �9 NU {oo}, P be a topological space, E a real Banach 

space, and U C_ E an open subset. Suppose that f:  P x U --* E is a continuous 

function such that 

(i) fp := f (p , . ) :  U --* E is of class F C  k, for all p �9 P, and 

(ii) the map P x U --* L(E) ,  (p, x) F-. fp(X) := d(fp)(X, . )  = d2f(p, x , . )  is 

continuous, where L( E) is equipped with the operator norm. 

Let (p,x) �9 P x U, and suppose that A := fp(X) �9 GL(E) := L(E) • Let 

0 < a < 1 < b be given. Then there exists an open neighbourhood Q C_ P o fp  

and r > 0 such that B := BE(x)  C_ U and the following holds: 

(a) fq(B)  is open in E, for each q �9 Q, and Cq: B ~ fq(B), Cq(y) := fq(y) = 

f ( q , y )  is an invertible FCk-map,  with inverse (r fq(B)  ~ B of 

class F C  k. 

(b )  For all q �9 Q, y �9 B, and s � 9  - IlY - xll] ,  w e  h a v e  

(3) fq(y) + A.Bas(O) C_ fq(Bs(y))  C_ fq(y) + A.Bb~(O). 

(c) W := UqeQ({q} x fq(B))  is an open subset of P x E and the mapping 

r W --* B, r := Cql(V) is continuous. Furthermore, the map 

O: Q x B -~ W,  O(q, y) := (q, f (q,  y)) is a homeomorphism, with inverse 

given by e - l ( q , v )  : (q, r ). 
(d) Q x (fp(X) + A.B~(O)) C_ W for some 5 > 0. 

In particular, for each q �9 Q, there is a unique element fl(q) �9 B such that 

f(q,  fl(q)) = f (p ,  x), and the mapping fl: Q --* B so obtained is continuous. 

Proof'. In view of hypotheses (i) and (ii), we find an open neighbourhood 

Q1 c_ P of p and R > 0 such that  BR(X) C_ U and the following holds: 

1. fq(y) �9 GL(E) for all q e Q1 and y �9 BR(X); 

2. [[fql(Yl)-lfq2(Y2) - 11] < �89 for all ql,q2 �9 Q1 and Yl,Y2 �9 BR(X); 

3. ]]fq(y)-l(fq(yl)  - fq(Y2))]] _< 1 - v ~ for all q �9 Q1 and y, yl,y2 �9 BR(X); 

4. ]]A-lfq(y)[[ < b and [[fq(y)-lA[[ < 1/v/-a for all q �9 Q1 and y �9 BR(X). 

Choose r �9 R/2[. There is an open neighbourhood Q c_ Q1 of p such that  

(4) [[A-l.(fq(X) - fp(X))[[ < ar/2 for all q �9 Q. 

Define (~ := ar/2. We claim that  all assertions of the proposition are satisfied 

with Q, r, and 5 as just defined. 

(a) Given q e Q, we consider the map h: B ~ E, h(y) := A- l f q ( y ) .  Then 

1 by 2., whence h is injective. In fact, if N h ' ( y ) -  1[[ = H A - l f q ( y ) -  1[[ < 
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Yl ~ Y2 �9 B, then 

l lh(ye) - h(y~)l l  _> IIY~ - YIII - l lh(y2) - y 2  - ( h ( y l )  - y l ) l l  

~0 1 yl )dt 
= lly2 -y~ll - ( h ' ( y l  + t ( y 2  - y l ) )  - 1 ) . (y2  - 

--- ~ l l y 2 - y ~ l l  > o. 

Hence also fqlB = Aoh  is injective, and since fq(y) �9 GL(E) for all y �9 B (by 1.) 

and fq is F C  k, the standard Inverse Function Theorem [32, Thm. 1.5.2] shows 

that  fq(B) is open in E and r fq (B)  ~ S an FCk-map, where Cq := fql~ q(B). 

(b) Let y �9 B, s �9 r - [lY - xll], and q �9 Q. Given z �9 Bs(y),  we have 

ma~{llA-l . f~(Y§ z -Y))II: t �9 [0,1]} < b 

by 4., entailing that  

L 1 - y)dt  IIA-l.(fq(z) - fq(y))ll = A - l . f ~ ( y  + t(z  - y)) .(z  < bs. 

Thus fq(z) �9 fq(y) + A.Bbs(O), verifying the second inclusion in (3). 

To tackle the first inclusion in (3), let y, s, q be as before; we want to apply 

[32, La. 1.5.4] (with p, s' as below playing the role of r, s) to the FCl -map  

g: B~(0) --~ E, g(v) := f q ( y ) - l ( f q ( y  + v) - fq(y)). 

Let z �9 Bas(O). Then z' := f ~ ( y ) - l . A . z  �9 Bas/4z(O ) = B~4~(0 ), by 4. If we 
can find w �9 B~(0) such that  g(w) = z', then y + w �9 B~(y) and 

fq(y + w) = fq(y).g(w) + fq(y) = fq(y) + A.z,  

showing that  fq(y) + A.z  �9 fq(Bs(y)) ,  as desired. Now, since IIz'll < sv~, we 

find p e]llz'll/v/~,s[. Then tlz'll < px/~ = (1 - s')p with s' := 1 - v/-a. As 

p < s, we have Bp(0) C_ B~(0). Also 

, - 1  , § , + tlg'(v2) - g'(vI)[l = [[fq(Y) .(f~(Y v2) - fq(y  Vl))ll _< 1 - ~ = s' 

for all vl ,v2 E Bp(O), by 3. Hence [32, La. 1.5.4] provides w e Bp(O) C_ Bs(O) 
such that  g(w) = z', as required. Thus, the first inclusion in (3) holds. 

(e) Let q e Q, y �9 B, and r �9 r - [ l y - x [ [ ] .  There is an open neighbourhood 

V C Q of q such that  f ( q , y )  - f ( q ' , y )  �9 A.Ba~/2(O) for all q' �9 Y. Given 

q' �9 V and z �9 fq(y) + A.Ba~/2(O) C_ fq,(y) + A.Bae(O), by (b) there exists 
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w E BE(y) C B such that  Cq,(W) = fq,(w) = z, whence (q',z) c W and w = 

r e BE(y) (which will be useful later). Thus Y := Y • ( fq(y)+ A.Ba~/2 (0)) 

is an open neighbourhood of (q, fq(y)), contained in W. We conclude that  W is 

open. Furthermore, for all (q', z) in the open neighbourhood Y of (q, fq(y)), we 

have r z) = r �9 B~(y) = Bc(r fq(y))). The continuity of r follows. 

Now, apparently 0 is continuous and is a bijection whose inverse has the asserted 

form. Hence, the map r being continuous, also 0 -1 is continuous. 

(d) Let q �9 Q. Using (b) with y := x, s := r gives fq(X) + A.Bar(O) C 

fq(B).  Hence fp(X) + A.B~(O) = fp(x) + A.Bar/2(O) : (fp(X) - fq(x)) + fq(x) + 
A.B,~r/2(O) C_ A.B~r/2(O) + fq(x) + A.B~/2(O) = fq(x) + A.B~r(O) C_ fq(B),  
exploiting (4) for the first inclusion. Therefore {q} • (fp(X) + A.B~(O)) C_ W. 

The final conclusion is clear; we have/3(q) : ~(q, f (p,  x) ) = r  (f(p,  x) ). | 

LEMMA 2.2: Let P be an open subset of  a real topological vector space Z, 

E be a real Banach space, U C_ E be open, f: P • U ~ E be a map, and 
k 6 NU{oc}. I f f  is of  class C k+l  or  i f E  is finite-dimensional and f is of  class C k, 

then hypotheses (i) and (ii) of Proposition 2.1 are satisfied. Furthermore, the 
mapping 

h: P x U--~ L(E),  h (p ,x ) :=  fp(X) = df((p,x),(O,o)) 

is of  class C k-1 . 

Proof'. I r E  isfinite-dimensionaland f is of class C k, then fp := f (p ,  .): U ~ E 

is a Ck-map between open subsets of a finite-dimensional space, hence k times 

continuously partially differentiable in the traditional sense, and thus an F C  C 
map, as is well-known. Let e l , . . . ,  en be a basis of E. The mappings P •  U ~ E, 

(p,x) ~ fp(X).ej : d(fp)(X, e J  : df((p,x),(O, ej)) being of class C k-1 for 

j : 1 , . . .  ,n,  we readily dedace that  P x U --~ L(E) ~- Mn(IR), (p,x) ~-~ fp(X) is 

C k-1 and hence continuous. 

I f  E is infinite-dimensional and f is of class C k+l, then, for each p C P, 

fp := f (p,  .): V ~ E is a Ck+Lmap (in the Michal-Bastiani sense) between 

open subsets of Banach spaces and therefore an F C C m a p  (see [29, Cor. 2.7.2 

and p. 110], or, for a direct proof, [17, appendix]). The continuous linear map 

A: E ~ Z • E, A(y) := (0,y) gives rise to a continuous linear (and hence 

smooth) map 

L ( A , E ) : L ( Z x E ,  E) - -~L(E) ,  A ~ - * A o A ,  
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where L ( Z  • E, E) is equipped with the topology of uniform convergence on 

bounded sets. The mapping h can be written as the composition h = L(A, E)of ' ,  

where 

f ' :  P x g -* L ( Z  x E, E), f ' (p,  x ) : =  df((p, x ) , . )  

is of class C k-1 by [17, Prop. 2.1] (which remains valid for non-locally convex 

domains, with identical proof). Hence h is C k-1 (and thus continuous). | 

THEOREM 2.3 (Generalized Implicit Function Theorem): Let k E N U {c~}, 

K E {R, C}, Z be a topological K-vector space, P C_ Z an open subset, E a 

Banach space over K, U C_ E an open subset, and f :  P x U ~ E a map. 

We consider two situations: 

(i) K = R and f is of class C~ +1; or K = R, E is finite-dimensional, and f is 

of class C~; respectively: 

(ii) f is K-analytic. 

Let (p,x) C P • U, and suppose that A :-- f~(x) E GL(E), where f ;  := 

f (p ,  .). Furthermore, let 0 < a < 1 < b be given. Then there exists an open 

neighbourhood Q c_ P of p and r > 0 such that B := B~(x) C_ U and the 

following holds: 

(a) f~(B) is open in E, for each q �9 Q, and r B ~ f~(B), r  f~(y) = 
f (q,  y) is an invertible FCk-map  (resp., K-analytic map), whose inverse 

(r f~(B) -~ B is of c1~s P C  k (resp., K-analytic). 

(b) For all q �9 Q, y �9 B, and s �9 r - [lY - xll], we have 

fq(y) + A.Ba.~(O) C_ fq(Bs(y))  C fq(y) + A.Bbs(O). 

(c) w := Uq~Q({q} • L ( B ) )  is open in Z • E, and the map r W -~ B, 
r v) := r (v) is of class C[ (resp., K-analytic). Furthermore, the map 

O: Q x B --* W,  O(q,y) := (q , f (q ,y ) )  is a C~-diffeomorphism (resp., a 

K-analytic diffeomorphism), with inverse given by 0 -1 (q, v) = (q, r v)). 

(d) Q x (fp(x) + A.B~(O)) C_ W for some ~ > 0. 

In particular, for each q C Q there is a unique element j3(q) E B such that 

f(q, 9(q)) = f(p, x), and the mapping ~: O, --* B so obtained is of d ~ s  C~ 

(resp., K-analytic). 

Proof: Let f ,  p, x, a, and b be given as described in the theorem. Then 
hypotheses (i) and (ii) of Proposition 2.1 are satisfied, by Lemma 2.2. We let 

Q, r, B, W, ~p, 0, and (~ be as described in Proposition 2.1. Then (b) and (d) of 

the theorem hold by Proposition 2.1 (b) and (d), and in view of Part(a) of the 



Vol. 155, 2006 IMPLICIT FUNCTIONS 219 

proposition, apparently Part(a) of the theorem will hold if we can establish(c). 

We already know that W is open, and we know that ~b is continuous. 

Let us assurae first that we are in the situation of (i), and prove by induction 

on j 6 N, j < k that r is of class C A. If j = 1, let (q, v) C W and (ql, Vl) E Z X E. 

