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ABSTRACT 

Th i s  is t he  first par t  of a series of  art icles where  we are going to develop 

theory  of va lua t ions  on mani fo lds  general iz ing t he  classical theory  of con- 

t i nuous  va lua t ions  on convex subse t s  of  an  affine space.  In th i s  art icle 

we still work only wi th  l inear spaces.  We in t roduce  a space  of s m o o t h  

(non- t rans la t ion  invariant)  va lua t ions  on a l inear space  V. We present  

th ree  descr ip t ions  of th i s  space.  We descr ibe  the  canonica l  mul t ipl ica-  

t ive s t ruc tu re  on th is  space  general iz ing t he  resul ts  f rom [4] ob ta ined  for 

po lynomia l  va luat ions .  

O. I n t r o d u c t i o n  

This is the first part  of a series of articles where we are going to develop theory of 

valuations on manifolds generalizing the classical theory of continuous valuations 

on convex subsets of an affine space. In this article we still work only with 

linear spaces. In the subsequent parts of this series we are going to generalize 

constructions of this article to arbitrary smooth manifolds [5], [6]. The case of 

a linear space considered here will be useful for the general case for technical 

reasons. 

Let us recall some basic definitions. Let V be a finite dimensional real vector 

space, n = dim V. Let K:(V) denote the class of all convex compact subsets of 

V. Equipped with the Hausdorff metric, the space t : (V) is a locally compact 

space. 
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0.1.1 Definition: (a) A function r ~ C is called a valuation if for any 

K1,/42 E K:(V) such that their union is also convex one has 

r U/42) = r + r - r N/42). 

(b) A valuation r is called continuous if it is continuous with respect to the 

Hausdorff metric on/C(V). 

For the classical theory of valuations we refer to the surveys McMullen- 

Schneider [16] and McMullen [15]. For the general background from convexity 

we refer to Schneider [17]. 

In this article we introduce the space SV(V) of smooth valuations on V (see 

Definition 2.1.2). SV(V) is a Fr@chet space. We present three different descrip- 

tions of this space. We describe a canonical structure of commutative associative 

topological algebra with unit (where the unit is the Euler characteristic). 

Moreover, the algebra SV(V) has a canonical filtration by closed subspaces 

s v ( v )  = Wo w l  . . .  w n  

compatible with the product, namely Wi �9 Wj C Wi+j. Note that the subspace 

Wn coincides with the space of smooth densities on V. Moreover, in Theorem 

4.1.3 we prove that there exists a canonical isomorphism of the associated graded 

algebra grwSY(V) := ~{~0 Wi/Wi+l and the algebra Ca(V, Valsm(Y)) of 

infinitely smooth functions on V with values in the algebra Valsm(V) of smooth 

translation invariant valuations. 

Note also that the space SV(V) contains polynomial smooth valuations 

(studied by the author in [4]) as a dense subspace. Thus the above results 

generalize results on polynomial valuations from [4]. 

The paper is organized as follows. In Section 1 we recall some necessary facts 

from representation theory (Subsection 1.1) and valuation theory (Subsection 

1.2). 
In Section 2 we introduce the main object of this article, namely the space of 

smooth valuations (Definition 2.1.2). 

In Section 3 we introduce the filtration Wo on SV(V). We study its basic 

properties. In particular, we show in Proposition 3.1.5 the isomorphism of 

Fr@chet spaces 

grwSY(Y) ~- Ca(V, YaW~(Y)). 

This isomorphism is the first description of the space of smooth valuations. In 

Corollary 3.1.7 we obtain the second one. 
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In Section 4 we introduce and study the canonical multiplicative structure on 

sy(y). 
In Section 5 we recall the construction of continuous valuations using in- 

tegration with respect to the normal cycle. Then we show in Theorem 5.2.2 

that  all smooth valuations are obtained in this way. This is the third promised 

description of smooth valuations. 

ACKNOWLEDGEMENTS: I am grateful to J. Bernstein for numerous very useful 

discussions. I express my gratitude to J. Fu for very fruitful conversations, and in 

particular for his explanations of the construction of valuations using integration 

over the normal cycle. I thank V. D. Milman for his interest in this work and 

useful discussions, and B. Mityagin and V. Palamodov for useful discussions. 

1. Background 

In this section we recall some necessary facts from representation theory (Sub- 

section 1.1) and theory of valuations (Subsection 1.2). No result of this section 

is new. 

1.1 SOME REPRESENTATION THEORY. 

1.1.1 Detinition: Let p be a continuous representation of a Lie group G in a 

Fr~chet space F.  A vector ~ C F is called G-smooth if the map g H p(g)~ is an 

infinitely differentiable map from G to F.  

It is well known (see e.g. [18], Section 1.6) that  the subset F 8m of smooth 

vectors is a G-invariant linear subspace dense in F.  Moreover, it has a natural 

topology of a Fr~chet space (which is stronger than the topology induced from 

F),  and the representation of G in F sm is continuous. Moreover, all vectors in 

F 8m are G-smooth. 

Let G be a real reductive group. Assume that  G can be imbedded into the 

group GLN(II~) for some N as a closed subgroup invariant under the transpo- 

sition. Let us fix such an imbedding p: G ~ GLN (R). (In our applications G 

will be either GLn(II() or a direct product of several copies of GLn(~).)  Let us 

introduce a norm i" I on G as follows: 

:= m x{ilp( )ii, iip(g-1)ii} 

where I1" II denotes the usual operator norm in ]I~ N. 
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1.1.2 Definition: Let (Tr, G, F) be a smooth representation of G in a Fr4chet 

space F (namely F sm = F). One says that this representation has m o d e r a t e  

g rowth  if for each continuous semi-norm A on F there exists a continuous 

semi-norm u~ on F and d~ E R such that 

<_ Ilglld .:,(v) 

for all g E G,v 6 F. 

The proof of the next lemma can be found in [18], Lemmas 11.5.1 and 11.5.2. 

1.1.3 LEMMA: (i) If  (Tr, G, H) is a continuous representation of G in a Banach 

space H then (~r, G, H sin) has moderate growth. 

(ii) Let (r, G, V) be a representation of moderate growth. Let W be a dosed 

G-invariant subspace of V. Then W and V / W  have moderate growth. 

The next lemma is obvious. 

1.1.4 LEMMA: Let G1 be a closed reductive subgroup o f a  reductive group G. 

Assume that the image of G1 in GLN(R) under the map p: G r GLN(]~) is 

closed under the transposition. Let (Tr, G, F) have moderate growth. Then the 

restriction of this representation to G1 also has moderate growth. 

Recall that a continuous Fr4chet representation (p, G, .T) is said to have finite 

length  if there exists a finite filtration 

O =  Fo C FI  C " "  C Fm = F 

by G-invariant closed subspaces such that gi/Fi-1 is irreducible, i.e. does not 

have proper closed G-invariant subspaces. 

A Fr4chet representation (p, G, F) of a real reductive group G is called 

admiss ible  if its restriction to a maximal compact subgroup K of G 

contains an isomorphism class of any irreducible representation of K with at 

most finite multiplicity. (Recall that a maximal compact subgroup of GLn(R) 

is the orthogonal group O(n).) 

