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ABSTRACT 

The aim of the present paper is to estimate in a precise manner the integer k = 
k(p,m,n,e) so that an arbitrary m-dimensional subspace X of the space Ifl; 
p > 2, contains an (l + e )-isomorph of l~. The main argument of the proof con- 
sists of a probabilistic selection which uses a lemma of Slepian. The same method 
also shows that any system of normalized functions in Lp; p >_ 2, which is equiv- 
alent to the unit vector basis of lff, contains, for any e > 0, a subsystem of size h 
proportional to n, which is (1 + e )-equivalent to the unit vector basis of l~. 

O. Introduction 

The geometry o f  finite dimensional subspaces o f  the space Lp has been studied 

intensively and quite precise numerical estimates have been proved in many  cases. 

For  instance, it was shown that any m-dimensional subspace X of  lg o f  dimension 

m _> n ~, for  some 6 > 0, contains  a well i somorphic  copy  o f  1~, with k _> 

C ( 6 ) m  1/2, where C(b) is a constant  depending on 6 only (cf. [9] in the case when 

m is propor t ional  to n and [4] for a general 6). It was also noticed in [9] that,  for  

a r andom subspace X o f  1~, the above estimates are best possible. 

The aim o f  this paper  is to consider the similar problem in 17 with p > 2, i.e., 

to  estimate the maximal  k so that a well i somorphic  copy o f  I~ can be found  in 

any subspace X o f  17; p > 2, o f  a fixed dimension m. The dual case was consid- 

ered in [6]. There it has been proved that if X is an m-dimensional  subspace 

o f  l~, p > 2, then its dual X* contains a well i somorphic  copy of  lg,, with p '  = 

p / ( p  - 1) and k o f  order o f  magnitude (m/n2/p)  p/(p-2). This estimate is best pos- 
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sible. We shall see in the sequel that one cannot expect to prove such a strong as- 

sertion for X itself. 

Fix p > 2 and 1 < m < n, and let g,,m denote the Grassman manifold of  all 

m-dimensional subspaces of  Lp. It follows from [13] that any X E g,,m contains 

a 2-Hilbertian subspace of dimension about m / d ~ ,  where d x  stands for the euclid- 

ean distance of  X. Since, by [1], this number cannot exceed a multiple of n 2/p we 

conclude that d x  >- cm ~/2/n l/p, for some constant c > 0. By using the isoperimet- 

ric inequality in the usual way, one can show that, for random elements X of  

gn, m, the euclidean distance is minimal (i.e. d x  is of  order of  magnitude 

m ~/2/n l/p) and even that 

m 1/2 
IIxll   -< c Ilxll  , 

for all x E X and some constant C = Cp < oo (see, e.g., [15]). 

For a sequence x = (al,  a2 . . . .  , a ,)  in R", the reader should distinguish between 

the norm Ilxll, = (Zjn:--I lajlP) 1/p in lfl and IlxllLz = ( Z % ,  laj lP/n) l/p in L~. 

Suppose now that X i s  a random element of  ~..m and let k = k p ( X , K )  be the 

maximal dimension of a subspace of  X which is K-isomorphic to lp k. The case 

m < n z/p is trivial since, under this assumption, X is Hilbertian. If  m > n z/p 

choose 2 < r < p such that m = n 2/r and note that the above considerations show 

that on X the L~ and Lr" norms are equivalent and, therefore, also that 

max IIxII'r"/IIxIIL7 = C < 0% 
x E X  
x4:O 

for some constant C = Cr < oo, depending on r only. 

Let E be a subspace of  X for which there exists an invertible operator T: lp ~ ~ E 

such that IITU U T-1 U -< K and let Eq stand for E when E is considered as a sub- 

space of L,~; 1 ___ q _< oo. Denote by Iq, s the formal identity map from L~ into L~' 

and, by iq, s, that from lq into lff. Consider the following diagram: 

ik i ~ .p  T I p ~  1= 1 I1 • lr p T -1 " 
oo ~ lkp ~ Ep ~ E~o --$ -~ EI-=i Er::-; Ep lkp'~-~ l~ 

and note that the 1-summing norm r l  (/~) of the identity operator on l~ satisfies 

the inequalities 

k ~-- 71"1(I k )  .~ IIi=,pll Ilzll IIIp,~llTq(I~,l)IIIl.rlXll IIIr.pll II z- I  II 