Set y := Cql(v). There exists r > 0 such that (q, v ) + ] - r ,  v[(ql, Vl) C_ W. Define 

g: ]-~-,7-[xU ~ ]R x E via g(t ,u)  := ( t , f (q  + tql ,u)) .  Then g is a mapping 

between open subsets of the Banach space I~ x E which is of class C~ if E (and 

thus ]R x E) is finite-dimensional, otherwise of class C~ +1. In any case, g is an 

' 0  FCk-map and thus an F C L m a p ,  and apparently g ( , y) is invertible, as it can 

be considered as a lower triangular 2 x 2 block matrix with invertible diagonal 

entries id~ and fq(y). By the classical Inverse Function Theorem for Banach 

spaces ([32], Theorem 1.5.2), we find 0 < a < rain{7, r - ] I Y -  x]I} such that g 

restricts to an FCl-diffeomorphism h from ]-cs, ~[xBo(y)  onto an open subset 

S C_ lt~ x E. There is 0 < ~ < a and an open neighbourhood V _C E of v such that 

] - s ,  ~[x V C_ S. Then apparently h -1 (t, w) = (t, Cq~-tq~ (w)) = (t, r  + tql, w)) 

for all (t, w) E]-~,  ~[xV, entailing that ] - s ,  s [ x V  --* E, (t, w) ~ r + tq~, w) 

is an F C L m a p .  After shrinking s:, we may assume that v+]-~,~[Vl  C_ V. 

Then, by the preceding, c: I - s ,  s:[--* E, t ~ r  + tq~,v + tv~) is of class C 1, 

and thus dr v), (q~, v~)) = c'(0) exists. Since f (q  + tql, c(t)) = v + tvl, the 

Chain Rule and the Rule on Partial Derivatives give 

d t=0 vl = f (q  '[- tql, c(t)) 

= dl f (q ,  ~;'(q, v); ql) + d2f(q, r v); dr v), (ql, Yl)))- 

Now d2f(q, r v); .) = fq(Z/~(q, v)) is invertible by Proposition 2.1(a). Thus 

(5) 
dr v), (ql, vl)) = fq(~(q, v))- t . (vl  - dt f (q ,  r v); ql)) 

= e(fq(r v)) -1, vl - d l f (q ,  r v); ql)) 

for all (q,v) E W and (ql ,Vl) 6 Z • E,  where r L(E)  x E --, E is the bilinear 

evaluation map, which is continuous since E is normed. Now c, 'g,, d l f ,  inversion 

t: GL(E) ---* GL(E) and the mapping 

(6) P x U ---, L(E) ,  h(s ,u)  := f.~(u) 

being continuous, we deduce from (5) that de: W x Z x E ~ E is continuous, 

whence r is of class C A. Similarly, if 1 < j < k and ~b is of class C A by induction 

hypothesis, using that c (being continuous bilinear), c (cf. [16]) and the map in 

(6) (by Lemma 2.2) are of class C~, we deduce from (5) and tile Chain Rule 
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that d~b is of class C~. Thus r is C~ with de of class C~, and hence r is of 

class C~ +1 (cf. [12]). Thus, the assertions of the theorem hold in situation (i). 

We may pass to the complex analytic and real analytic cases using standard 

ideas from the finite-dimensional case (cf. [9, (10.2.4)]). Indeed, if IK = C and f 

is complex analytic, then f is of class C ~  in particular, and thus ~b is of class C~,  

by what has already been shown. Equation(5) shows that dg,(w, .): Z x E -+ 

Z x E is complex linear, for all w C W. With Lemma 1.20, we deduce that 

is complex analytic. Finally, assume that ]K = 1R and assume that f is real 

analytic. Equip Ec -= E x E with the maximum norm. Given (q, z) E W, 

set y := ~b(q, z). There is a complex analytic function F: Y -+ Ec, defined 

on an open neighbourhood Y of P x U in Zr x Ec, such that FIpx U = f. 
Then d2F(q, y; .) = fq(Y)c being invertible, by the complex analytic case of the 

theorem just established, there exist open neighbourhoods P1 C_ Zc of q and 

rl > 0 such that P1 x B1 C_ Y with B1 := BEe(y), and such that F(pl,.)IB1 
is a complex analytic diffeomorphism onto an open set, for each Pl C P1, and 

also W1 := [.Jplep~{pi} x F({pl} x B1) is open in Zc x Ec, and r -+ Ec, 
r  := (F(pl, .)lB~)-l(vl) is complex analytic. Then Q n P1 and B N B1 

are open neighbourhoods of q and y in Z and E, respectively. The map 0 being 

a homeomorphism onto the open set W, we deduce that 

W2:= U ( { s } x f s ( B N B 1 ) ) = 0 ( ( Q O 1 ) I )  x (BfqB1)) 
seQnP1 

is open in Z x E, Then r  --~ Ec is a complex analytic map on an 

open neighbourhood of W2 in Zc x Ec which extends r and thus r is 

real analytic. Being real analytic locally by the preceding, r is real analytic 

(Remark 1.18). | 

3. Strict differentiabil ity 

We now leave the framework of real and complex analysis and turn to differen- 

tial calculus over arbitrary valued fields. In order to be able to prove implicit 

function theorems, we require a differentiability property which is stronger than 

being C 1, namely "strict differentiability." In this section, we recall the defini- 

tion of strictly differentiable mappings from open subsets of normed ]K-vector 

spaces to polynormed ]K-vector spaces, where ]K is a valued field. We show 

that every strictly differentiable mapping is of class C 1 , and we show that, con- 

versely, every mapping of class C 2 from an open subset of a normed space to a 

polynormed ]K-vector space is strictly differentiable. 
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Definition 3.1: Let K be a valued field, E be a normed K-vector space, F a 

polynormed K-vector space, U C_ E be open, and f :  U -* F be a map. Given 

x E U, we say that  f is s t r i c t l y  d i f f e r e n t i a b l e  a t  x if there exists a continuous 

linear map f ' ( x )  E L(E,  F) such that,  for every e > 0 and continuous seminorm 

~/on F,  there exists 5 > 0 such that  

[If(z) - f ( y )  - f ( x ) . ( z  - y)ll~ <  llz - yll 

for all y, z E U such that  [[z - x[[ < 5 and [[y - xi[ < 5. The map f is called 

s t r i c t l y  d i f f e r e n t i a b l e  if it is strictly differentiable at each x E U. 

It  is clear tha t  f~(x) is uniquely determined in the preceding situation. 

If  E is a normed vector space over a valued field K, and F a polynormed 

K-vector space, we equip the space L(E,  F) of continuous K-linear mappings 

E --* F with the topology of uniform convergence on bounded subsets of E.  This 

topology makes L(E,  F)  a polynormed K-vector space, whose vector topology 

arises from the family of continuous seminorms 

[[A[[~ := sup{i[A.v[[~. [JV[[-I: 0 ~ V E E} E [0, (30[ 

(cf. [42], p. 59), where 7 ranges through the continuous seminorms on F.  If also 

F is normed, with norm % then L(E,  F) is normable; its vector topology arises 

from the operator norm II.II := II.lJ . 

LEMMA 3.2: Let K be a valued field, E be a normed K-vector space, F a 

polynormed K-vector space, U C_ E be open, and f:  U -~ F be a strictly 

differentiable map. Then f is o[class C 1, we have f~(x) = dr(x, .) for ali x E U, 

and the mapping 

f ':  U ~ L ( E , F ) ,  x H  f ' ( x )  

is continuous. 

Proof: Directional derivatives. Given x E U and y E E,  let us show tha t  

the directional derivative dr(x, y) exists, and is given by f~(x).y. For y = 0 

this is trivial. I f 0  ~ y E E,  there exists r > 0 such tha t  x + t y  E U for all 

0 ~ t E Br(0) C K. By strict differentiability of f in x, for every continuous 

seminorm 3' on F we have 

~ ( f ( x  + ty) - f ( x ) )  - f ' ( x ) y  ~ -- IlYll " II/(x + ty) - f(x) - f '(x)tyII ~ ~ o 
Iltyll 

as t --* 0, showing that  df (x ,y )  := lim0r l ( f ( x  + ty) - f ( x ) )  = f ' ( x ) . y  

indeed. 
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f '  is continuous. In fact, given c > 0 and a continuous seminorm -~ on F,  we 

find 5 > 0 such that  [If(z) - f ( y )  - f ' ( x ) . ( z  - Y)II~ -< e[[z - y]] for all y , z  E U 

such that ]IY-X[I < 5 and I i z - x l l  < 5. Let y E U such that  I l y -x [ I  < 5. 

Then, g i v e n 0 r  x 

sufficiently close to 0, entailing that  

l 1  // 

= I1~11 lira I I f (y  + tu)  - f ( y )  - f ' ( x ) . ( t u ) l l v  < Ilull" c. 
t - ~ o  Iltull 

As a consequence, Hf'(Y) - f'(x)]]~ <_ e for all y E U such that  I [Y - xll < 5, 

showing that  ff: U ~ L(E ,  F)  is continuous. 

f is of class C~. Note first that  f is continuous. In fact, given x E U, e > 0, 

and a continuous seminorm 7 on F,  we find 5 > 0 as in Definition 3.1. Pick 

0 < p <_ 5 such that  p .  (e + [[ff(x)][~) < e. Then, for all y E Bp(x) N U, we 

estimate 

IIf(v) - f ( x ) l l ,  ~ I l l (y)  - f ( x )  - f ' ( x ) . ( y  - x)ll~ + I I f ' ( x ) . ( y  - x)ll~ 

_~ e .  I lY-  x[I + l lf ' (x)lI7 " [ [ y -  xl[ < e. 

We deduce that  f is continuous. 

Next, let W := { ( z , y , t )  E U[1]: t ~ 0}. Define g: U [1] ~ F via g ( x , y , t )  := 

~ ( f ( x  + ty) - f ( x ) )  for ( x , y , t )  E W ,  g(x ,y ,O) := f ' ( x ) . y  for (x,y)  E U • E. 

Then glw is continuous since f is continuous, and glu• U • E • {0} --~ F 

is continuous since f t  and the evaluation map L(E,  F)  • E ~ F are continuous 

(the space E being normed). Hence g will be continuous if we can show that  

g(x~, ya, ta) ~ g(x, y, 0), for every net ((xa, y~, ta))~er in W which converges 

to some (x ,y ,O) E U [11. Since Ily~ll -< I1~11 + 1 eventually, we may assume 

without loss of generality that  Iiy~lt -< I[yll + 1 for all a.  If y ~ O, then y~ ~ 0 

eventually, whence we may furthermore assume in this case that  y~ ~ 0 for 

all a.  Then, for a given a, we either have y~ = 0 (in which case y = 0 by the 

preceding): then 

1 1 9 ( ~ o ,  y o ,  t~,)  - 9 ( ~ , y , o ) l l  = l lo  - Oil = o;  
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or we have y,~ ~ 0, in which case 

IIg(z., y . ,  t . )  - a(~, ~, 0)ll~ 

= l ( f ( x ,  + t~y~) - f ( x~ ) )  - f ' ( x ) . y  
"1 

< ILy.II IIf(x.  + t . y . )  - f ( x . )  - S ' (~) . t .y . l l~  + I I f ' (x) . (y .  - y)ll~ 
- It~l. Ily~ll 
-< (llyll + 1). IIf(x" + tay~) - f ( x ~ )  - f ' (x) . t ,ya[17 

IIt.y~ll + IIf(x)ll~" Ily~ - yll, 

where the first term tends to 0 as c~ increases since f is strictly differentiable 
at x, and the second term tends to 0 for trivial reasons. I 

We want to show that every C2-map is strictly differentiable. The proof 

hinges on symmetry properties of f[1] and f[2], as described in the following 

lemma: 

LEMMA 3.3: Let  E and F be topological vector spaces over a non-discrete 

topological t~eld K, and f:  U ~ F be a map, detlned on an open subset o rE .  

(a) I f  f is C 1, t E K • and (x, y, s) E E • E • K such that (x, y, ts) E U [1], 
then also (x, ty, s) E U [11, and 

(7) t f  [11 (x, y, ts) = fill (x, ty, s). 