1.1.5 THEOREM (Casselman-Wallach, [7]): Let G be a real reductive group. 

Let (p, G, F1) and (Tr, G, F2) be smooth representations of moderate growth in 

Fr4chet spaces F1, F2. Assume in addition that F2 is admissible of finite length. 

Then any continuous morphism of G-modules f: F1 ~ F2 has dosed image. 

Let us also recall the classical L. Schwartz kernel theorem. 



VoL 156, 2006 THEORY OF VALUATIONS ON MANIFOLDS, I. LINEAK SPACES 315 

1.1.6 THEOREM (L. Schwartz kernel theorem, [9]): Let X~ and X2 be compact 

smooth manifolds. Let s and s be smooth finite dimensional vector bundles 

over X1 and X2 respectively. Let ~ be a Frdchet space. Let 

B: C~ X 6~176163  ~ 

be a continuous bilinear map. Then there exists a unique continuous linear 

operator 

b: C~176 • X 2 , &  []s ~ G 

such that b(fl | f2) : B(f l ,  f2) for any fi E C~(Xi ,  s i -- 1, 2. 

The proof of the L. Schwartz kernel theorem is based on the next elementary 

and well known lemma which will be used in this article. 

1.1.7 LEMMA: Let X1, X 2 be two smooth manifolds such that X2 is compact. 

Let s and s be smooth finite dimensional vector bundles over X1 and X2 

respectively. Let M E N be an integer. Let G C X1 be a compact subset. 

Then there exists a compact subset G C X1 containing G, an integer N E N, 

and a constant C such that for any f E C~(X1 x X2,gl [] s there exists a 

presentation 
O 0  

f = ~ gi | hi 
i=1 

SUCh that gi E C ~ ( X I , s  hi E C~(X2,  s and 

O 0  

IIg~llc,,,(c)llh~llc,,,(x~) < CIIfllc,,,(r215 
i = 1  

For a Fr~chet space F and a smooth manifold X let us denote by C~(X ,  F) 

the Fr~chet space of infinitely smooth F-valued functions on X with the topology 

of uniform convergence with all derivatives on compact  subsets of X. The next 

proposition is well known but we do not have a reference. 

1.1.8 PROPOSITION: Let G be a real reductive Lie group. Let F1,F2 be con- 

tinuous Fr~chet G-modules. Let ~: F1 ~ F2 be a continuous morphism of 

G-modules. Assume that the assumptions of the Casselman-Wallach theorem 

are satisfied, namely F1 and F2 are smooth and have moderate growth, and F2 

is admissible of finite length. Assume moreover that ~ is surjective. 

Let X be a smooth manifold. Consider the map 

~: c ~ ( x ,  F~) ~ C~176 F2) 



316 S. ALESKER Isr. J. Math. 

de~ned by (~(f))(x) = ~(f(x) ) for any x e X. 
Then ~ is surjective. 

Proof'. First let us prove this proposition under the assumption that  X = ~n. 

Consider the natural action of the group GLn+I(~) on ~n. Then the represen- 

tation of the reductive group G x GLn+I(R) in the spaces C~(X, Fi), i -- 1, 2 
is smooth and of moderate growth. Moreover, Ca(X, F2) is an admissible 

(G x GL~+I (]~))-module of finite length. Hence by the Casselman-Wallach the- 

orem it is enough to show that  ~ has dense image. But since ~ is surjective, the 

image of ~ contains finite linear combinations of elements of the form f | v 

with f C C~(~n),v C F2. Clearly such linear combinations are dense in 

C~(X, F2). 
Let us return to the case of a general manifold X. Let us denote by (gx 

the sheaf of infinitely smooth functions on X. Let us consider the sheaves 

$.i,i = 1,2, on X defined by 

= c a ( u ,  

for any open subset U C X. Then ~ induces a morphism of (.gx-modules (which 

will be also denoted by 4) 

which is obviously defined. Let us show that  ~ is an epimorphism of sheaves. 

Since this statement is local, and all smooth manifolds of given dimension are 

locally diffeomorphic, we may assume again that  X -- ~n. Fix a point x E ~n. 

Let B1 C B2 C F~ be two open balls such that  x E B1 and the closure of 

B1 is contained in B2. Let us fix a function "7 E C ~ ( F  n) such that  ")'IB1 ~ 

1,'71e~\B2 --= 0. Let r E H~ Set r := 7"r Then r extends by zero to a 

section from H~ ~, $.2) = F2. This section will be denoted again by r By the 

previous case there exists X E F1 = H~  n, $'1) such that  ~(X) = r Restricting 

the last identity to B1 we conclude that  ~ is an epimorphism of sheaves. 

For a general X, let us denote K: := Ker~. Thus K: is an (gx-module. It is 

well known that  every (gx-module t3 is acyclic, i.e. Hi(X,K:) = 0 for i > 0 (see 

e.g. [10]). 

We have a short exact sequence of sheaves 

0 --,/C --+ $.1 ~ $.2 --) O. 

From the long exact sequence we get 

H~  ~ H~ ~ HI(X,K:)  = 0. 
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The result is proved. | 

1.1.9 Remark: Recently we were informed by B. Mityagin and V. Palamodov 

that  the following general fact, which is also sufficient for our purposes instead of 

Proposition 1.1.8, is true. Let ~: F1 ~ F2 be a surjective continuous linear map 

of nuclear Fr6chet spaces. Let X be a smooth manifold. Then ~: Ca(X, F1) --+ 

Ca(X, F2) is surjective. 

1.2 SOME VALUATION THEORY. Let us recall a few basic facts from the theory 

of translation invariant continuous valuations. For a real vector space V of finite 

dimension n let us denote by Val(V) the space of translation invariant valuations 

on ]C(V) continuous with respect to the Hausdorff metric on E(V). Equipped 

with the topology of uniform convergence on compact subsets of tZ(V) the space 

Yal(V) becomes a Banach space (see e.g. Lemma A.4 in [4]). 

1.2.1 Delqnition: A valuation r is called homogeneous of degree k (or just k- 

homogeneous) if for every convex compact set K and for every scalar A > 0 

r = Akr 

Let us denote by Valk(V) the space of translation invariant continuous 

valuations homogeneous of degree k. 

1.2.2 THEOREM (McMullen [14]): 

n 

Val(V) = 0 Valk(V), 
k=0 

where n = dim V. 

Note in particular that  the degree of homogeneity is an integer between 0 and 

n = dim V. It is known that  Valo(V) is one-dimensional and is spanned by the 

Euler characteristic X, and Valn(V) is also one-dimensional and is spanned by a 

Lebesgue measure [11]. The space Valn(V) is also denoted by I AV*] (the space 

of complex valued Lebesgue measures on V). One has further decomposition 

with respect to parity: 

Valk(V) = yalekv(v) (~ Yal~dd(y), 

where Val~ v (V) is the subspace of even valuations (r is called even if r  = 

r  for every K E t:(Y)), and Yal~dd(y) is the subspaee of odd valuations 

(r is called odd if r  = - r  for every g E E(V)). The Irreducibility 

Theorem is as follows. 
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1.2.3 THEOREM (Irreducibility Theorem [3]): The natural representation o[ 
the group GL(V) on each space Val~'(V) and Val~dd(v) is irreducible for any 
k=O, 1, . . . ,n.  