< K C k  ~/Pn l/Pn l/r-X/p = K C k  l/Pn l / r  

It follows that 

k p ( X , K )  < ( K C ) P ' m  p'/2 
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i.e., k cannot exceed a multiple of  m p'/2. Besides the example of  random elements 

of  gn, m, one can consider the following type of subspaces of  Lg. Fix again n 2/p < 

m < n, t a k e j  = (m/n2/p) p/tn-2) and N = n / j  (under the assumption that all these 

numbers are integers which can be made without any loss of  generality). Since L N 
I N  2/p n contains a K-isomorph of  ,2 , for some K < 0% it follows that Lp contains a 

subspace X which is K-isomorphic to the direct sum in the sense of  ~J o f j  copies 

of  la mvp. It is easily checked that k p ( X , K )  = j  = ( m / n a / P )  p/(p-2)  while dim X = 
jN2/p = j 1-2/p n 2/p = m. 

By combining the two estimates obtained above, we conclude that, for each 

value of  n z/n < m < n and p > 2, 

kmax(n ,m,p ,K)  = m a x { k n ( X , K ) ; X  E ~n,m} 

satisfies the inequality 

kmax(n ,m,p ,K)  <- Mmin(mp' /2 , (m/na/n)n/~°-2)) ,  

for some constant M = M ( p , K )  < oo. 

It turns out that this is, up to a constant, the right order of  magnitude. 

THEOREM 0.1. For every p > 2 and e > O, there exists a constant c = c (p,e ) > 

0 such that, whenever m < n and X is an m-dimensional subspace o f  Lg, then X 

contains a subspace E o f  dimension 

k > cmin(mP' /2 , (m/n2/P)  p/tp-2)) 

which is (1 + e)-isomorphic to lkp. 

REMARK. By using [5] Theorem 4.3, one can strengthen Theorem 0.1 so as to 

assert that E is also c - l -complemented  in Lp. 

The above result can be used to provide a negative solution to the following 

question raised by V. Milman in [14]. 

PROBLEM 0.2. Does there exist, for every K > 1 and e > 0, a constant  

c (K , e )  > 0 such that,  whenever X and Y are finite dimensional spaces with 

d i m X =  dim Y =  n and d ( X ,  Y) <_ K, then one can find subspaces X, of  X a n d  Y~ 

of  Y f o r  which d ( X , ,  Y,) < 1 + e and d imX,  = dim Y~ _> c(K,E)n? 

Indeed, fix e > 0 and K > (1 + ~)2, and suppose that the problem above has a 

solution c = c(K,  e ) > 0. Fix P0 > 2, let n be an integer satisfying n ~/2-1/po > K, 

and select 2 < p < P0 so that n l/p-l/po = K. Then the spaces X = l~o and Y = lp 

clearly satisfy the condition d ( X ,  Y)  = K. Let now X0 be a subspace of  X of  di- 
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mension _> cn. By using Theorem 0.1, we conclude the existence of a subspace XI 

of  Xo such that 

d = d i m X l  >_ anP6/2 and d(Xl , lao)  < l + e, 

for some a = a(K,e ,po)  > 0. It follows that, for any subspace Y~ of  Y with 

dim I"1 = d, we have that 

(1 + e)d(X1, Y1) > d(ldpo , Y1) > dl/p-l/P° > al/p-I/p°Kp°/2 >- a(l°gK/l°gn)Kl/2, 

which shows that d(X~,  Y~ ) remains bounded away from 1, as n ~ oo. • 

Before presenting the proof  of  Theorem 0.1 in detail, we describe briefly its 

components. 

Given an m-dimensional subspace X of  Lg, for some p > 2, one constructs first 

a system of  about m normalized vectors [~oi }m=l in X whose upper p-estimate is 

m ,/2-,/v and, after a change of  density, is orthogonal and has a square function 

which is pointwise bounded by n 1/p. Each of  these functions is then truncated at 

the level X = k I/v, where k = min (m 0"/2, ( m / n  2/p)p/(p-2) ) is basically the dimen- 

sion of  the space l~ that we want to embed in X. 