(b) I f  f is C ~, t E E • X, Xl,y,  yl E E and s, s l , s2  E E such that 

((X, y, ts ) ,  (Xl, Yl, tSl),t82) e U [2], 

then also ((x, t2y, s / t ) ,  ( tx l ,  t3yl, 81), 82) E U [2], and 

(8) 
t3f  [2] ((x, y, ts), (x l ,  Yl, tsl),  ts2) = f[2]((x, t2y, s / t ) ,  ( tx l ,  t3yl, sl),  s2). 

Proof" (a) Since x + (ts)y = x + s(ty),  it is obvious that (x, ty, s) E U [1] if and 
only if (x, y, ts) E U [11. In this case, we have 

(x, y, ts) = ! ( f ( x  + t sy )  - : ( x ) )  = f i l l ( x ,  ty ,  8) t f[  1] 

provided s # 0; if s = 0, then f[ll(x, ty, s) = f[ll(x, ty, 0) = df(x ,  ty) = 

tdf (x ,  y) = t f  [11 (x, y, O) = t f  [11 (x, y, ts). Thus (7) is established. 

(b) Let t E K • x ,y ,  x l , y l  E E, and s, s l , s2  E K such that 

((x, y, ts), (Xl, Yl, tsl), ts2) E U [2]. 
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Then (x, y, ts) E U[:] and hence also (x, t2y, s/t) E U [:], by Par t  (a). If s2 = 0, 

this entails tha t  ((x, t2y, s/t),  (tx:, t3yl, Sl), s2) E U [2]. If s2 r 0, we calculate: 

f[2] ((x,y, ts), (x:, Y:, ts:), ts2) 

_- (f[1])[1] ((x, y, ts), (x: ,  Yl, t81), ts2) 

_-- 1 (f[1] (x + ts2xl, y + ts2Yl, ts + t2sls2 ) -- f[l] (x, y, , ~  )) 
t82 y 

:t2(s/t+s:s2) :t2"s/t 

1 

_ t382 (f[l] (x + ts2x:, t2y + t3s2yl, s / t  -~- sis2)  - f[1] (x, t2y, s/t)) 

= ~f [2J ( (x ,  t2y, s/t),  (tx:, t3y:, s:), s2), 

showing tha t  ((x, t2y, s/t),  (tx:, t3yl, s:), s2) C U [2] and (8) holds, when s2 ~ 0. 

Here, we used (a) to pass to the  third line. Let t ing s2 ~ 0 tend to 0, by the 

continui ty of the functions involved (8) remains valid for s2 = 0. | 

Cf. also [16, La. 6.8] for a (less explicit) result concerning f[k] for arbi t rary  k. 

We are now in the posit ion to prove: 

PROPOSITION 3.4: Let K be a valued field, E be a normed K-vector space, F 
a polynormed K-vector space, U C_ E be open, and f: U --* F be a mapping of 
class C 2. Then f is strictly differentiable. 

Proof'. Given x E U, let us show that  f is str ictly differentiable at  x. For all 

y, z C U, we have 

(9) 
f ( z ) - f ( y )  - f ' ( x ) . ( z  - y )  

= f ( z )  - f ( y )  - f % ) . ( z  - ~ )  + f % ) . ( z  - y )  - f ' ( x ) . ( z  - y )  

= f[1] (y, z - y, 1) - f[:] (y, z - y, 0) + f[:] (y, z - y, 0) - f[:] (x, z -- y, O) 

= f[2] ((y, z - y, 0), (0, 0, 1), 1) + f[2] ((x, z - y, 0), (y - x, 0, 0), 1). 

Let  us have a closer look at  the individual terms. For each t E K • , we have 

(10) 

1 1 . 0 ) , ( t . 0 , t  3 - 0 , 1 ) , 1 )  f[2] ((y, z - y, 0), (0, 0, 1), 1) = f[21 ((y, t 2 " ~ (z - y), 

= tVI21((y, ~ ( z  - y), 0), (0, 0, t), t), 

by L e m m a  3.3(b). The  map  f[2]((x, ,, 0), (y - x, 0, 0), 1) = f ' (y)  - f ' (x ) :  E ~ F 

is linear. Furthermore,  we have 

(II) f[']((x,z-y,O),(y-x,O,O),l)=sf['l((x,z-y,O),(j(y-x),O,O),s) 
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for all s �9 K • by Lemma 3.3(a). Let r > 0 and "y be a continuous seminorm 

on F.  Since f[2] ((x, 0, 0), (0, 0, 0), 0) = d2f(x ,  0, 0) = 0, in view of the continuity 

of f[2] and openness of U [2], there is 5 > 0 such that ((u,v,0),  (w,O,a),b) �9 
U [2] and 

U[2]((u,v,O), (w,O,a),b)[I,~ < e 
(12) 

for u �9 BE(x),  v ,w  �9 BE(o),  a,b �9 B~(O). 

We may assume that 5 _< 1. Pick p �9 K x such that [Pl < 1, and s �9 K • such 

that Is[ _< 51pl2/2. Define r := min{H5 , ~531pl6}. Let y, z �9 BE(x)  C_ U such 

that y ~ z. Then there is a unique integer k �9 Z such that 

Ipl k+i_< ~ < l p l  k. 

Set t := pk. Then [It-2(z - y)ll = Ipl-~kll z - yll < 5 ,  

1 i l l z - y l l  1 V/~ 1 ~  531pl6 ~[pl 2 Itl--lpl k < ~  -~ - < ~  -<~ 5 - 2 -  <5' 

and 

Itl 3 Ipl 2k+2 p l ~  1 4[ Iz-  
IIz - yll - Ipl~-~ IIz - yl------/-< < ~ -g 

_< ~e[pl6 = 5. 

Hence, using (10) and (12) (with u := y), 

(13) 
I l f t 2 J ( ( y , z - y , O ) , ( o , o ,  1),l)ll~ _ Itl 3 

IIz - yll [Iz - yll 
< ~/2. 

Using (11) with s as just  chosen, we obtain 

(14) 

1 - - [ I f [ 2 ] ( ( y ,  ~ ( z  - y), 0), (0, 0, t), t)l[~ 

IIf[2]((x,z - y,O), (y - x, O, 0), 1)H.y 
Ib - yll 

- - -  0 1 Isl I I f[2]((x ,z_y ,  ) , ( s (Y -x ) ,O ,O) , s ) [ l~  
H z - y l l  

h i  Ip? k 
( ~ ( y  x) ,O,O),  ~ /2 .  - -[z - ~  I lf t~J((x'P-2k(z  - y),O),  - 8)11~ < 

Indeed, Isl < 5 by choice of s, [8[--l[[y--x[[ < [8[-lr __~ (~, and [p[-2kIIz -- y][ < 5, 
whence [If[2] ((x, p-2k (z - y), 0), (]  (y - x), 0, 0), s)[[.r < r holds, by (12). Also 
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1 By (9), (13) and (14), we have Isllpl  ll - yl l - '  <-Isl/ Ipl 2 -< 

Hf(z) - f ( y )  - f '(:c).(z - Y)II. 
IIz-y l l  

for all z ~ y 6 Br(x)  C_ U. Thus f is strictly differentiable at x. l 

A variant of Proposition 3.4 involving parameters will be needed later: 

LEMMA 3.5: Let (K, I.]) be a valued field, E be a normed E-vector space, U C E 

an open subset, F be a polynormed K-vector space, Z a topological K-vector 

space, and P C Z be open. Let f :  P • U ~ F be a C~-map. Then the map 

(15) h: P • U -~ L(E,  F),  (p,x) ~ f~(x) 

is continuous, where fp :-- f (p ,  .) and g ( x )  := d(fp)(x,  .). 

For all p 6 P, x 6 U, r > 0 and continuous seminorm 7 on F, there exists a 

neighbourhood Q of p in P and r > 0 such that 

(16) 
llf (z) - fq(y) - f~(x).(z  - Y)]I'~ 

< r  for all q 6 Q and y # z 6 Br(x)  N U. 
IIz - yll 

Proo[: Let p 6 P, x 6 U, c > 0, and 7 be a continuous seminorm on F. Since 

g: P • U [2] -~ F, (q, z) ~ (fq) {21 (z) 

is continuous as a partial map of f[2] and g(p, (x, 0, 0), (0, 0, 0), 0) =d2(fp)(X, O, O) 

= 0, there exists ~ > 0 and an open neighbourhood Q of p in P such that  

((u, v, 0), (w, 0, a), b) 6 U [2] and 

II (fq)[2] ((u, v, 0), (w, 0, a), b)]]~ -- Jig(q, (u, v, 0), (w, 0, a), b)]iv < r 

for a l l q  6 Q, u 6 BE(x ) , v ,w  e BE(o),  and a,b e B~(O). For each fixed 

q 6 Q, replacing f with fq in the preceding proof, we find r (independent of q) 

as described there and can repeat the estimates verbatim, to obtain (16). 

To see that  h is continuous, let p 6 P, x 6 U, ~ > 0 and a continuous 

seminorm 7 on f be given. Since f[2](((p,x),(O,O),O), ((0,0),(0,0),0),0) = 

d2f((p,  x), (0, 0), (0, 0)) = 0 and/21  is continuous, there is 5 > 0 and a balanced 

zero-neighbourhood V C_ Z such that  

IlfE2](((p,x), (0 ,u) ,0) ,  ((v,z), (0,0), 0) , t) l l .  <_ 

for all u, z 6 BE(0), v G V, and t E B~(0). Pick p 6 K • such that  IPl < 1, and 

pick t �9 K • such that  It] < 5]Pl. Define r := 5it I. We claim that  

(17) It.t' (y) - g (z ) l l . ,  _< 
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for all q E P N  ( p +  tV )  and y E Br (x )  A U. To see this, let 0 ~ u E E. There 

is a unique k E Z such that  Ip] k+l < flume/5 < ]pl k. Then, using Lemma 3.3(a) 

and linearity in u, 

II(f~(Y) - f~(x)).ui]~ 

li~ii 
Itf[2](((p,x), (0, u), 0), ((q - p , y  - x),  (0, 0), 0), 1)11~ 

ll~li 

- It]iPlk IIf[2](((p,x), (0, p-ku), 0), ((~(q --p), ~(y -- x)), (0, 0), 0), t)ll~ 
rl~ll 

_< ~, 

whence (17) holds. Hence h is continuous, which completes the proof, i 

4. U n i f o r m  d i f f e ren t i ab i l i ty  

For mappings on open subsets of finite-dimensional topological vector spaces 

over locally compact topological fields with values in polynormed spaces, the 

results of the preceding section can be strengthened substantially: such a map- 

ping is of class C 1 if and only if it is strictly differentiable, if and only if it is 

"locally uniformly differentiable." 

Definition 4.1: Suppose that  (K, I.I) is a valued field, (E, li.ll) a normed K- 

vector space, F a polynormed K-vector space, U C_ E an open subset, and 

f :  U -~ F a map. Then f is called u n i f o r m l y  d i f fe ren t i ab le  if there exists a 

function fP: U -~ L ( E ,  F)  such that,  for every ~ > 0 and continuous seminorm 

"y on F, there exists 5 > 0 with the following property: for all x, y, z C U such 

that  IJY- xll < 5, me z -  xii < 5 and y ~ z, we have 

IIf(z) - f (Y )  - f ' ( x ) . ( z  - Y)I]~ 
< C .  

IIz - yii 

We call f local ly  u n i f o r m l y  d i f fe ren t iab le  if every x E U has an open neigh- 

bourhood V C U such that  f l y  is uniformly differentiable. 

Remark 4.2: It is apparent from the definitions that  every locally uniformly 

differentiable mapping is strictly differentiable. 

Remark 4.3: Strengthening Lemma 3.2, it is easy to see that  f~: U ~ L ( E ,  F)  

is uniformly continuous, for every uniformly differentiable map f :  E _D U ~ F. 

As we shall not need this fact, the simple proof is omitted. 
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LEMMA 4.4: Let K be a locally compact, non-discrete topological field, and I.I 

be an absolute value on K defining its topology. Let E be a finite-dimensional 

normed K-vector space, F be a polynormed K-vector space, U c_ E be open, and 

f :  U ~ F be a mapping of class C i . Then f is locally uniformly differentiable. 