In this theorem, by the natural representation one means the action of g E 

GL(V) on r C Val(Y) as (gr  = r  for every K e K:(V). The sub- 

space of smooth valuations with respect to this action in the sense of Definition 

1.1.1 is denoted by Valsm(v). 

1.2.4 Remark: The representation Val(V) of GL(V) is an admissible represen- 
�9 r , e v / o d d  

tation. Indeed, it was show in [2] that  vat k can be GL(V)-equivariantly 
imbedded into the space of continuous sections of a GL(V)-equivariant finite 

dimensional vector bundle $ ev/~ over the projective space P+(V*). Let us 

show that  this representation must be admissible. Let us fix on V* a Euclidean 

metric. Let us fix a point l0 C P(V*). Let H denote the stabilizer of 10 in O(n). 
Then P+(V*) -~ O(n)/H. Let q: O(n) --+ P(V*) be the surjection g ~ g(lo). Let 

: =  q*$ev/odd. Then/2 is an O(n)-equivariant vector bundle over O(n), hence 

s is O(n)-equivariantly trivial. Note that  we have the O(n)-equivariant imbed- 

ding C(P(V*)) r C(O(n),s Hence it is enough to check that  C(O(n),s 
contains each irreducible representation of O(n) with at most finite multiplic- 

ity. This follows from the well known fact that  for any compact group K the 

space of functions C(K) contains each irreducible representation 7r of K with 

multiplicity dim ~r (which is necessarily finite). 

2. T h e  space  of  s m o o t h  va lua t ions  

2.1 SOME DEFINITIONS. Let V be an n-dimensional real vector space. Let us 

denote by CV(V) the space of continuous valuations on V. Equipped with the 

topology of uniform convergence on compact subsets of rE(V), CV(V) becomes 

a Fr~chet space. Let QV(V) denote the space of continuous valuations on V 

which satisfy the following additional property: 

the map given by K ~-+ r + x) is a continuous map K~(V) --* Ca([0, 1] x V). 

Let us call such valuations quas i - smoo th .  

In the space QV(V) we have the natural linear topology defined as follows. 

Fix a compact subset G c V. Define a seminorm on QV(V) 

[[r := sup{Hr + x)[[cn([o,1]• C G}. 

Note that  the seminorm I1" Ha is finite. One easily checks the following claim. 
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2.1.1 CLAIM: Equipped with the topology defined by this sequence of semi- 
norms the space QV(V) is a Prdchet space. 

Note also that  the natural representation of the group Al l (V )  of affine trans- 

formations of V in the space QV(V) is continuous. We will denote by SV(V) 
the subspace of Aff(V)-smooth vectors in QV(V). It is a Fr6chet space. 

2.1.2 Definition: Elements of SV(V) will be called s m o o t h  valuations on V. 

2.2 MAIN EXAMPLES. Let V be a real vector space of dimension n. Let us 

denote by P+(V*) the manifold of oriented lines passing through the origin 

in V*. Let L denote the line bundle over ]?+(V*) such that  its fiber over an 

oriented line I consists of linear functionals on I. Let IwvI denote the line bundle 

of densities over V. Let p: V x P+(V*) --* V be the projection. For any integer 

k, 0 < k < n, we are going to construct a natural map 

k 

Ok: ~ C ~ ( V  x (P+(V*)) j, Iwyl [] L []j) ~ SV(V). 
j=O 

First let us recall some results from [1]. L e t / (  = (K1, K2, . . . ,  Ks) be an s- 

tuple of compact convex subsets of Y. Let r E NU{c~}. For any # C Cr(V, IcOyI) 

consider the function M R#: R~_ ~ C, where ~ _  = { (As, �9 �9 �9 As) I)~j _ 0 for all j }, 

defined by 

(MR#)(A1, . . . ,  As) = # h i �9 
j = l  

2.2.1 THEOREM ([1]): (1) MR# E Cr(IR~_) and M R is a continuous operator 
from cr (v ,  I vl) to 

(2) Assume that  a sequence #(m) converges to tt in C~ (V, [wy [). Let K~ m), Kj, 
j = 1 , . . . ,  s, m C N, be convex compact sets in V, and for every j = 1 , . . . ,  s, 

KJ m) --~ Kj in the Hausdorff metric as m --~ co. Then MRcm)It(m) _, MR # in 
C~ (~+ ). 

Before we define the map Ok let us make some more remarks. Fix s, 0 < s < k. 

Let us fix # E C~(V, Icoyl) and A1, . . .  ,As c /C(V)  being strictly convex with 

smooth boundaries. Let us define 

o, o. ( o --azloit K +  . 
j=l  

Theorem 2.2.1 implies that  O~s(it; A 1 , . . . ,  As) E SV(V). It is clear that  O~ 

is Minkowski additive with respect to each Aj. Namely, say for j = 1, one has 
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Ot~(#; aAI " A~) = aO~(p, " ' �9 �9 ,A~)+bOr~(#;XI~,A2,. .. ,As) 

for a, b > 0. 

Recall tha t  for any A E ~ ( V )  one defines the supporting functional hA(y) := 

supxe A y(x) for any y E V*. Thus hA E C(]P+(V*),L). Moreover, it is well 

known (and easy to see) tha t  AN ~ A in the Hausdorff metric if and only 

if hAN --* hA in C(]P+(V*),L). Also, any section F E C2(p+(V*),L) can 

be presented as a difference F = G - H where F ,H  E C2(IP+(V*),L) are 

supporting functionals of some convex compact sets and max{l[GiI2 , Iigll2} 

cllF[[2 , where a constant c is independent of F.  (Indeed one can choose G = 

F + R �9 hD, H = R .  hD where D is the unit Euclidean ball, and R is a large 

enough constant depending on [[FH2. ) Hence we can uniquely extend O~s to a 

multilinear continuous map (which we will denote by the same letter): 

0:: C~(Y,  [wyl) x (C~(P+(V*) ,L))  ~ --* SV(V) .  

Theorem 2.2.1 implies that  O~s depends continuously on each argument.  By the 

L. Schwartz kernel theorem it follows that  this map gives rise to a continuous 

linear map  

0•: C ~ ( V  x ~+(V*) 8, [wvl [] n ~ )  --* SV(V) .  

Now let us define the map 
k 

Ok := ( ~  (~'i" 
i=0 

3. Fi l trat ions  

Let us define a decreasing filtration on SV(V) .  Set 

d k f 
W, := ~r E S V ( V ) I - ~ r  + x)lt=o = OVk < i , g  E ~ ( Y ) , x  E V ~. 

It  is clear tha t  Wi are Aff(V)-invariant closed subspaces of SV(V) .  Obviously 

a v ( v )  = Wo w1 ... .  

3 . 1 . 1  PROPOSITION: 

Wn+l  = 0. 