The main ingredient of  the proof  consists of a probabilistic selection result which 

can be used to lower the upper p-estimate of  a system of uniformly bounded func- 

tions in Lv; p > 2, by passing to a suitable subsystem, provided one has a good 

estimate on the square function and the pointwise bound of  these functions. This 

selection theorem allows us to show that each random subset a C [ 1, 2 . . . . .  m ] of 

cardinality about k contains a subset a '  of  size l a ' l  - 91al/10 so that the fiat parts 

{ ¢i,× lifo" of  { ~oi }i~,,, have a bounded upper p-estimate. 

The peak parts ~o/x = ~oi - ~oi, x; 1 _< i < m are then considered separately and, by 

an argument using multilinear interpolation, one shows again that a generic sub- 

set tr of [1, 2 . . . .  , m] of cardinality k contains a subset o" with I "1 ~ 91 al/10 such 

that [ ~o~ ]ico-, also has a bounded upper p-estimate. A standard argument of  re- 

stricted invertibility (cf. [5]) proves then the existence of a subset 71 of { 1, 2 . . . . .  m } 

of  cardinality proportional to k such that [soiJi~n is equivalent to the unit vector 

basis of  1/,1. 

In order to pass to an almost isometric copy of  lg, we prove the general fact 

that any sequence If/I~=t of  functions in Lp; 2 _< p < ~ ,  which is equivalent to the 

unit vector basis of lfl contains, for any E > 0, a subsequence {fJJ~E~, with [zj 

proportional to h, which is (1 + e )-equivalent to the natural basis of  1/~1 . This is 

done by basically applying the previous part of the proof  to the functions [./~ }/h=~ 

instead of  [~o,-Im=~ except that this case is handled easier. 
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1. Random selections 

We start by proving the main part of the argument needed in the proof  of  The- 

orem O. 1. 

PROPOSmON 1.1. For every q > 2, there exists a constant C = C (q) < oo such 

that, whenever 2 < p < q and { l~i } m= 1 is a set or  funct ions in the space Lp ( l~), f o r  

some probability measure/~, so that 

(i) a i~  i ~__ 1911 a ]]p, 
Lp 

f o r  all a = (al ,a2 . . . . .  am) E l ; ,  

(ii) 

f o r  some B < 00, and 

(iii) II ~i IIL  x, 

f o r  some X < co, then, f o r  any choice o f  0 < ~ < 1, a random subset  o o f  

{1,2 . . . . .  m l  o f  cardinality [al = [~m] contains in turn a subset a' such that 

la' l  -> 91al/lOand 

(iv) ~a ag~bi <-- C(61/p'I ~ -t- 61/z-~/UBm -~/p + (6m)-~/pX)llallp, 
i ~a Lp 

f o r  any a = (ai)i~o, E lip °'1 . 

PROOf. Fix p, q,F, B, X and consider a system of  functions { ~i I m=l that satisfies 

(i), (ii), and (iii), as above. Put  r = q', r = m ~/P'/I' and consider 

~r  : IX = (f,r(f, fl),r(f,~b2) . . . . .  r ( f ,~bm)); f  E LA#)} 

as a subspace of  the direct s u m  Lr(IX ) ~ L~.  Then, for an arbitrary subset ~ of  

[1,2 . . . .  ,m] ,  define the operator T~:g r ~ ll~l by setting 

T~x = ( r ( f ,  f i ) ) ; ~ ;  x ~ g , .  

Fix 0 < 6 < 1, let {~i }%1 be a sequence of  {0,1 I-valued independent random vari- 

ables of  mean 6 over some probability space (fl, g, v) and put 

~(oa) = [1 ----- i-< m;~i(o~) = 1}; o~ E ft. 
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Then 

Ilxll _<1 

~T' XEgrSUp [~ l(f~/i)']-l-TN[~fl 'f~ XEgrSUp [I ~i(co'gi((.O')l(f,~/i> ]dpdp', 
Ilxl[-<l Ilxll-<l 

where [gi]m= 1 is a sequence of  mean zero independent Gaussian random variables 

over a probability space (fl',r.', p') which are normalized in L2(u ') .  By using Sle- 

pian's inequality (see, e.g., [7] Lemma 1.5 or [8]), we conclude that 

:U,rI 
IIx~ <-1 

for some constant D1 < oo .  The integral can be easily estimated by repeating the 

argument above (cf. [6]) and we obtain that 

12) 1/2 d ,  

~.~ ~1/2 (i=~l [~i12) 1/2 Lq "~ O2:~ (i=~l~i(o)),~i[4)\1/4 LqdP 
_<6'/2B + DzJ1/Z[[ max l~,l Lq'/z <__ 6,/2B + Dzj , /zhl /2 ,  l<_i<_m 