If, furthermore, U is compact, then f is uniformly differentiable. 

Proof'. (cf. [43], Exercise 28E(ii) when E = F = K). Pick 0 r p �9 K such that  

[p[ < 1. Let V C_ U be an open subset with compact closure V C U. Define 

f ' :  U ~ L(E,  F), f ' ( x )  := dr(x, .) = f[Xl(x, .,0). Given r > 0 and a continuous 

seminorm 7 on F, consider the continuous function 

g: U [1] ~ F,  ~(X, y, t) := fill (X, y, t) -- f[il (X, y, 0). 

Then V • B~lpl(O ) • {0} C_ U • E x {0} C_ u[i] is a compact subset on which 

g vanishes identically. Using a compactness argument, we find a > 0 such that  

v • u~,p,(0)  • U~(O) c_ UI~] and such that IIg(x, Y,t)11~ < ~/2 for all (x,y,t) 
V x B~tpl (0) x B~(0). Let e l , . . . ,  e~ be a basis of E, and e~ , . . . ,  e* E E'  be its 

dual basis. 

Given A E L(E,  F), for each 0 ~ v �9 E we have 

n 

IIA.vll~ _ [[ ~ - 1  e~(v)A'e~H~ <_ le*(v)------~[ " IIA'e~ll~ <- E Ile*ll" IIA'e~ll~" 

Thus 

(18) ]IAII-~ < ~ lle~[I" IIA.e~L[.y for all A E L(E,F). 
i = l  

Let i E {1 , . . . ,  n}. The mapping V ~ F, x ~ dr(x, ei) being continuous and 

thus uniformly continuous, we find 6i > 0 such that  

I ldf(y,  e~) - d r ( x ,  e~)ll~ < e/(2nlle~ II) 

- -  lmin{a ,  h i , . . , h a } .  By for all x , y  E V such that  IIx - Yll < 5~. Define 6 := ~ 

(18) and the choice of 6i, we have lidf(y,.) - df(x, .) l l ,  r < ~/2 for all x , y  E Y 

such that  IIx - Yll < 25. 

Let x , y , z  E V be given such that  y r z, t tY- xll < 5, and IIz - xll < 5. 

There exists k E Z such that  Ipl k+i < IIz - Yll < IPl k. We set s :-- pk+i. Then 
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if 1( z - Y)[[ < 1/IPi, Is[ = Ipl k+* -< If z - Y]i < 25 < a, and it z - YIi < 25. Thus 

I I f ( z )  - f ( y )  - f ' ( x ) . ( z  - y) l l~  

liz - yll 

< e l f (z )  - f ( y )  - f , ( y ) . ( z  - y) [I ,  + [ [ ( f ' (y )  - f , ( x ) ) . ( z  - y)l[~ 

- l i z - y i l  i i z - y i i  

= ! ( : ( . ) _  
l i z - y i i  

1 y ) , s ) - f [ l ] ( y ,  1 - y ) , O )  .r+ r 
_< f[1](y, s (  z _  s (z 2 

Hence fRy is uniformly differentiable. The first assertion readily follows. For 

the second assertion, choose V := U in the first part of the proof. | 

We also need a variant of Lemma 4.4 involving parameters. 

LEMMA 4.5: Let E be a locally compact, non-discrete topological field, and ].] 

be an absolute value on K defining its topology. Let E be a finite-dimensional 

normed K-vector space, U C_ E be open, F be a polynormed K-vector space, 

and P be a topological space. Let f:  P x U --+ F be a continuous mapping 

such that fp := f (p,  ,): U --+ F is of class C~ for all p C P, and such that the 

mapping 

P • U [1] ~ F, (p,y) H (fp)[1](y) 

is continuous. Let p E P and u C U be given. Then, for e v e r y e  > 0 and 

continuous seminorm "y on F,  there is a neighbourhood Q o[p in P and 5 > 0 

such that 
[[fq(Z) - fq(y) - fq(U).(z - Y)II, 

llz - yll 

for ali q e Q and y, z e B~(u) a U such that y # z, where fq(U) := d(fq)(u, .). 

Proof." Let ~ > 0 and 'y  be given. Pick 0 ~ p E K s u c h t h a t  ]p] < 1. Let 

V C_ U be an open neighbourhood of u with compact closure V C_ U. Consider 

the continuous mapping 

g: P • U [1] --+ F~ g(q, x, y, t) :-- f~ l ] (x ,y ,~; ) -  f~l] (x, y, O). 

Then {p} x V x B~ipl(0) x {0} C_ P x U x E x {0} C_ P x U [1] is a compact 

subset on which g vanishes identically. Using a compactness argument, we find 
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a > 0 and a neighbourhood P0 o fp  in P such that  V x B~lpl(0 ) x B~(0) C U [1] 

and such that  

IIg(q,x,y,t)ll~ < e/2 for all (q,x,y,t) �9 P0 • V x B~lpl(0 ) • B~(0). 

Let e l , . . . , e n  be a basis of E, and e~ , . . . , e*  be its dual basis. Using the 

compactness of V, we find a neighbourhood Q c_ P0 of p and ~ > 0 such that  

Ildfq(z, e~) -dfq(y, ei)I1~ < a/2nlle7 II for all q �9 Q, i �9 {1 , . . . ,  n}, and all y, z �9 V 
such that  IIz - YH < g- Define ~ := min{a/2, ~/2}. Re-using the estimates from 

the proof of Lemma 4.4, we see that  the assertion of the lemma is satisfied for Q 

and 5. | 

5. S t r i c t  d i f f e ren t i ab i l i ty  o f  h ighe r  o r d e r  

Generalizing the standard notion of (once) strictly differentiable mappings, in 

this section we define and discuss k times strictly differentiable mappings on 

open subsets of normed vector spaces over valued fields. 

Definition 5.1: Let E be a valued field, E be a normed E-vector space, F 

be a polynormed E-vector space, and U C E be an open subset. A function 

f: U --* F is called an SC~ if it is continuous; it is called an SCl-map 

if it is strictly differentiable (and hence C I in particular). Inductively, having 

defined SCk-maps for some k C I~ (which are C k in particular), we call f an 

SCk+1-map if it is an SCk-map and the map f[k]: U[k] __~ F is SC I, where E [k] 

is equipped with the maximum norm. The map f is SC ~176 if it is an SCk-map 

for all k C No. 

Remark 5.2: In other words, f is SC k if and only if f is C k and f[J]: U [j] -+ F 

is strictly differentiable for all j E No such that j < k. It follows from this and 

1.4 that  f is SC k if and only if f is SC 1 and f[1] is SC k-1. 

Remark 5.3: If f :  E _D U --* F is of class C k+l in the preceding situation, 

then f is an SCk-map. In fact, for every j 6 N0 such that  j < k, the map 

f[Jl is of class C k+l- j ,  where k + 1 - j  _> 2, and hence strictly differentiable by 

Proposition 3.4. 

Remark 5.4: A mapping from an open subset of a finite-dimensional E-vector 

space to a polynormed E-vector space over a locally compact, non-discrete topo- 

logical field E is of class C k if and only if it is an SCk-map, by a simple induction 

based on Lemma 3.2, Lemma 4.4, and Remark 5.2. 

Compositions of composable SCk-maps are SC k. 
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PROPOSITION 5.5: Let  K be a valued field, E and F be normed  K-vec tor  spaces, 

G be a po lynormed  K-vec tor  space, and U C E ,  V C_ F be open subsets.  Le t  

k E No U {c~} and suppose  that  f :  U --* V c C_ F and g: V --~ G are S C k - m a p s .  

Then  g o f :  U --* G is an S C k - m a p .  

Proof." We may assume that  k < oc; the proof is by induction. The case 

k = 0 is trivial. The case k = 1 is known (cf. [6, 1.3.1], where however no proof 

is given), and can be shown as follows: Given x E U, let ? be a continuous 

seminorm on G, and E > 0. Set 

e' := min 2(fI/'(x)ll + 1)'2(llg'(f(x))ll~ + 1) < 1. 

By strict differentiability of g at f ( x ) ,  there exists r > 0 such that  

IIg(z) - g(y) - g ' ( f ( x ) ) . ( z  - Y)II~ -< e'llz - yll for all y, z e B ( ( f ( x ) )  n V. 

By strict differentiability of f at x and continuity of f at x, there exists ~ > 0 

such that  

I I f ( z ) - f ( y ) - f ' ( x ) . ( z - y ) N  ~-e 'nz-Y[[  for a l l z ,  y e B E ( x )  NU, 

and f ( y )  e B F ( f ( z ) )  for all y e B E ( x )  N U. Then 

I I g ( f ( z ) )  - g ( f ( y ) )  - g ' ( f ( x ) ) . f ' ( x ) . ( z  - y)ll  

<_llg(f(z)) - g ( f ( y ) )  - g ' ( f ( x ) ) . ( f ( z )  - f (Y)) l l~ 

+ I Ig ' ( f ( x ) ) . ( f ( z )  - f ( y )  - f ' ( x ) . ( z  - Y)N~ 

<_E' !If(z) - f(Y)l! +s'llg'(f(x))ll.y" II z - Yll 

<(ll:'(x)ll+c').llz-yll 

_< llz - y l l  

for all y , z  E B E ( x )  A U, whence g o f is strictly differentiabte at x, with 

differential (g o f ) ' ( x )  = g ' ( f ( x ) )  o f ' ( x ) .  

Induct ion step. Assume that  2 _< k E N, and suppose that  the assertion is 

correct when k is replaced with k - 1. Let f and g be s C k - m a p s ,  as above. By 

the preceding, g o f is an SCl-map.  We also know that  

(19) ( g o f ) [ 1 ] ( x , y , t )  = g[1] ( f ( x ) , f [1 ] (x , y , t ) , t )  for all ( x , y , t )  e V [1], 

where fill and gill are SCk- l -maps  (cf. (2)). Now f being an SCk-map and thus 

an SCk- l -map ,  and the continuous linear map E x E • K --* E,  ( x , y , t )  ~-* x 
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being an SCk-Lmap ,  by induction the composition U [1] --. F, (x ,y , t )  ~ f ( x )  

is an SCk-Lmap .  Also U [1] ~ K, (x, y, t) ~ t is an sCk- l -map ,  being the 

restriction of a continuous linear map. As a consequence, 

T( f ) :  U [~] --* V [~1, (x ,y , t )  ~ ( f (x ) , f [~](x ,y , t ) , t )  

is an SCk-Lmap ,  its components being S C  k-1 (cf. [2], proof of La. 4.4). But  

thus (g o f)[i] = g[1} o T ( f )  is an S C k - L m a p ,  by the induction hypothesis. Now 

g o f  being S C  1 with (go f )  [1] being S C  k- l ,  we deduce that g o f  is an SCk-map 

(see Remark 5.2). i 

6. N e w t o n  a p p r o x i m a t i o n  with parameters 

In this section, we discuss Newton approximation and Newton approximation 

with parameters, as the basis for our inverse function theorems (resp., implicit 

function theorems) for valued fields. Our first lemma can also be considered as 

a Lipschitz Inverse Function Theorem. 

LEMMA 6.1 (Newton approximation): Let (E, li.LI) be a Banach space over a 

valued field (]K, I.D. Let r > O, x �9 E, and f:  Br(x)  -~ E be a mapping. We 

suppose that there exists A �9 GL(E) := L(E)  • such that 

(20) a : = s u p {  I l f ( z ) - f ( y ) - A ' ( z - y ) l l  z }  1 
~-----vH : y , z  �9 B~(x),y ~ < llA_lj---- T. 

Then the following holds: 

(a) Let a := 1 - ~ilA-lil �9 and b := 1 + oiLA-lit �9 [1,2[. Then 

(21) aliz-yli  _< IIA- l . / (z ) -A- l . f (y) l ]  -< bliz-yLI for all y,z �9 Br(x). 

For every y �9 B , ( x )  and s �9 r - Ily - xll], we have  

(22) f ( y )  + A.Bas(O) C_ f (Bs (y ) )  C f (y )  + A.Bbs(O). 