Proo~ Let r E Wn+l. We want to show tha t  r vanishes. Let us prove it by 

induction in n = dim V. For n --- 0 the s ta tement  is clear. Let us assume tha t  

the s ta tement  holds for n - 1. Then this implies tha t  r is a simple valuation, i.e. 

it vanishes on convex sets of dimension less than  n. It  is sufficient to show tha t  

r vanishes on polytopes. Since every polytope can be dissected into simplices, it 
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is sufficient to prove that  r vanishes on simplices. Let A be a simplex. Choosing 

an appropriate  coordinate system we may assume tha t  it has the form 

A = {(x l , . . . ,Xn)10 <_ x l  <_...  <_ xn <_ 1}. 

Set f o r l < i < j _ < n ,  

T~,j := 

{ (X l , . . . , x , ) 1 0  <_ xi  <_ xi+l <_"" <_ x j  < 1 and xl = 0 for 1 < i and l > j}.  

For a sequence 0 < j l  < "'" < j l -1  < n, let us denote (as in [14]) 

Tjl := + . . .  + 

First note that  any point z E A has the form z = (zi) i~l ,  where 

(1) zl . . . . .  zjl < Zjl+l . . . . .  zj2 < . . .  <: zjl_l+l . . . . .  zjl <~_ 1, 

and jl = n. 

For a sequence 0 < j l  < " "  < j l -1  < n let us also define 

1 n 
Rj l . . . j l_ I (N)  := {z E ~ Z  n A I z  satisfies (1)}. 

Then since r is a simple valuation one has 

( 1 ) 
(2) 

O<jl<'"<It-l<n zERjl...jI_I(N ) 

Since r E Wn+I,  for any e > 0 there exists N(~) such tha t  for all N > N(e)  
1 and for all z �9 A one has Ir + ~Tjl..4~_a) I < ~ g  -n .  However, it is easy to 

see tha t  t~Z1 n A A I < C N  '~ where C is a constant independent of N.  From 

equation (2) we get an est imate Ir _< C'e where C '  is a constant depending 

on n only. Hence r  = 0. Hence r - 0. | 

3.1.2 PROPOSITION: Wn coincides wi th  the space of  smooth  densities on V.  

Proo~ Obviously smooth densities are contained in Wn. Now let us fix r �9 Wn. 
d ~ Let r  x) = d-V I t=or + x).  Then for a fixed x �9 V, r x) is a translation 

invariant continuous valuation homogeneous of degree n. To check it, fix an 

arbi t rary compact  subset G C V. We have 

r  + x) = t~ - ~-~1 r  x) + o(t k) 
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uniformly on K C G, t E G. Also r x) depends smoothly on x when K is 
fixed. Then r = ~r  ta+x)+o(t n) = tn ~ �9 ~ r  x)+o(tn). Hence 

r x) is translation invariant in K when x is fixed. 

By a result due to Hadwiger [11] r x) must be a Lebesgue measure. Also 

it depends smoothly on x E V. Subtracting from r an appropriate density and 

using the fact that W n + l  ~- 0 by Proposition 3.1.1, we deduce the result. I 

3.1.3 Example: (1) Let us recall the definition of a polynomial  valuat ion 

introduced by Khovanskii and Pukhlikov [13]. A valuation r is called polynomial 

of degree at most d if for any K E E(V) the function V ~ C given by x ~-* 

r  + x) is a polynomial of degree at most d. In [13] it was shown that if r is 

a continuous polynomial valuation of degree d, then for any K1 , . . . ,  Ks C ]C(V) 
the function r  AjKj) is a polynomial in s > 0 of degree at most d + n. It 

follows that r E QV(V). 

(2) Let # be a smooth density. It was shown in [1] that the map 

(K1,. �9 K~; )~1, �9 �9 �9 , /~s )  ~ ~t ~ j  

\j----1 

defines a continuous map /C(V) 8 ~ C~(]~_). It follows that for any fixed 

A1, . . . ,  As c ~(V) s the map 

K~--, 
3 

defines a valuation from QV(V). 

Recall that in Section 2.2 we defined a map 

k 

Ok: ~ C ~ ( V  x P+(V*) i, [wy[ [] L []i) ~ SV(V). 
i = 0  

3.1.4 PROPOSITION: The image of Ok is contained in Wn-k. 

Proo~ Indeed #(rK + x + E j  AjAj) = O((~/r 2 + E j  A2)n) �9 The result follows 

from the construction of Ok. I 

In Corollary 3.1.7 we will prove that in fact the image of Ok coincides with 

Wn-k. Let us denote by Val(TV) the (infinite dimensional) vector bundle 

over V whose fiber over x E V is equal to the space of translation invariant 
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GL(TxV)-smooth valuations on the tangent space TxV. Similarly, we can de- 

fine the vector bundle Valk(TV) of k-homogeneous smooth translation invari- 

ant valuations. Clearly, Coo(V, Valk(TV)) = Coo(V, ValUta(V)) where the last 

space denotes the space of Coo-smooth functions on V with values in the Fr~chet 

space ValUta(V) of k-homogeneous translation invariant smooth valuations. 

Let us define a map 

Ak: Wk ---* C~(V, Yalk(TV) ) 

by Ak (r := [K ~ [x ~ 1 d k -~.-~-~lt=or + x)]]. 

3.1.5 PROPOSITION: (i) Ak: Wk ---* C~176 Valk(TV)) is an epimorphism. 
(ii) KerAk = Wk+l. 
(iii) Wk/Wk+l is isomorphic to Coo(V, Valk(TV)). 

Proof: Clearly (iii) follows from (i) and (ii). Part  (ii) is obvious from the 

definitions. 
d k 

Let us check next that  K H ~h-p~lt=or + x) is a translation invariant 

continuous valuation for any x C V, and it depends smoothly on x. The only 

thing one should check is the translation invariance. Let us denote r  x) := 
1 d k ~. ~ It=or + x). Then for any fixed compact subset G C V we have 

r + x) = t%(K,  x) + o(t 

uniformly in K C G, x E G. Also • (K,x)  depends smoothly on x. Then 

r  + a) + x) = tkr ta + z) + o(t k) = tkr x) + o(tk). This proves the 

translation invariance of the limit. 

It remains to prove surjectivity of Ak. We will need the following lemma. 

3.1.6 LEMMA: The map 

~k := Ak o 0 tn_k.. Coo(V • ]~+(V*) n-k, ]wv] [] L [](n-k)) ---* Coo(V, Valk(TV)) 

is an epimorphism. 

Obviously Proposition 3.1.5(i) follows from Lemma 3.1.6. 

Proof of Lemma 3.1.6: Let us describe -Tk explicitly. Let 

~/= # | hA1 | "'" | hAn_k 

where hA~ is the supporting functional of a set Ai E 1C(V), # E Coo(V, Iwvl). 
Let p = F(y)dy where dy is a Lebesgue measure. Then 

on-k Ix (O~-k?) (K)  = 0)~1 :- :-O~,~-k Io F(y)dy. 
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Hence 

lim 1 0 ~-k (Sk~)(K) = - -  F(y)dy 
r-~+0 r k 0 ~ 1 ' ' .  0 , ~ - k  l0 - ,  g+x+E,  ~,A, 

~-.+o r k 0~1"" OA~-k Io F(x)vol(rK+ AiAi)+o r 2 +  

1 
= lim IoF(x)vol(rg + E s 

~-~+0 r k O)u . ' '  O),~-k 
i 

io oZ(  + = F(x) OAI"'" uAn-k 
i 

This computation shows that  ~k is a morphism of C ~ (V)-modules. Let us 

denote 
F1 := Coo(F+(V*) n-k, I An (V*)I | L~(n-k)) �9 

It is easy to see that  

Coo(V x F+(V*) n-k, Iwvl [] i ~(n-k)) = COO(V, F1). 