for some D 2 < co. Hence, 

f llT,7(,~) II dv <_ Da(6m + "r6~/2B + r k ) ,  

for some numerical constant D 3 < 0% which yields that, for a random subset a C 

[1,2 . . . . .  m] of  cardinality = D m ] ,  we have that 

lea  i=1 
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for all f ELr (# ) .  Therefore, by using a standard argument involving p'-stable 

variables (see, e.g., [5] Proposition 3.7), we get that the adjoint To* of To is 

p-summing when considered as acting from L~ I into Lp(#) ® L~' and 

rp(To* :Z~ I ~ Zp(#) @ L'~) < D(q)ll To:Zr(I.t ) @ L m ~ t l  °1 II 

< 2D3D(q)(tSm)-l(Sm + r~l/2B + rX), 

where D(q) is a constant depending on q only. Then, by the factorization theorem 

of Pietsch (cf. [16]), one concludes that, for some o' C o of cardinality I o'l -> 

91 ol/10 and some constant C(q), depending on q only, we have that 

IIT*,:L~ oj ~Lp(#) @ Z~'ll -< C(q)(1 + r6-1/2m-'B + (6m)- 'rX),  

i.e., that 

<C(q)(l +rtS-l/Em-lB+ (~m)-IrX) fllL,,+rm -1." I<f, ~b,)l" , 
\ i = 1  

for a l l fE  Lp, (it). 
However, it is easily verified that 

( ~]~ '(f'l~i)lP') 1/p' <- f E Lp,(#), 

which yields, in view of the choice of r, that 

\l/p" 
g~, I</,¢;>l") -< C(q)(~ ~*'r + ~I/Z-I/pm-1/pB + (6m)-l/PX)l[fllL,,, 

for all f E Lp, (#). This, of course, implies our assertion. • 

2. Proof of Theorem 0.1 

The object of this section is to present the proof of Theorem 0.1 in detail. To 

this end, we study systems of vectors {~o,}m=~ in an Lp(#)-space, for p > 2 and 

some probability measure #, which satisfy the following conditions: 

(1°) i~=lai~°, i <- ml/Z-L/Plla,,p, 
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for  any  sequence a = (al,a2 . . . . .  am) ~. Ip, 

(2 °) I~;I 2 _< nl/~, 
i=l oo 

(3°) 11¢/11£, < 1, 

for  all 1 _< i _< m. 

The  " f l a t "  parts  o f  the funct ions {~i }m=l are considered first in the next result. 

PROPOSITION 2.1. For every p > 2, there exists a constant CI = C1 (p)  < oo 

such that, whenever { ~i ] %1 is a sequence o f funct ions  in an Lp ( #)-space which 

satisfies the conditions 1 o, 2 ° and 3 ° above, then a random subset o C { 1, 2 . . . . .  m } 

o f  cardinality 

k = m i n ( m  p'/2, (m/n2/P) p/(p-2) ) 

contains in turn a subset ~' o f  cardinality I o ' ]  _> 91 o[/10 such that the truncations 

~i = ~iX[l~il<_kl/P] ; i E a', o f  { ¢ili~o" satisfy the inequality 

;~,a;ff; Lp <- CI(p)IIaIIp' 

for  any a = (ai)ieo, E lip °'1 . 

PROOf. Pu t  k = k ~/p and ~x = ~o i _ ~i; 1 ---~ i --< m. Then notice that  

)k m 1/2 ( ~ ) 1 / 2  I 
~ xtl,~;l>×] -< [~i[ 2 <- hi~p, 
i=l i=l oo 

which yields 

X[l~;l>×] ~ ~K-2H2/P" 

Hence,  by H61der 's  inequality,  we get that  

[ < < ( :) 

< ( n / k )  2/pp '  lai~ilp \l/p 

and,  fur ther ,  that  
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for  all a E l~'. It  fol lows tha t  

kai~iil <-(ml/2-1/P + (n/k)2/PP')Hallp, 
i=l H Zp 

for  all a E l~', again. Thus,  by Propos i t ion  1.1 applied to the funct ions  {~i}m=l 

with F = m 1/2-~/p + ( n / k )  2/pp' , B : n 1/p, )~ = k 1/p and ~ = k/m,  we get that  a ran- 

d o m  subset a C { 1,2 . . . . .  m } o f  cardinali ty k contains a subset a '  such that  I a '  I -> 