In particular, f has open image and is a homeomorphism onto its image. 

(b) If  (K, I.I) is an ultrametric field in particular and (E, I1.11) an ultrametric 

Banach space, then A -1 o f:  Br(x) ~ E is isometric. For each y �9 B~(x) 

and s �9 we have Bs(y)  C Br(x) and 

(23) f (B~(y) )  = f ( y )  + A.B~(O). 

Proof (cf. [43, Lemma 27.4] when E -- K is a complete ultrametric field. 

Compare also [30, Theorem 6.3.6] for a related result in the real case): 
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(a) Given y, z E B r ( x ) ,  we have 

I I A - i . f ( z )  - A - l . f ( y ) ] ]  = I I A - l . ( f ( z )  - f ( y )  - A . ( z  - y ) )  + z - yiI 

_< I I A - X l l  �9 I I / ( z )  - f(y) - A . ( z  - y)]] + IIz - y l l  

_< (~IiA-~II + 1)llz - yll = b l l z  - yll 

and 

233 

IIz - yll = I I A - l , ( f ( z )  - f ( Y )  - A . ( z  - y ) )  - ( A - l . f ( z )  - A - l . f ( y ) ) [ I  

_< IIA-11I. I I f (z)  - f ( y )  - A . ( z  - Y)II + I I A - l . f ( z )  - A - ~ . Y ( z ) l l  

___ ~l lA-~l l  �9 [Iz - y l l  + I I A - ~ . f ( z ) -  A - ~ . f ( y ) l l ,  

whence (21) holds. As a consequence of (21), A -1 o f and hence also f is 

injective and a homeomorphism onto its image. Now suppose tha t  y E Br(x)  

and s E]0,r  - Iiy - xII]. By the preceding, we have f ( B s ( y ) )  C_ f ( y )  + A.Bbs(O).  

To see tha t  f ( y )  + A .Bas(O)  C_ f ( B s ( y ) ) ,  let c E f ( y )  + A .Bas(O) .  There exists 

t E]0, 1[ such tha t  c E f ( y )  + A .Btas (O) .  Given z E B s t ( y ) ,  we define 

g(z )  := z - A - l . ( f ( z )  - c). 

Then g(z )  E B s t ( y ) ,  since 

IIg(z) - yll _< !lz - y - A - 1  f ( z )  + A - I . f ( y ) I L + ! I A - ' c -  A - 1  f ( y ) l !  
Y 

5ll A - '  Ila ll z -  y ll ~ ll A - , Ila s t  "Va t s  

~ ( ] ] m - l l i a + a ) s t  = st.  

Thus g ( B ~ t ( y ) )  C B~ t ( y ) .  The map g: B ~ t ( y )  ~ B~ t ( y )  is a contraction, since 

Ilg(u) - g(v)l I = II u -  v -  d - l . ( f ( u )  - f(v))ll 

(24) -< IIA-111 �9 IIf(~)  - f ( v )  - A . ( u  - v)ll 

-< ~ .  I I A - 1 I I  �9 II~ - v i i  

for all u , v  E -Bst(Y),  where IIA-~II ~ < 1. By Banach's  Contract ion Theorem 

([43], p. 269), there exists a unique element z0 E Bst(Y) with g(zo)  = zo and 

hence f ( z o )  = Zo. This completes the proof of (a). 

(b) Let (E, I.]) be an ul t rametr ic  field now and (E, II.II) be an ul trametric  

Banach space. For all y, z E B r ( x )  such tha t  y ~ z, we have the inequalities 

I i A - l . f ( z )  - A -1  . f ( y )  - (z  - Y)]I -< ]I A-111" [if(z) - f ( y )  - A . ( z  - y)[[ < II z - yi[, 

using (20) to obtain the final inequality. Hence, the norm II-ll being ultrametric,  

we must  have I [ A - l . f ( z ) - A - l . f ( y ) [  ] = ]lz-y[I. Thus A - l o f  is in fact isometric. 
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If y E Br(x)  and s E]0, r], then B~(y) C Br(y)  = B~(x), as I1.11 is ultrametric. 

The map A -1 o f being isometric, we have f (Bs (y ) )  = A.(A -1 o f ) (Bs (y ) )  C_ 

A . B s ( A - I . f ( y ) )  = f ( y )  + A.Bs(O). If c E f ( y )  + A.Bs(O) is given, define 

g(z) :-- z - A - l . ( f ( z )  - c) for z E Bs(y).  

Then 

IIg(z) -- Yll = I1( z -  Y) -- ( A - l . f ( z )  - A - I . f ( Y ) )  + A - I . (  c -  f(Y))ll 

_< max{l lz  - yll, I IA- l . f ( z )  - Z - l . f (Y ) l l ,  I Im-l-(c  - f(Y))ll < s 

for z E Bs(y), whence g(z) E Bs(y).  The map g: Bs(y) -~ Bs(y ) i s  a contraction, 

by the calculation from (24). Recall that,  the norm on E being ultrametric, the 

open ball B~(y) is also closed and therefore complete in the induced metric. 

By Banach's Contraction Theorem ([43], p. 269), there is a unique element 

zo E B~(y) such that g(zo)= Zo and thus S(zo)=c.  The proof is complete. | 

More generally, we shall need Newton approximation with parameters. 

LEMMA 6.2 (Newton approximation with parameters): Let (E, I1.11) be a 

Banach space over a valued field (K, I.I), and P be a topological space. Let 

r > O, x E E, and f:  P x B --* E be a continuous mapping, where B := BE(x) .  

Given p E P, we abbreviate fp := f (p,  .): B ~ E. We suppose that there exists 

A E GL(E) := L(E)X such that 

(25) 
{ IISAz) - fp(y) - A . ( z  - y)ll. } 1 

IIz-yll .pEP, y, zEB, y r  < IIA_ll----- O" s u p  

Then fp(B)  is open in E and fplB is a homeomorphism onto its image, for each 

p E P. The set W : =  UpEP{P} • fp(B)  is open in P x E, and r W ~ E, 

r z) := (fp[YB~(B))-l(z) is continuous. Furthermore, the map O: P x B ~ W,  

O(p, y) := (p, f (p ,  y)) is a homeomorphism, with inverse given by o-l(p,  z) = 

(p, r z)). 

Proof: By Lemma 6.1, applied to fp, the set fp(B)  is open in E and fplB a 

homeomorphism onto its image. Define a := 1 - a l i A  -1 II. Let us show openness 

of W and continuity of h. If (p, z) E W, there exists y E B such that  fp(y) = z. 

Let r E]0, r - IlY - xll] be given. There is an open neighbourhood Q of p in P 

such that  f ( q , y )  E f (p , y )  +A.B~c/2(O) for all q E Q, by continuity of f .  Then, 

as a consequence of Lemma 6.1(a), Eqn. (22), 

fq(B~(y)) D_ f(q,  y) + A.Ba~(O) D f(p,  y) + A.Bas/2(O) = z + A.Ba~/2(O). 
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By the preceding, Q x (z + A.Ba~/2(O)) c_ W,  whence W is a neighbour- 

hood of (p,z). Furthermore, r  = ( fq) - l (z ' )  E B~(y) = B~(( fp) - l (z ) )  = 

B~(r for all (q,z') in the neighbourhood Q x (z + A.Ba~/2(O)) of (p,z). 

Thus W is open and r is continuous. The assertions concerning 0 follow 

immediately. | 

7. I nve r se  a n d  impl ic i t  f unc t i on  t h e o r e m s  for S C k - m a p s  b e t w e e n  

B a n a c h  spaces  

In this section, we prove an inverse function theorem and an implicit func- 

tion theorem for SCk-maps between Banach spaces over complete valued fields, 

which parallel the classical theorems for continuously Fr6chet differentiable map- 

pings in the real case. 

We begin with an Inverse Function Theorem for mappings strictly differen- 

tiable at a point (cf. also [6, 1.5.1]), strictly differentiable maps, and locally 

uniformly differentiable maps. 

PROPOSITION 7.1: Let (E, [[.[[) be a Banach space over a valued field (K, [.[), 

U C_ E be an open subset, x E U, and f: U ~ E be a mapping which is 

strictly differentiable at x (resp., strictly differentiable, resp., locally uniformly 

differentiable), with A := f ' ( x )  E GL(E).  Let a,b E R be given such that 

0 < a < 1 < b. Then there exists r > 0 such that B :-- Br(x) C_ U and 

(a) aHz - y[[ _< [[A-l . f (z)  - A- l . f ( y )N  <_ bHz - y[[ for all y , z  E B, whence 

f[B is injective in particular; 

(b) f(y) + A.Bos(O) c f(Bs(y)) c_ /(y)  + A.Bbs(O) for aU y ~ B and s E 
]0, r - [[YH], whence, in particular, f ( B )  is an open subset of E; 

(c) the mapping g := (f[~(B))-l:  f ( B )  --* B is strictly differentiable at f ( x )  

(resp., strictly differentiable, resp., uniformly differentiable). 

If  (K, ].]) is an ultrametric field and (E, I[.N) an ultrametric Banach space, then 

r can be chosen such that (c) holds but (a) and (b) may be replaced with: 

(a)' The mapping A -I  o f[B is isometric. 

(b)' For all y E B and s E]0, r], we have f (Bs (y ) )  = f (y )  + A.Bs(O). Thus, if  

A is an isometry, then in fact f (B~(y))  = Ss ( f ( y ) ) .  

Proof Let A := i f (x )  and 

. b - 1  1 - a  
:-- ,a= rf } 



236 H. GL(~CKNER Isr. J. Math. 

Then 1 - c[IA-111 > a, 1 + c[]A-111 < b, and c < 1/][A-l[[. The map f being 

strictly differentiable at x, there exists r > 0 such that  Br(x)  C_ U and 

[[f(z) - f ( y )  - A . (z  - Y)I] < c for all z , y  e Br(x) such that  z r y. 
IIz - yl l  

Thus hypothesis (20) of Lemma 6.1 is satisfied; parts (a), (b), (a)' and (b)' 

directly follow from that  lemma. 

(c) Assume that  f is locally uniformly differentiable, or strictly differentiable. 

Since GL(E) is open in L(E) ,  f ' ( x )  E GL(E), and f'[B is continuous, after 

shrinking r we may assume that  f ' ( B r ( x ) )  C_ GL(E). Inversion in GL(E) being 

continuous, after shrinking r further we may also assume that  IIf'(y)-l[[ _< 

IIA-lhl + 1 for all y e Br(z). 

Assume that f is locally uniformly differentiable. After shrinking r further 

if necessary, we may assume that  f is uniformly differentiable on B := B~(x).  

Abbreviate g := (firs(B)) -1 and define g': f ( B )  ~ L(E)  via g'(y) := f , ( g ( y ) ) - l .  

Given e > 0, due to uniform differentiability of f iB  there exists 5 C]0, r] such 

that  

(26) I I f (w)  - f ( v )  - f ' ( u ) . ( w  - v)ll < ac  
IIw - vii (llA-111 + 1)IIA- l l ]  

for all u ,v ,w  C B such that  I ] v - u  H < 5, I I w - u l l  < 5, and v r w. Set 

5' :-- aS~HA-Ill. Let u ' , v ' , w '  e f ( B )  such that  v' ~ w', ]Iv' - u' N < 5', and 

IIw' - u'll < 5'. Then u := g(u'), v := g(v'), and w := g(w') are elements of B 

such that  v r w, 

Hv - u H < a - l H A - l . f ( v )  - A - l . f ( u ) H  = a - l H A - l . ( v  ' -  u')]] 

< a-i l iA-1H �9 IIv' - u' H < a-l l lA-1Hh'  = 5 

(using part(a)), and similarly I Iw-  ull < 5 and I Iw-  v H < a -1 HA -1 N" II w ' -  v'H. 