Moreover 

where 

(,=.kf)(v) = 6)n-k(f(v)) Vv E V, f �9 F1, 

6.-k: F1 -~ VaZ~m(V) 
t is the restriction of On_ k to the space F1 which coincides with the subspace 

of Coo(V x ]P+(V*) n-k, IWyl [] L [](n-k)) consisting of elements invariant with 

respect to translations to vectors from V. 

The map ~)n-k commutes with the natural action of the group GL(V). Hence 

6) , -k  is onto by Irreducibility Theorem 1.2.3 and Casselman-Wallach Theorem 

1.1.5. Proposition 1.1.8 implies that  Ek is onto as well. Thus Lemma 3.1.6 is 

proved. | 

3.1.7 COROLLARY: The image of the map 

k 

ok: Ocoo(v x ~+(v*) ~, I~vI I~L l~ i )  ~ SV(V) 
i = 0  

is equal to Wn-k. 

Proof'. By Proposition 3.1.4 the image of the map Ok is contained in W,~-k. 

Let us prove the opposite inclusion by the induction in k. For k = 0 this is 
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just Proposition 3.1.2. Let us assume that  Ira(Ok,) = Wn-k, for k' < k. Let 

r C Wn-k. By Proposition 3.1.5 there exists r C Im(Ok) such that  An-k(r = 

An-k(r It follows that  r - r E Wn-k+l. Applying the induction assumption 

to this valuation we obtain the result. I 

3.1.8 COROLLARY: Polynomial valuations from Wk are dense in Wk. 

Polynomial valuations from QV(V) are dense in QV(V). 

Proof: First notice that  the second statement follows from the first one. Indeed 

it is true since W0 = SV(V)  is dense in QV(V).  The first statement follows from 

Corollary 3.1.7 and the obvious fact that  the image under Ok of any element of 

C ~ ( V  • ]?+(V*) ~, ]wyI [] L []~) which is polynomial with respect to translations 

in V, is a polynomial valuation. I 

From this corollary we immediately get 

3.1.9 COROLLARY: Let G be a compact subgroup of GL(V). Then G-invariant 

polynomial valuations are dense in the space of G-invariant quasi-smooth 

valuations. 

Let us now introduce another decreasing filtration on SV(V).  Set 

7i := {r E SV(V)Ir  ) = 0 if d i m K  < i}. 

Clearly SV(V)  = ~o D ~/1 D ...  ~ 7n D %~+1 = 0. 

3.1.10 THEOREM: (i) W1 = ~/1- 

(ii) 3,j+1 C Wj C 7j for any j.  

Proof: (i) First note that  for any j we have Wj C 3,j. This follows from 

Proposition 3.1.2 applied for (j - 1)-dimensional subsets. Let us prove that  

3,1 C W1. Let r C 3'1, i.e. r vanishes on points. Hence for any K E/C(V) the 

function [0, 1] ~ c n ( v )  given by t ~ [x ~ r  vanishes at t = 0. Hence 

r C W1 by the definition of W1. 

(ii) We have proven the second inclusion in (ii). Let us prove the first one, 

namely 7j+1 C Wj. Assume that  this is not true. Then there exists l < j and 

r C 3,j+1MWI such that  r r Wl+l. Set r := Az(r C C~(V,  Val~m(TV)). Then 

r 0 by Proposition 3.1.5(ii). From the construction of Al it follows that  at 

each point x e V one has q~x E Val~m(TxV) n 3,j+1. But the last intersection 

vanishes; for translation invariant valuations this was proved in [4] (see the 

beginning of Section 3 in [4]). Thus we get a contradiction. I 
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4. T h e  m u l t i p l i c a t i v e  s t r u c t u r e  

In this section we construct a canonical multiplicative structure on SV(V).  
SV(V) will become a commutative associative algebra with unit (where the 

unit is the Euler characteristic). 

First of all we will construct for any linear spaces X and Y the exterior 

product 

aV(X)  • SV(Y)  --~ QV(X  • r ) ,  

which is a bilinear continuous map. 

First let us introduce some notation. Let us denote for brevity 

dim X 

Fx := ( ~  C ~ ( X  • ~+(X*)  k, Iwxl [] L:~k), 
k=O 

dim Y 

Fy := ( ~  C ~ ( Y  x p + ( Z , ) l  I~YI [ ]  �9 

l=O 

First, for any k _< d imX,  l _< d imY let us define a multilinear map 

M: C~(X,  Iwxl) x C~(I~+(X*),L) k x C~(Y, IwyD x C~(P+(Y*),L) l 

Q v ( x  • Y). 

Let 

# e C~~ Iwxl), ~ e C~ IWyI),~i e C~(IP+(X*), L),~j e C~(]P+(Y*), L) 

where i -- 1 , . . . ,  k, j  = 1, . . . ,  I. First let us assume that  ~i = has is a supporting 

functional of a convex set Ai E K:(X), and ~?j = hs~ is a supporting functional 

of Bj C ~(Y) .  Let us define 

M(/ . t ,  ~ 1 , . . . ,  ~k;/2, ? ~ 1 , . . . ,  ~l)(K) = 

O)~l...O)~k OO1...OotlO(#N,) g + ~-~ )~i(Ai x O) + Z Oj(O x Bj) . 
i----1 j = l  

It is clear that  the right hand side is Minkowski additive with respect to Ai and 

Bj. Hence using the same argument as in the construction of O~ (in Section 2.2) 

and using Theorem 2.2.1 we extend M to a continuous multilinear functional 

defined for all ~i E C~(IP+(X*),  L), ~]j E C~(]P+(Y*), L). 
Hence by the L. Schwartz kernel theorem we get a bilinear continuous map 

M: Fx • Fy ~ QV(X  • Y). 



Vol. 156, 2006 THEORY OF VALUATIONS ON MANIFOLDS, I. LINEAR SPACES 327 

Recall that  we have canonical surjections 

Ox: Fx -~ s v ( x ) ,  oy:  Fy -~ s v ( r ) ,  

where now we use the subscript to emphasize dependence on the space. 

4.1.1 LEMMA: The bilinear map M: Fx x Fy ~ Q V ( X  x Y)  admits  a unique 

factorization to a continuous bilinear nlap 

M'  : SV(X)  • SV(Y)  ~ Q V ( X  • Y) 

such that M = M' o (Ox • Oy). 

Proof: The uniqueness of such a factorization is obvious due to the surjectivity 

of Ox ,  O r .  Let us prove existence. Let us fix f E KerOx .  It  is enough to show 

that  M(f ,  g) = 0 for any g C Fv. I t  is enough to assume tha t  g = ~|174 �9 .| 

where ~ E C~(Y,  Iwy]),~i E C~(~+(Y*) ,L) ,  and moreover ~i = hB~ where 

Bi E ~(Y) .  

Let us prove tha t  for any w C Fx and K E E ( X  • Y) one has 

M(w,g)(K)  = 

001.. .00p .~ e y O x ( w )  K+EOj(OxBj)j=I M ( X x { y } )  d,(y). 

Note that  this identity implies Lemma 4.1.1. 

Let us check the identity (3). First let us check it for w = # @ ~1 | "'" | ~k 

where ~i = hA~, Ai C ]C(X). For such w, using Theorem 2.2.1 one obtains 

M(w,g) 

- o~ l . . .o~k  001 . . .o0plo( . [ ] . )  K + EAi(A, x0)+ E0j(0 x Bj) 
i=1 j = l  

:a01  ..aOpa)~l "a)~k IO ~t ( K + E O j ( O x B j ) ) M ( X x  {y}) 
" " EY j = l  

k 

i=1 

) ) - ~:P-o010f~ o~(w) K+~05(0xBj) n(Xx{y})d~(y). 
001 eY j=l 

Let us return now to the case of general w E F x .  To prove the equality (3) 

it remains to show tha t  the right hand side of (3) is continuous with respect to 
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w E Fx for fixed K E/C(X x Y) and B1 , . . . ,  Bp �9 IC(Y). Clearly, it is enough 

to prove the continuity with respect to w �9 Coo(X x ~+(X*) k, Iwxl [] L t~k) for 

any k = 0 , 1 , . . . , n .  

Let us fix a large compact subset G C X containing the projection of K to 

X in its interior. By Lemma 1.1.7 there exist a constant C, a compact subset 

C X containing G, and an integer N such that  
OO 

k, 

s = l  

where Its �9 C~176 I~xI), h~ �9 C~176 L) and 

Oo k 

(4) E Ilit~llc~+,+~(a)II IIh~llo,+,+~(~+(x./) _< CIl~llc,,(Oxe+(x.)~). 
s = l  i = 1  

Adding to and subtracting from each h~ a supporting functional of the unit 

Euclidean ball times a constant depending on IIh~[Ic2(e+(x,)), we may assume 

that  h~ = h A f  is a supporting functional of a convex compact set A~. Thus 
( X )  

w = E Its | hA~ | 1 7 4  L 
s = l  

and 

(5) 
Oo k 

II~llc~+~+~(G) 1-I IIAA~ IIc~+~+~<~+(x*)) -< CIIwllcN(ex~,+(x.),). 
s = l  i----1 

Theorem 2.2.1 implies also that  there exist a constant C ~, depending on the Bj 
and G, and a compact subset G ~ C Y such that  

(6) OA---OAklo(itNlu) K+EAi(Aix0)+EOj(0xBj) 
i = 1  j = l  / IICP[O,1]P 

k 

(7) ___ C'll~llck+,+'(G')" IMIok+,+'(G)II Ilha' lICk+P+1 
i = 1  

where the function in the left hand side of the inequality is considered as a 

function of (01,..., Op) E [0, 1] p. Hence the function 

(8) (01,... ,0p) . ~  

,=,oA, aa, I~ K+EA'(A~xO)+EOj(OxBj) 
/ = 1  j = l  

) ) (9) = f  Ox(w) K + E O j ( O x B j )  n ( X x { y } )  du(y) 
Jv E Y  j = l  
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belongs to CP[0, 1] p, and using (5) and (6) the sum of its CP-norms if the 

summands in (8) can be estimated fi'om above by 

k 

C'll~llc~+,+,(G,)" ~ II~llc~+,+,(G) 1-I IIhA~ IIc~+,+~ 
s i = l  

<_ C'CII'IIc~+,+'(G')II~IIcN (~). 

Equality (3) is proved, and hence Lemma 4.1.1 follows. | 

For any r e SV(X),r  �9 SV(Y) we will denote M'(r by r 1 6 2  and call it 

the exterior product of r and r In [4] we have defined the exterior product of 

polynomial smooth valuations. The point of this construction is that it extends 

to smooth valuations without any assumption of polynomiality. 

Let us define now the product on SV(V). Let A: V ~ V x V be the diagonal 

imbedding. For r r �9 SV(V) set 

r 1 6 2  := z~*(r [] r 

where A* denotes the restriction of a valuation on V x V to the diagonal. 

4.1.2 THEOREM: (1) For r E SV(V) the product r r �9 SV(V). 

(2) The product SY(Y) x s y ( y )  - .  s y ( y )  is continuous. 
(3) Equipped with this multiplication, SV(V) becomes an associative 

commutative unital algebra when the unit is the Euler characteristic. 

(4) The filtration (Wo} is compatible with this multiplication, i.e. 

w~. w~ c w,+j. 

Proof: To prove (1) notice first of all that A*: QV(V x V) --* QV(V). Hence 

SV(V) �9 SV(V) c QV(V). But since the product commutes with the action 

of Aff(V),  the product of Aff(V)-smooth vectors is Aff(V)-smooth. Hence 

SV(V) �9 SV(V) c SV(V). The continuity of the product follows by the same 

reason. 

Let us prove (3) and (4). Using Corollary 3.1.8 they reduce to the case of poly- 

nomial valuations. But for polynomial valuations the corresponding statements 

were proved in [4]. | 

Let us now describe the associated graded algebra grwSV(V) with respect 

to the filtration {W~}. Recall that grwSY(Y) := ~i~=o Wi/Wi+l, and it carries 

the natural algebra structure. 
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4.1.3 THEOREM: The associated graded algebra grwSV(V) is canonically 
isomorphic to the graded algebra C~176 ValUta(V)) with the pointwise multi- 
plication on V and the k-th graded term of it is equal to C~176 Val~m(v)). 

Proof: First let us recall that  the isomorphism Wk/Wk+l with 

Ca(V, Valk(TV)) is induced by the map Ak: Wk -~ Ca(V, Valk(TV)) defined 

in Section 3. Let r E Wk. We have (Ak(r  = limr-,+0 r-kr + x). 
Thus the isomorphism of vector spaces follows from Proposition 3.1.5. Now it 

remains to check that  this map is a homomorphism of algebras. By Corollary 

3.1.8 the result reduces to the case of polynomial valuations. But for polynomial 

valuations the result was proved in [4]. I 

5. Integration with respect to the normal cycle 

In Subsection 5.1 we fix some notation and summarize known relevant facts 

about construction of valuations using integration with respect to the normal 

cycle. The main new results of this section are contained in Subsection 5.2. 

These are Theorems 5.2.1 and 5.2.2 about construction of smooth valuations 

using integration with respect to the normal cycle. 

5.1 MAIN CONSTRUCTION AND ITS PROPERTIES. Let V be a real vector space 

of dimension n. Then clearly T*V = V x V*. Let K E 1C(V). Let x E K. 

5.1.1 Definition: A tangent cone to K at x is a set denoted by TxK which is 

equal to the closure of the set {y E V[3c > 0x + cy E K}. 