Using (26) and part(a), we obtain the following estimates: 

I I g ( w ' )  - g ( v ' )  - V ( u ' ) . ( w '  - v ' ) l l  

IIw' - v ' l l  

IIw - vll ]lw - v - f ' ( u ) - l . ( f ( w )  - f (v ) ) l l  

I1~' - v ' ] l  IIw - vi i  

IIw - vii ]if(w) - f ( v )  - f ' ( u ) . (w  - v)l I 

< N f ' ( u ) - l l l  " I ~ -  ~'lJ IIw - vlJ 
a c  

< (llA-111 + 1). a -1 .  IIA-111 �9 (]lA_l]] + 1)llA_ll I = e. 

Thus g is uniformly differentiable. 
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I f  f is strictly differentiable at x, we see along the preceding lines (holding 

however u := x and u' := f ( x )  fixed now) that  9 := (fl/B(B)) -1 is strictly 

differentiable at f ( x ) ,  where B := B~(x). 

I f  f is strictly differentiable on all of B, because i f (y )  E GL(E)  for all y E B, 

we may apply the preceding proof just as well when x is replaced with y; thus 

g is strictly differentiable at each z = f ( y )  E f ( B ) .  I 

Isometries are encountered frequently in the ultrametric case. If N is a valued 

field and (E, II-]l) a normed N-vector space, we let Iso(E, II.ll) denote the group 

of all bijective linear isometrics of E. If the norm on E is understood, we simply 

write Iso(E). We have: 

LEMMA 7.2: I f  (E, II.I]) is an ultrametric Banach space over an ultrametric 

field K, then Iso(E) is open in GL(E)  = L(E)  x . 

Proof: I fA E L(E)  and IIAI] < 1, then IiAxi] < Iixi] and hence ]l(l+A)xiI = Ilxi] 

for all 0 7 ~ x E E, whence 1 + A is an isometry. Furthermore, using Neumann's 

series we see that 1 + A is invertible, with inverse (1 + A)_I = ~-~.k=0(_l ) o o  kAk. 

Thus 1 + A E Iso(E) for all A E L(E)  such that  IIAII < 1, entailing that  Iso(E) 

is open in GL(E).  I 

Let ]K be a valued field. An S C k - d i f f e o m o r p h i s m  is an invertible SCk-map 

f :  U --* V between open subsets of normed N-vector spaces, such that  f - 1  is 

an SCk-map. 

THEOREM 7.3 (Inverse Function Theorem for SCk-maps): Let E be a Banach 

space over a valued field (K, I.]), k E N U {co}, U C_ E be an open subset, and 

f :  U --* E be an SCk-map.  I l k  > 1, we assume that K is complete. 

Suppose that f ' ( x )  := dr(x, o) E GL(E)  for some x E U. Then there exists 

r > 0 such that B := B~(x) C_ U, the set I ( B )  is open in E, and f i r  (B) is an 

s c  k-diffeomorphism. 

For our inductive proof of the Inverse Function Theorem, we need the Implicit 

Function Theorem, which we formulate as an "Inverse Function Theorem with 

Parameters." 

THEOREM 7.4 (Implicit Function Theorem for SCk-maps): Let (K, I.I) be a 

valued field, k E N U {oe}, Z and F be Banach spaces over K, P C_ Z and 

U C_ F be open subsets, f:  P x U --+ F be an SCk-map,  and (p,x) E P x U 

be a point such that A := ]p = d2f(p, x, .) = df( (p ,x) ,  (0, .)) E GL(F) ;  here 

fp := f (p,  .): U ~ F,  and E := Z x F is equipped with the maximum norm, 
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I](q,Y)]] := max{[[qll, IlYlI} for all q �9 Z, y E F. I l k  > 1, we assume that IN is 

complete. Let a, b E g( be given such that 0 < a < 1 < b. Then there  exists an 

open neighbourhood Q c_ P of p and r > 0 such that B := BrF (x) C_ U and the 

following holds: 

(a) fq(B)  is open in F, for each q �9 Q, and Cq: B -4 fq(B),  r := fq(y) = 

f (q, y) is an SCk-diffeomorphism. 

(b) For all q e Q, y e B,  and s e ] 0 , r  - IlY - xll], we have 

fq(y) + d.Bas(O) C fq(Bs(y))  C_ fq(y) + A.BDs(O). 

(c) W := [-JqeQ({q} x fq(B))  is open in Z • F,  and r  W ~ B,  r  := 

ee l (V)  an SCk-map. Furthermore, the map O: Q x B -~ W,  O(q,y) := 

(q, f (q,  y)) is an SCk-diffeomorphism, with inverse given by 0-1(q,  v) = 

(q,~b(q,v)). 

(d) Q • ( f ( p , x ) + A . B ~ ( O ) )  c W for some 5 > 0. 

In particular, for each q �9 Q there  is a unique element/3(q) �9 B such that 

f (q,  ~(q)) = f (p ,  x),  and the mapping fl: Q -4 B so obtained is of class S C  k. 

I f  (IK, I.]) is ultrametric here and (F, I].n) an ultrametric Banach space, then 

r can be chosen such that (a) - (d)  can be replaced with the following stronger 

assertions; 

(a)'  fq(B)  = f ( p , x )  + A.B~(O) =: V, for each q �9 Q, and Ca: B -~ V, 

Cq(y) := f (q,  y) is an SCk-diffeomorphism. 

(b)'  Cq(B~(y)) = Cq(Y) + A.B~(O) for all q �9 Q, y �9 B and s ~]0, r I. 

(c)' ~b: W := Q x V ---* B, ~b(q,v) := Cql(V) is an SCk-map,  and the map 

O: Q x B -4 Q x V = W,  O(q, y) := (q, f (q,  y)) is an SCk-diffeomorphism, 

with inverse given by O-l(q, v) = (q, r v)). 

Proof  of Theorems 7.3 and 7.4: We proceed in various steps. 

7.5. I f  the Inverse Function Theorem for SCk-mappings is correct for .some 

k E N U {oc}, then also the Implicit Function Theorem holds for SCk-maps.  

In fact, suppose tha t  Z, F ,  P ,  U, (p ,x) ,  E,  0 < a < 1 < b, an SCk-map 

f :  P x U -4 F ,  and A are given as described in Theorem 7.4. Define 

b - 1  1 - a  1 
c : =  min i~-A~i~l, I I A ~  J < ILA-1L~- ~ 

Then  1 - cLIA-111 >_ a and 1 + clIA-1LI <_ b. Since f is strictly differentiable at 

(p,x),  there  exists r > 0 such tha t  BE(p ,x )  = BZ(p)  x BF(x)  C P x U, 

[If(q2,Y2) - f (q l ,Y l )  - f ' (p,x) .(q2 - ql,Y2 - Yl)]] ~ C 
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for all (ql, Yl) ~= (q2, Y2) �9 BE(p, x), and flf~(y)-All < c for all (q, y) �9 B[(p, x), 
since fq(y) = f'(q, y)(O,.) depends continuously on (q, y) (cf. Lemma 3.2 and 

proof of Lemma 2.2). Set Q :-- BZ(p) and B := B~(x). Then f~(y) e GL(F) for 

all q e Q and y e B. In fact, IIA-lf~(y)-li] <_ ]]d-lii[If~(y)-AlI < IiA-1Iic < 1, 

whence A-lf~(y) is invertible and hence so is f~(y). Then 

( 2 7 )  

Iifq(z) - fq(y) - A . ( z -  Y)I] = IIf(q, z) - f(q,y) - f ' (p ,x ) . (O,z -  y)][ < c 

IIz - y l l  I1(O, z - y )  ll - 

for all q C Q and y ~ z ~ B, where c < 1/IIA-111 . Thus Lemma 6.2 applies to 

fIQ• showing that  fq(B) is open in E and Cq := fqifB q(B) a homeomorphism 

onto its image, for each q E Q; the set W := UqeQ{q} • fq(B) is open in P • F 

and hence in Z • F,  and r W --~ B, r  := r is continuous; the map 

0: Q • B --* W, O(q, y) := (q, f(q, y)) is a homeomorphism, with inverse given 

by 0-1(q, z) = (q, r z)). Furthermore, in view of (27), Lemma 6.1 applies to 

fqiB for all q E Q, whence (b) holds. By the SCk-case of the Inverse Function 

Theorem, Cq: B ---* fq(B) is an SCk-diffeomorphism, for all q E Q. Thus (a) 

holds. To complete the proof of (c), note that  the homeomorphism 0: Q • B --~ 

W is an SCk-map, whose differential O'(q, y) at any given point (q, y) C Q z B 

can be interpreted as an upper triangular 2 • 2-block matrix with idz and 

f~(y) on the diagonal, entailing that  O'(q, y) is invertible. Hence, by the Inverse 

Function Theorem for SCk-maps, 0 restricts to an SCk-diffeomorphism (onto 

the image) on some open neighbourhood of (q, y), entailing that  0 -1 is an SC k- 
map on some open neighbourhood of O(q, y). Thus 0 is an SCk-diffeomorphism. 

Since O-l(q,z) = (q,r z)) for all (q, z) E W, we readily deduce that  ~b is an 

SCk-map, thus completing the proof of (c). 

(d) is easily established: we set (~ := ar/2. After shrinking Q, we may assume 

that  ]]f(q, x ) - f ( p ,  x)II < 5 for all q E Q. Then, using (b) with y := x and s := r, 

we see that  {q} • fq(B) D {q} • (fq(X) + A.Bar(O)) ~_ {q} • (fp(X) + A.B~(O)), 
for all q C Q. Thus (d) holds. The assertion concerning ~ is then obvious. 

In the special ease where K is an ultrametric field and F an ultrametric 

Banach space, we establish (a)-(c) as just described, choosing however Q so 

small that  [If(q,x)-f(p,x)][ < r for all q E Q. Then fq(B) = fq(y)+A.Br(O) = 
fv(Y) + A.Br(O) =: V for all q C Q, and hence W = Q • V. In fact, in view 

of (27), we can apply Lemma 6.1(b) to the map fqiB, and then use that  B is 

an additive subgroup of F.  Furthermore, again by Lemma 6.1(b), fq(Bs(y)) = 
fq(y) + A.Bs(O) for all q C Q, y �9 B, and s �9 r]. Thus (a)'-(c)' hold. 

7.6. Suppose that the assertion of the Inverse Function Theorem for SC k-maps 
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is valid for all k E N. Then it is also valid for k = co. 

In fact, let E, U, x C U, and an S C ~ - m a p  f: U --* E be given as described 

in Theorem 7.3. By the SCl-version of Theorem 7.3, we find r > 0 such that  

B := Br(x)  C_ U, f ( B )  is open in E and such that  f i t  (B) is an invertible S C  1- 

map, with inverse g := (fi~(B))_l: f ( B )  --* B of class S C  1. Then g is of 

class S C  ~ .  In fact, let k E N. Given any y' E f ( B ) ,  set y := g(y') C B. 

Then f ' ( y )  is invertible and thus, by the SCk-case of Theorem 7.3, there exists 

a neighbourhood V C_ B of y such that  (fifv(V)) -1 = giY(u) is of class S C  k, 

where f ( V )  is a neighbourhood of f ( y )  = y'. Thus g is locally S C  k and thus 

an SCk-map. As k E N was arbitrary, g is an SC~-map.  

7.7. In view of 7.5 and 7.6, in order to establish Theorem 7.3 and Theorem 7.4, 

it suffices to establish the SCk-case of Theorem 7.3 for all k E N. This we 

accomplish by induction. For k = 1, the assertion of Theorem 7.3 is covered by 

Proposition 7.1. 