It is easy to see that  TxK is a closed convex cone. 

5.1.2 Definition: A normal cone to K at x is the set 

NorxK := {y E V*ly(x ) > OVx E TxK}. 

Thus NorzK is also a closed convex cone. 

5.1.3 Definition: Let K E/C(V). The characteristic cycle of K is the set 

CC(K) := U Nor~(K). 
xEK 
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5.1.4 Remark: The notion of the characteristic cycle is not new. First an 

almost equivalent notion of normal cycle (see below) was introduced by Wintgen 

[19], and then studied further by Z~hle [20] by the tools of geometric measure 

theory. Characteristic cycles of subanalytic sets of real analytic manifolds were 

introduced by Kashiwara (see [12], Chapter 9) using the tools of sheaf theory, 

and independently by J. Fu [8] using rather different tools of geometric measure 

theory. The elementary approach described above is sufficient for the purposes 

of this article. 

It is easy to see that  CC(K) is a closed n-dimensional subset of T*V = V x V* 

invariant with respect to the multiplication by non-negative numbers acting on 

the second factor. Sometimes we will also use the following notation. Let _0 

denote the zero section of T ' V ,  i.e. 0 = V • {0}. Set 

CC(K) :-- CC(K)\O, 

CC(K) :-- CC/]~>o. 

Thus CC(K) c ~+(T*V). Let us denote by N(K) the image of CC(K) under 

the involution on P+(T*V) of the change of an orientation of a line. N(K) is 
called the normal cycle of K. 

Let us denote by 

p: T*V --* V 

the canonical projection. Let us denote by o the orientation bundle of V. Note 

that  a choice of orientation on V induces canonically an orientation on CC(K) 
and N(K)  for any K E/C(V). Let us denote by CI(T*V, ~n | the space of 

CLsmooth  sections of f~n | p*o over T*V such that  the restriction of p to the 

support of this section is proper. 

5.1.5 THEOREM: For any w E CI(T*V, fl'~ | the map IG(V) --* C given 

by K ~ leG(K) w defines a continuous valuation on 1G(V). 

The proof of this result can be found in [6]. However, for a special choice of 

the form w leading to the curvature measures this theorem was proved much 

earlier by M. Z~hle [20]. 

We immediately obtain the following corollary. 

5.1.6 COROLLARY: For any r/E CI(P+ (T*V), f~n-l | o), the map ~:(V) ~ C 

given by K ~-+ fN(g) ~l defines a continuous valuation on ~(V).  

We will also need the following statement. 
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5.1 .7  THEOREM ([6]): The map 

]~(V) x ( e l ( v ,  I~v]) G cl (~+(V*) ,~  n-1 ~ p*o) ) --+ C 

given by 

is continuous. 

/N (K) 

Theorem 5.1.7 immediately implies the following corollary. 

5.1.8 COROLLARY: (i) The map CI(V,]wv[) @ CI(P+(V*) ,~  n-1 | p*o) 

CV(V) given by (w, 71) ~ [K ~ fK w + fN(K) ~11 is continuous. 

(ii) For any compact set G C V there exist a larger compact set G c V and 
a constant C = C(G) such that for any 

(~d,T]) E cX(v, IOJV[) ~]~ cX(~+(V*),~ n-1 ~ p*o) 

one has 

sup JKf W + / N  ~ <- C([[W[[CI(C) + [[~IICI(p-I~))" 
KcG,KelC(V) (K) 

5.1.9 PROPOSITION: (i) For any 

(~,?~) e C~176 loJv[) ~ C~176 (V*), ~n-1 ~ p * o) 

the valuation [g H fK w + fN(K) 711 is smooth, i.e. belongs to SV(V).  
(ii) The induced map 

ca(v, I vl) �9 ~n-1 ~ p* o) ~ SV(V) 

is continuous. 

Proof'. Since the construction of integration with respect to the normal cycle 

is equivariant with respect to the natural action of the group GL(V) on all 

spaces, it is sufficient to prove the proposition with SV(V) replaced with QV(V) 
everywhere. For simplicity we will ignore the summand fg  w. The last case is 

simpler and it can be considered similarly. 

For any (x,t) E Y x [0,1] let us define the map ~-(~,t): P+(T*V) ~ P+(T*V) 

by 
T(~,t)((y,n)) := (ty + x,n). 



Vol. 156, 2006 THEORY OF VALUATIONS ON MANIFOLDS, I. LINEAR SPACES 333 

Then we have 

77 • T(x,t)? ]. 
(tK+x) (K) 

Clearly the form 7(*~,t)~ ? depends smoothly on (x, t). This implies part (i) of the 

proposition. 

Let us prove part (ii). Let us fix a compact set G c V and N C N. We have 

sup 
xCG,KcG 

f sup t ~ / ~? = 
xcG,KcG JN(tK+x)  CN[0,1] 

t ~ IN(K) T(*'t)?] cN[0,1] ~ 

where C and G are from Corollary 5.1.8(ii). 

II 

This implies Proposition 5.1.9. 

5.2 MAIN RESULTS. Let us denote by C~r (P+ (T'V),  f~n-1 @p*o) the subspace 

consisting of elements of the space C a (P+ (T* V), f ~ - i  | p*o) which are invari- 

ant under translations with respect to vectors from V. Elements of this space 

define translation invariant smooth valuations. 

5.2.1 THEOREM: Consider the map 

c .  voZv �9 a | ValSm(V) 

given by (w, 7) ~ [K ~ fg  w + fN(g) rll" This map is onto. 

Proof." Clearly this map commutes with the natural action of GL(V) on both 

spaces. It is easy to see that  the image of this map intersects non-trivially each 

subspace Val ev/~ for i = 0, 1 , . . . ,  n. Hence by Irreducibility Theorem 1.2.3 

the image of this map is dense in Valsm(v). By Casselman-Wallach Theorem 

1.1.5 the image of this map is closed. Hence it coincides with Valsm(v). | 

5.2.2 THEOREM: The map 

c a ( v ,  t~vl) �9 C~(]P+(T*V),a n-1 | p* o) -+ SV(V) 

is onto. 

In order to prove this theorem we will introduce a decreasing filtration on the 

space Ca(V,  ]wv[) | C~(P+T*V), ft ~-1 | and show that  it maps onto the 

filtration W. on SV(V). Let us start with some general considerations. 
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Let X be a smooth manifold. Let p: P + X be a smooth bundle. Let ~N (p)  

be the vector bundle over P of N-forms. Let us introduce a filtration of ~ N ( p )  

by vector subbundles Wi(P)  as follows. For every y �9 P set 

(Wi(P))y  := {w �9 ANTyPIwlF -- 0 for all F �9 GrN(TyP) 

with d im(F N Ty(p- lp(y) ) )  > g - i}. 

Clearly we have 

~ N ( p )  = Wo(P) D W l ( P )  D . . .  D W N(P)  D WN+I(P)  = O. 

We will study this filtration in greater detail. 