7.8 (INDUCTION STEP). Suppose that  2 < k C N is given, and suppose that  

the SCk- l -case  of the Inverse Function Theorem holds. Let E, U, x and an 

SCk-map f: U --~ E be as described in Theorem 7.3. Let r > 0 and B := Br(x) 

be as described in the SCk-l-case of the theorem. Thus f ( B )  is open in E and 

fifB (B) is an invertible SCk-map,  whose inverse g := (fi~(B)) -1 is a n  SC k- l -  

map. After replacing f with f iB,  we may assume without loss of generality that  

U = B. Set V := f (U) .  Since g: V--+ U is an SCk-l -map,  it is clear that  

g[l]: V[1] ~ E is S C  k-1 on the open subset {(y, z, t) C V[ll: t ~ 0} of V [1]. Thus 

gill will be an SCk- l -map (and thus g an SCk-map) if we can show that,  for 

every (Yo, Zo) E V x E, the mapping gill is S C  k-1 on some open neighbourhood 

of (Yo, zo, 0) in V [1]. To this end, we observe first that  f o g  = idy and the Chain 

Rule entail that  f[1](g(y), g[1](y, z, t), t) -- z for all (y, z, t) E Y [1]. There are 

open neighbourhoods W1 C_ E of g(Yo), W2 C E of g[1](yo, zo,O), and W3 C_ ]K 

of 0 such that  W1 x W2 x W3 C_ U[1]. Next, we find an open neighbourhood 

P = P1 • x P3 C Y [1] of (yo, zo, 0) such that  g(P1) C_ W~, g[1](p) C_ W2, and 

P3 C_ Wa. By the preceding, the SCk-2-map ~ := g[lliw2: p _~ W2 satisfies 

(28) h((y, z, t), fl(y, z, t)) = 0 for all (y, z, t) �9 P, 

where h: P x W2 -+ E is the SCk- l -map h ( ( y , z , t ) , w )  := f[1](g(y),w,t)  - z. 

Since h((yo, z0, 0), w) = f ' (g(yo)) .w - zo is afne-I inear  in w, the differential 

of h with respect to the w-variable satisfies A := d2h((yo, zo, 0), ~(Y0, zo, 0); .) = 

f ' (g(Yo)) �9 GL(E). Since fl is a continuous solution to the equation (28), we 

deduce from the sCk- l -case  of the Implicit Function Theorem 7.4 (which holds 



Vol. 155, 2006 IMPLICIT FUNCTIONS 241 

in view of the induction hypothesis and 7.5) that  /3 is SC k-1 on some open 

neighbourhood of (Yo, z0, 0), as we set out to show. This completes the proof of 

Theorems 7.3 and 7.4. I 

Remark 7.9: If k > 1, in the preceding induction step we encounter a map 

t3 defined o n P  C_ V [1] C E[1]. In order that  E [1} - - E x E x K b e a B a n a c h  

space (so that  the implicit function theorem can be applied), we need that  K 

is complete. 

8. Ultrametric implicit func t ion  t h e o r e m  

We are now in the position to prove a generalized implicit function theorem 

for mappings from open subsets of metrizable topological vector spaces over 

complete ultrametric fields to Banach spaces over such fields. 

THEOREM 8.1 (Ultrametric Implicit Function Theorem): Let (K, I.I) be a com- 

plete ultrametric field, k C N U {oc}, Z be a metrizable topological K-vector 

space, and E be a Banach space over K. Let P C_ Z and U C_ E be open subsets, 

and f :  P x U ~ E be a map. We assume that at least one of the following 

conditions is satisfied: 

(i) K is locally compact, E is finite-dimensional, and f is of class C~. 

Or: 

(ii) f is of class C~ +1. 

We abbreviate fq := f(q,  o): U ~ E for q E P. Suppose that (p,x) E P x U 

is given such that A :-- f~(x) :-= d2f (p ,x , . )  := df((p,x) ,(O, .))  e GL(E). 

Let a,b C R be given such that 0 < a < 1 < b. Then there exists an open 

neighbourhood Q c_ P of p and r > 0 such that B := Br(x) C U and the 

following holds: 

(a) fq(B) is open in E, for each q �9 Q, and Cq: B ~ fq(B),  Cq(y) :-- fq(y) = 

f (q, y) is an SCk-diffeomorphism. 

(b) For a11 q �9 Q, y �9 B, and s �9 r - [[y - x[]], we have 

fq(y) + A.Bas(O) C_ fq(Ss(y))  C_ fq(y) + A.Bbs(O). 

(c) W := UqeQ({q} x fq(B)) is open in Z x E, and the map r W ~ B, 

~p(q,v) := Cql(v) is C k. Furthermore, the map O: Q x B ~ W,  O(q,y) := 

( q , f ( q, y ) ) is a Ck-diffeomorphism, with inverse O- l ( q , v) = ( q , r v)). 

(d) Q x (fp(X) + A.B~(O)) c_ W for some ~ > O. 

In particular, for each q �9 Q there is a unique element/3(q) �9 B such that 

f(q,/3(q)) = f(p,  x), and the mapping/3: Q ~ B so obtained is of class C k. 
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I :  (E, II.II) is a n  ultrametric Banach space here, then Q and r can be chosen 
such that (a)-(d) can he replaced with the following stronger assertions: 

(a)' fq(B) = f (p ,x )  + A.Br(O) =: V, for each q E Q, and Cq: B -+ V, 

Cq(y) := f(q,  y) is an SCk-diffeomorphism. 

(b)' fq(Bs(y)) = fq(y) + A.Bs(O) for 311 q e Q, y �9 B and s �9 r]. 

(c)' The mapping r Q x V -+ B, r  := Cql(V) is C~. Furthermore, 

0: Q x B --+ Q x V, 0(q, y) := (q, f(q,  y)) is a C~-diffeomorphism, with 

inverse given by O-l(q, v) = (q, ~b(q, v)). 

Proof: Define 

. { b - 1  l - a }  1 
c := mm i~--:gll , i~4--fi I < I[A_ll------~, where A := fp(X). 

Then 1-cLIA -1 ]1 > a and l+c[[A -1 ]1 < b. In the situation of (i), let e l , . . . ,  en be 

a basis of E. The mappings P x U -+ E, (q, y) ~ d2f(q, y, ei) being continuous 

for i = 1 , . . . ,  n, also the map 

(29) P x U --* L(E),  (q,y) H f~(y) = d2f(q ,y , . )  

is continuous. In the situation of (ii), the map in (29) is continuous as well, by 

Lemma 3.5. In either case, since GL(E) is open in L(E) and fp(X) E GL(E),  

after replacing P and U with smaller open neighbourhoods of p and x, re- 

spectively, we may assume that fq(y) E GL(E) for all (q,y) C P x U, and 

[[fq(y) - f~(x)[L < c/2. Using Lemma 4.5 (resp., Lemma 3.5), we find an open 

neighbourhood Q c_ P of p and r > 0 such that B := B~(x) C_ U and 

Ilfq(Z) - fq(y) - fq(x).(z - y)LI c 
(30) LIz - yll < 

for all y ~ z E B. As a consequence, 

Ilia(z) - h ( y )  - g ( z ) . ( z  - y)11 
IIz-y lI  

< I[fq(Z) - fq(y) - fq(x).(z - y)ll 
IIz - yll + Tlf~(x) - f~(x)11 <_ c 

for all q E Q and z ~ y E B, entailing that 

{ Ilfq(z) - fq(y) - g(x).(z - y)ll } 1 
(31) II z yll : q e Q, z # y e B_  <_ c < IIA_ll------~. s u p  

Thus Lemma 6.2 applies to flQ• whence fq(B) is open in E and Cq := fa@ (B) 

a homeomorphism onto its image, for each q e Q; the set W := UqeQ{q} x fq(B) 
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is open in P x E and thus in Z x E, and r W ~ B, r  := r is 

continuous; the map 0: Q x B ~ W, 0(q, y) := (q, f (q,  y)) is a homeomorphism, 

with inverse given by O-l(q, z) = (q, r z)). 

Furthermore, in view of (31), Lemma 6.1 applies to fq[B, for all q E Q, 

showing that  (b) holds. By the Inverse Function Theorem for SCk-maps, the 

map Cq: B ~ fq(B) is an SCk-diffeomorphism, for all q E Q. Thus (a) holds. 

(d) is easily established: we set (~ := ar/2.  After shrinking Q, we may assume 

[[A-l ( f (q ,x)  - f(p,x))][ </~ for all q E Q. Then, using (b) with y := x and 

s := r, we get {q} • fq(B) D_ {q} x (fq(x)+A.Bar(O)) D_ {q} • (fp(x)+A.B~(O)), 

for all q E Q. Thus (d) holds. 

To see that  the continuous map r is of class C~ (which will entail the validity 

of (c)), in view of Proposition 1.15, it suffices to show that,  for all smooth 

maps c: K k+l ~ W, the composition r o c: K k+l ~ E is of class C~. Since 

W C_ Q x E, we have c - (Cl,C2) with smooth mappings c1: K k+l ~ Q c_ Z, 

c2: K k+l ~ E. Define h: K k+l • B ---* V, h(t ,y)  := f (c l ( t ) ,y ) .  Then h is a 

Ck-map in the situation of (i) and hence S C  k (Remark 5.4). In the situation 

of (ii), h is of class C k+l and hence S C  k (see Remark 5.3). Given t C K k+l, 

abbreviate ht := h(t, .): B ~ E; by the above, ht has open image and is a 

homeomorphism onto its image. Since h~(y) = d2f(cl(t) ,  y , .)  C GL(E) for all 

(t, y) C K k+l • B, we deduce from the Implicit Function Theorem for SCk-maps 

(Theorem 7.4) that  n: W --* B, n(t, z) := h t l ( z )  is an SCk-map and hence of 

class C k. Now r (t), c2 (t)) = n(t, c2 (t)) for all t �9 K k+l shows that  r o c is of 

class C~, as required. Thus r is C~. 

If E is an ultrametric Banach space, we establish (a)-(c) as just described, 

choosing however Q so small that  [IA- l ( f (q ,x)  - f(p,x))[[ < r for all q �9 Q 

(we might actually replace c/2 with c in (30) now). Then fq(B) = fq(y) + 
A.Br(O) = fp(y) + A.Br(O) =: Y for all q �9 Q (by Lemma 6.1(b), applied as at 

the end of 7.5), and hence W = Q x V. Furthermore, again by Lemma 6.1(b), 

fq(Bs(y))  = fq(y) + A.Bs(O) for all q �9 Q, y �9 B, and s �9 r]. Thus (a)'-(c)' 

hold. | 

Remark 8.2: Three cases described in the table given in the introduction still 

remain to be discussed. 

(a) Suppose we retain the hypotheses of Theorem 8.1, with k = 1, except that  

we let Z be an arbitrary topological K-vector space now (which need not 

be metrizable). Suppose we are in the situation of (i). Then the proof of 

Theorem 8.1 shows that  the following weakened conclusions of the theorem 

remain valid: (a), (b) and (d) will hold unchanged; r in (c) and j3 will be 
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continuous; 0 in (c) will be a homeomorphism (likewise for (a)'-(e)'). 

(b) Suppose we retain the hypotheses of Theorem 8.1, with k = 1, except that  

we let N be an arbitrary valued field and Z be an arbitrary topological 

N-vector space. Suppose we are in the situation of (ii). Then the proof of 

Theorem 8.1 shows that  the following weakened conclusions remain valid: 

(a), (b) and (d) will hold unchanged; r in (c) and/3 will be continuous; 0 

in (e) will be a homeomorphism. 

(c) Suppose we retain the hypotheses of Theorem 8.1, with k = 1, except 

that  we let N be a subfield of R now, equipped with the absolute value ob- 

tained by restricting the usual absolute value on IR. Suppose we are in the 

situation of (ii). Then (a)-(d) and their proof remain valid verbatim, and 

/3 is C 1. In fact, Proposition 1.15 remains valid when IR is replaced with 

arbitrary subfields of IR (the proof given in [2] applies without changes). 

9. App l i ca t i ons  

In this section, we sketch how our results can be used to prove the following: 

1. Smoothness of inversion in diffeomorphism groups over local fields. 

2. Existence of stable manifolds for dynamical systems over ultrametric fields, 

and their smooth dependence on parameters. 4 

We concentrate entirely on those aspects of the proofs which illustrate our 

current results. Full proofs (and more details) can be found in [16] and [18], 

respectively. 

SMOOTHNESS OF INVERSION IN DIFFEOMORPHISM GROUPS. Let M be a finite- 

dimensional, paracompact smooth manifold over a local field N, with valuation 

ring (D. Let Diff(M) be the group of all C~-diffeomorphisms of M. Then M is 

a disjoint union M = L[iex Bi of balls, i.e., open subsets Bi C M diffeomorphic 

to (}d, where d is the dimension of the modelling space of M. In [16], the Lie 

group structure on Diff(M) is constructed as follows: First, each Diff(Bi) is 

made a Lie group. Then, the weak direct product 

II2elDiff(Bi) := 

{("[i)ieI E Hie, Diff(Bi): "Yi = idB~ for all but finitely many i} 

is given its natural Lie group structure. Here I-I*ei Diff(Bi) can be identified 

with a subgroup of Diff(M) in an apparent way. In a third step, one verifies 

4 The construction of pseudo-stable manifolds is much more complicated; it re- 
quires specialized implicit function theorems for sequence spaces. The interested 
reader is referred to [19]. 
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that  Diff(M) can be given a Lie group structure making [ I ie i  Diff(Bi) an open 

subgroup. 

The results of the present article enter into the first step. To explain their use, 

we may therefore assume now that  M = O d. Then P := Diff(M) is an open 

subset of the metrizable locally convex space C ~ ( M ,  Kd),  equipped with the 

initial topology with respect to the maps C a ( M ,  K d) ~ C ( M  [k], Kd), '7 H '7[k] 

for k E N0, where the spaces on the right hand side are given the topology of 

compact convergence (see [16, Prop. 13.2]). The inclusion map 

i: P ---+ C~176  Kd), "7 ~---~ "7 

being smooth, the exponential law [16, Prop. 12.2(a)] ensures that  also 

f :  P • M -~ E d, f('7, x) := i ^ ( % x )  := i( '7)(x) = "7(x) 

is smooth, using that  M is finite-dimensional. Note that  f~ := f('7, .) -- '7 for 

each '7 E P. Hence f~ (x )  = "7'(x) E GL(K d) for each x E M in particular. Thus 

Theorem 8.1(c) p entails that  the map 

g: P x M ---* M,  g('7, x) := ( f~)- i (x)  = '7-1(x) 

is smooth. Using the other direction of the exponential law ([16, La. 12.1(a)]), 

we deduce that  the map 

Diff(M) -+ C~ Kd),  "7 ~-~ gV('7) := g(%.) = '7-1 

is smooth. But this is the inversion map of the group Diff(M). 

EXISTENCE AND PARAMETER-DEPENDENCE OF STABLE MANIFOLDS. We now 

describe how Irwin's method can be used to construct stable manifolds around 

hyperbolic fixed points of dynamical systems over ultrametric fields. The 

method applies to all of the S C  k-, smooth, and analytic cases (see[18]); for 

simplicity, we restrict attention to the smooth case here. 

Throughout the remainder of this section, E is an ultrametric Banach space 

over a complete ultrametric field (K, [.[), and a E]0, 1]. 

Definition 9.1: A (bicontinuous) linear automorphism a E GL(E) is called a- 

h y p e r b o l i c  if E = E 1 0 E 2  for certain a-invaxiant closed vector subspaces El ,  E2; 

[[Xl -]- X21[ ---- max{][Xl[[, [[x2][} for all x I E E1 and x2 E E2 

holds for an ultrametric norm ][.[[ on E equivalent to the original norm; and 

= - 1  w i t h  I1 111 < a a n d  I1  111-1 > a.  
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Remark 9.2: If K is a local field here and dim•(E) < ec, then a is a-hyperbolic 

if and only if a ~ ]A[ for each eigenvalue A �9 K of a | id~ �9 GL(E | K), 

where K is an algebraic closure of K. 

Throughout the following, let a �9 GL(E) be a-hyperbolic, say E = E1 G E2 

with E1 and E2 as in Definition 9.1. Let r > 0 and f :  U ~ E be a smooth 

map on U := BE(0) = U1 x/-/2, where Uj := B Ej (0), such that  f(0) = 0 and 

if(0) = a. We define the a -s tab le  set  of  f via 

Ws,a := {z �9 U: fn(z) defined for all n �9 t%,a-=llf~(z)ll < r&zfn(z) = o(a~)}. 

To emphasize f ,  we also write Ws,a(f) := Ws,a. Clearly f(Ws,a) C_ Ws,,~. The 

goal is to see that  W~,a is a submanifold of E. Note that  if z �9 W~,~, then the 

orbit w := (fn(z))neNo is an element of the Banach sequence space 

S~(E) := {z = (zn)~eNo �9 EN~ Zn = o(an)} 

with norm Ilzlla := ma~{a-n[[z~[[: n �9 No}. Let /4  := {z �9 S~(E): Ilzll~ < r} 

and f := f - a. Since f is strictly differentiable, after shrinking r we may 

assume that  f is (globally) Lipschitz continuous, with arbitrarily small Lipschitz 

constant Lip(f)  := sup{Ill(z2) - f(zl)tl" ]]z2 -z l ] ] -1 :  zl # z2 �9 U}. We require 

that  

(32) Lip(f)  < min{1, [[a21[[-1}. 

THEOREM 9.3 (Ultrametric Stable Manifold Theorem): Ws,a is the graph of a 
smooth map r U1 --~ U2 such that r = 0 and r = 0. Thus W s ,  a is a 

smooth submanifold o[ E which is tangent to the a-stable subspace E1 at O. 

Sketch ofproo~ Elements of S~ (E) will be written in the form z = (zn)neNo = 

(xn,Y~)neNo now, with x~ E El ,  yn E E2. In terms of components, f = (f l , f2) 
and f = (f-l, f2). We define a map g:/4 -~ S~(E) via 

f (0, a21(yl - f2(z0))) if n = 0; 
g(z)n := [(f1(Zn_1),a21(y~+ 1 § f2(Zn))) i f n  _> 1. 

Then g(0) = 0. It can be shown (with considerable effort) that  g is smooth. 

(32) implies that  g is Lipsehitz continuous, with Lip(g) < 1, whence IIg'(z)[[ < 1 

for each z E/4. Thus Lemma 6.1(b) (and the proof of Lemma 7.2) entail that  

G: idu -g :  b / ~  b/ 
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is an isometry and a C~-diffeomorphism. Then 

W: U1 ~ ~ ,  w(x)  :-- G - I ( ( x , 0 ) ,  (0,0) ,  ( 0 , 0 ) , . . . )  

is a smooth map such that (idu - g ) ( w ( x ) )  = G(w(x) )  = ((x, 0), (0, 0) , . . . )  for 

all x �9 U1 and thus 

(33) w(x) = ((x, 0), (0, 0) , . . . )  + g(w(x) ) .  

Comparing the O-th component of both sides of (33), we see that 

w(x)o = (x, 0 ) +  (0,ff2-1(pr2(w(x)l) - •(w(x)o))),  
Y 

=:r 

where pr 2 : E1 | E2 ~ E2 is the projection. Then r U1 ~ U2 is smooth, and 

w(x)o = (x, r Comparing also the other components of both sides of (33), 

it can be shown that w(x)  is the orbit of (x, r -- w(z)0, and (x, r E 

Ws,a. Conversely, given z = (zn)neN E Ws,a it is easily checked that (33) holds 

with z in place of w(x), whence G(z) = ((z, 0), (0, 0 ) , . . . )  =- G(w(x) )  and thus 

z = w(x) .  Hence W~,a is the graph of r See [18] for details, and the proof of 

r = o. 

S m o o t h  d e p e n d e n c e  of  Ws,a(f)  on t h e  non - l i nea r i t y  f .  

9.4. Let Z be a metrizable topological K-vector space, P C_ Z be open and 

f:  P x V ~ E be a smooth map such tl~at f(p,O) = 0 and fp(0) = a (as 
above), for each p �9 P.  Set f (p,  x) := f (p ,  x) - a(x).  Lemma 3.5 ensures that, 

after shrinking r and passing to a neighbourhood of a given point in P,  we 

can assume that Lip(fp) < min{1, Ila211[ -1} for each p. Repeating the proof 
of Theorem 9.3, we obtain functions g: P x/.4 -~ Sa(E)  and G: P x /4  --~ L/ 

depending now also on the parameter p; as shown in [18], g (and hence G) is 

smooth. Now our Inverse Function Theorem with Parameters (Theorem 8.1(c)) 

shows that w: P x U1 --~ ~,  w(p,x )  := Gpl  ((x, 0), (0, 0), . . .) is smooth, and 

hence so is r P • U1 -~/]2 with w(p, X)o = (x, r x)). Thus 

Ws,a(fp) = graph(r for each p E P, 

for a smooth map r P • U1 --*/]2. 

9.5. If K is a local field and dimK(E) < c~, then 

P := { f  E Z: Lip(f)  < min{1, [[0~21[[--1}} 



248 H. G L O C K N E R  Isr. J. Math.  

is an open 0-neighbourhood in the metrizable locally convex space 

Z := {]  e C~(U, E): ](0) = 0 and j~(0) = 0}. 

The evaluation map C~ x U --* E, (%x) H ~/(x) being smooth [16, 

Prop. 11.1], also f: P x U --* E, f ( ] ,  x) := a(x) + ](x) is smooth. Applying 9.4 

to this map f and using the exponential law [16, La. 12.1(a)], we deduce: 

PROPOSITION 9.6: In the situation of 9.5, the map 

C~176 D_ P -~ C~(U1,E:),  ] ~ r  

taking ] E P to the smooth map r with graph(C]) = Ws,a(a + ]) is smooth. 

A p p e n d i x :  F C k - m a p s  vs. s C k - m a p s  in t h e  real  case 

THEOREM A.7: Let E be a normed vector space over N, F be a real locally 

convex space, U C_ E be open, f :  U --* F be a map, and k E No U {co}. If  f is 

FC k, then f is SC k. 

Proof: We may assume that  k E N0. The proof is by induction. The case 

k -- 0 is trivial, and the case k = 1 is a standard fact (see [6, 2.3.3], cf. also 

[8, Thm. 3.8.1]). 
Induction step. Suppose that  k > 2, and suppose that  every FCk- l -map is 

SC k-1. Let f :  E _D U--* F be an FCk-map. Then f is SC k-1 and hence 

SC 1 in particular. Then, f being SC k-~, so is f[1] on {(x,y, t)  C U[~]: t r 0}. 

It therefore only remains to show that,  for every xo E U and Y0 E E, the 

map f[1] is SC k-1 on some open neighbourhood of (xo, Yo, 0). There is r > 0 

such that  S2r(Xo) C_ U. Choose 5 E]0,r[ such that  5 < r/(2([[yo[[ + 1)). Then 

V := Br(xo) x Bl(yo)X]-5, 5[C_ U [1], and we have 

/0 f[1] (x, y, t) = df(x + sty, y)ds 

(34)  r 1 

= ]o h((x, y, t), s)ds for all (x, y, t) e V, 

where h: Vx]-25,25[--* F, h((x,y, t ) ,s)  := df(x + sty, y) is an FCk-Lmap.  In 

view of (34), we inductively deduce from [9, 8.11.2] that  fill Iv is an FCk- l -map ,  

if F is a Banach space. If, more generally, F is a complete locally convex space, 

then F = lim Fi is a projective limit in the category of locally convex spaces 
4------ 
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of some projective system of Banach spaces, and thus L(H,  F)  = li+___m L(H,  Fi) 

(which again is a complete locally convex space), for every normed space H.  

A simple inductive argument now shows that  a map g from an open subset of 

a normed space to a projective limit F -- ~ Fi is an FCk-map if and only if 

7ri o g is F C  k for each i, where 7ri: F -~ Fi are the limit maps. In the situation 

we are interested in, 7ri o f[1]lv = (Tri o f)[1][v maps into a Banach space and 

hence is an F C k - l - m a p ,  by what has already been shown, whence f[1][y is 

an F C k - l - m a p  to the projective limit F.  In the general case, when F is not 

necessarily complete, the preceding shows that  f[ll[y is F C  k-1 as a mapping 

into the completion F of F.  Since (f[1])'(x) = d(f[ll)(x,  .) for x e Y actually is 

a map into F (not only into F),  and likewise for the higher order differentials, 

we deduce that  f[1]lv is F C  k-1 as a map into F also in the fully general case. 

Now f[1]lv being an FC~:-l-map, it is an s c k - L m a p ,  by induction. Thus f 

is S C  1 with f[1] an S C k - L m a p ,  and hence f is S C  k. | 

The author does not know whether, conversely, every SCk-map is F C  k. For 
k = 1, this is well-known [6, 2.3.3], but the generalization to higher k does not 
seem to be clear. 
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