Let us make some elementary observations from linear algebra. Let L be 

a finite dimensional vector space. Let E C L be a linear subspace. For a 

non-negative integer i set 

W( L , E)~  := {w �9 ANL*IwlF -- 0 for all F C L with d im(F ~ E)  > N - i } .  

Clearly 

ANL * = W ( L , E ) o  D W ( L , E ) I  D . . .  D W ( L , E ) N  D W ( L , E ) N + I  = O. 

5.2.3 LEMMA: There exists a canonical isomorphism o[ vector spaces 

W ( L ,  E ) j W ( L ,  g)i+l  = A N - i E  * | A i ( L / E )  *. 

Proof." First note that  for every 0 <__ j <_ N we have canonical map 

AJ E • | AN-J L * _.., AN L * 

given by x | y H x A y. It is easy to see that  

W(L,~)~ = / m [ @ ( A ~  • | A N - J L * ) +  ANL*]. 
j_>i 

Note that  the induced map 

AiE • | A N - i L  * ~ W ( L ,  E ) i / W ( L ,  E)i+I 

is surjective and factorizes as follows (using the equality E • = (L /E)*  and the 

canonical map L* ~ E*): 

AlE • | A N - i L  * 

..... 
W(L, E)i/W(L, E)i+l 

A i ( L / E )  * | A N - i E  * 
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Let us check that  the obtained map 

Ai(L/E) * | AN-~E * --* W(L, E)i /W(L,  E)i+l 

is an isomorphism. Let us fix a splitting L = E @ F. Then 

W(L, E)i ~ ( ~  AJF * | AN-JE *. 
j>~ 

Hence W(L, E)i /W(L,  E)i+l ~ A~F * | AN-iE * ~ Ai(L/E) * | AN-iE*. | 

Let us apply the above construction to the case P = ~+(T*X) with X being 

a smooth manifold of dimension n. The above construction defines a filtration 

of the vector bundle ~ - l ( p )  by vector subbundles. Twisting by the pullback 

p*o of the orientation sheaf o of X we obtain a filtration {Wo(P)} by vector 

subbundles of the vector bundle t ~ - l ( P )  | p*o: 

~ n - l ( p )  | = Wo(P) D Wo(P) D WI(P) D . . .  D Wn-I(P). 

Let us denote by ~ t~ / I (P )  the vector bundle over P of differential forms along 

the fibers. (Thus ~I~/~(P)I is the quotient bundle of ~ n - i ( p ) . )  

5.2.4 LEMMA: For 0 < i < n - 1 there exists a canonical isomorphism 

_~ n- l - i  p*(AiT*X) @p*o. (10) Ji:Wi(P)/Wi+l(P) ~P/X | 

Proof: This is an immediate corollary of Lemma 5.2.3. | 

Recall that  we denote by ValSm(TX) the (infinite dimensional) vector bundle 

over X whose fiber over a point x E X is equal to the space of translation 

invariant /-homogeneous GLn(~)-smooth  valuations on TxX. For any point 

x E X we have the canonical map 

(11) C~(~n-I-i(I~+(T;X))) | AiT*X | oT:x --~ Val~m(T:~X) 

where oT*x denotes the orientation sheaf of T~X (this map is given by integra- 

tion over a normal cycle). This map induces a continuous linear map 

(12) koi: ~ n - l - i  C (P, f Ip/z  (P)| ~ C~(X,  Val~m(TX)). 

Let us now apply these constructions to an affine space V (instead of X). 

We will identify P := ]~+(T*V) --, V with I~+(V*) x V. Then the projection 

p: P = ~+ (V*) x V is the projection to the second factor. Consider the following 

map: 

~: C~(V, ]wv l ) r  C~(P, ft"-~(P) | o) --. SV(V), 
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which is given by 

5.2.5 PROPOSITION: 
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f 
E((v,7/))(K) = v(K) + / 7. 

JN (g) 

~(c~ I~v[)) = wn 

~(c~ i = 0 , 1 , . . . , n - 1 ,  

where Wi in the right hand side denotes the i-th term of the filtration on SV (V). 

Proof: The statement is obvious for i = n. Assume that i < n. Let us fix 

for simplicity of notation an orientation on V. Thus the orientation sheaf o 

becomes trivialized. First let us show that 

(13) E(C~(P, Wi(P))) C Wi. 

Fix any w �9 Coo(P, W~(P)). We have to show that for any K �9 K(V) and any 

x C V  

IN = O(t~) t --+ +0. O2 RS 
(tK+x) 

This easily follows from the fact that any such ~o belongs to the space 

n - - 1  

~C~ | AJV * 
j=i 

Thus the inclusion (13) is proved. Hence we obtain a map 

(14) z :  C~(p, W~(P)/Wi+I(P)) ~ W~/Wi+I. 

We will show that Ei is surjective. This will imply Proposition 5.2.5 by the 

induction in i. Recall that by Proposition 3.1.5 we have canonical isomorphism 

(15) /i: Wi/Wi+I-=+C~(V, Val~m(v) ). 

One has the following lemma. 

5.2.6 LEMMA: The following diagram is commutative: 

(16) C~ W~(P)/Wi+I (P)) -' > Wi/W~+I 

Ji l Ii 

Coo(p, n - l - ,  Co~(V, ValUta(V)) ~P/x (P) | AiV*) 
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where the maps Ji, k~ E/, Ii are defined by (10), (12), (14), (15) respectively. 

Let us postpone the proof of Lemma 5.2.6 and finish the proof of Proposition 

5.2.5. Since J / a n d  I~ are isomorphisms it is enough to prove surjectivity of ffJi. 

Let us consider the Pr4chet spaces 

F1 := C~176 | A/V*), 

F2 := v~z~m(v). 

Then clearly 
oo n -  l - i  C (P,f~P/X ( P ) | 1 7 6 1 7 6  FI) , 

c a ( v ,  yaL~ m) = c a ( v ,  F2). 

By (11) we have the canonical map 

f/: F1 -* F2. 

Clearly, for any r 6 C~(V,  F1) and any y 6 V one has 

(~ /r  = fdr  

Moreover, fi is surjective by Irreducibility Theorem 1.2.3 and Casselman- 

Wallach Theorem 1.1.5. Hence ~i is surjective by Proposition 1.1.8. | 

Thus it remains to prove Lemma 5.2.6. 

Proof of Lemma 5.2.6: Recall that  for r 6 Wi/Wi+l and for all x 6 V, 

K 6/C(V) one has 

( I ir  = lim l r  + x). 
r--~+O r ~ 

* . .  * i n  V * .  Let us fix ~/ 6 C~176 Let us fix a basis e l , .  ,e n 
Then we can write 

J / (~ )  = ~ ~jl  ..... j i  | e$" A ' ' "  A e $. 31 Ji 
j l  ~... j i  

where 71j I ..... j, 6 C~176 n-l-~ f~P/X (P))" Then 

(Ii(Ei~l))(x,K)= y ~  lim 1 IN r--.+o r ~ ~J~"'"J~ | e*. A .. A * --7 31 " e j l  

Jl ..... Ji (rK+x) 

= Z s . . . . .  j,l,-,(,)| 
J* ..... Ji ( K )  31 

| = (~i(g/n))(x,  K). 
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