9]a[/lO and 

1 ~  ai~/i < Cl[(k/m)~/p'(ml/2-1/p + (n / k )  2/pp') 
i " Lp 

+ (k/m)l/E-l/P(n/m)l/P + l] _< 4C1, 

for  some constant  C1, depending on p ,  and  all a E l/~'1 o f  n o r m  _< 1. • 

We like to prove  a similar est imate for  the " p e a k "  parts  {~i x }m=~ o f  {~i }m=l. TO 

this end,  we present  first the fol lowing lemma.  

LEMUA 2.2. For every integer h, there exists a constant C2 = C2 (h)  < oo such 

that, whenever I~i]im=l is a sequence o f  functions in an Lp(l~)-space; p > 2, that 

satisfies conditions 1 °, 2 ° and 3 ° above, k = min(mp'/E,(m/nE/p)P/(P-2)), )~ = 

kl/P, ~i x = ~/Xtl~il>X]; 1 <_ i <_ m, then a random subset o C {1,2 . . . . .  m} o f  car- 

dinality k contains a subset o" o f  cardinality l a"l > 91 a I/10 such that, for  all 
l < _ j < h ,  

)-]O) f l x x x d/~ _< C2(h) ;  ij E a", ~ i l  ~i2  ° " ° ~Oih I p /h  
il , i 2 , . , . ,  ih~a ~ d 

where ~, !J) denotes summation over all indices il, i2, ., ih E a", except 11,12,... ,ihEa" • • 

ij, which remains fixed. 

PRoof .  In order  to s implify our  nota t ion,  put  

t "  
M i l l  2 . , i  h J [ ~ ~ . o~ ih[P/h  d ~ ,  . . . .  : ~Oil  ~ 9 i  2 * 

for  any  1 _< it, i2 . . . . .  i h _< m. Next ,  observe  that ,  with ~ = k /m,  

f m  f m  
, x , .  , ~ I i n  - 7  - -  ~ - -  ~ - - ] I r  
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Also, if s > m a x ( p / 2 , h )  then we have that 

< k p-2s I¢il  2 d~  <- kl-2S/Pn 2s/p = (n / k ) zS /pk  < g)-Sk, 
i=1 

in view of the fact that k < (m/nZ/P)  p/(p-2). Hence, by H61der's inequality, we 

conclude that, for each 1 _< t _< s, 

Then, with I(~l~=~ being again a sequence of [0,1 l-valued independent random 

variables of  mean 6 over some probability space (fi,2, u) and l ( i~, i2 . . . . .  ih) 

denoting the exact number of distinct indices in the tuple (i l ,  i 2 , . . . ,  ih), it follows 

that 

Z (~il (('0)~i2 (('0)""" ~ih (('O) d~Mi,,i2 ..... ih 
1_<i1,i2,., -,ih<--m d 

h 

<- Z ..... 

l=1 1--<i1,i2 . . . . .  ih<--m 
l( i i , i2  . . . . .  i h )= l  

Now, for a fixed I and fixed decomposition of h as a sum h = hi + hz + • • • + ht 

of integers {hj]j=l, consider alI the tuples (i~,i2 . . . . .  ih) which contain exactly l 

distinct integers j~ ,J2 . . . .  ,Jr having h~, h2 . . . . .  ht as their respective multiplicities. 

Then the sum ~' over these tuples only can be estimated by 

. . . . .  <_ d. 
i=1 

_ dlz <-- 1-I (6 -1k  hi~h) = 8 - t k  
j = l  i=1 j = l  

(use H61der's inequality with the indices { h / h j  ]J=l which clearly satisfy 

1 ~ ( h / h i )  + 1 / ( h / h : )  + . . . +  l / ( h / h : )  = 1). 

Therefore, we conclude that 

i--il , i 2 , . . . ,  i h ~ m  
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for some constant Co = Co (h) < oo. Hence, for a random subset o C { 1, 2 . . . . .  m ] 

of  cardinality [o[ = b m  = k, we get that 

Z Mit , i2  . . . . .  ih <- 2 C o k .  
i l , i2, . . . , ihEa 

This, of  course, yields that any such o contains in turn a subset a" of  cardinality 

Io"1 > 91ol/10 such that 

Z (j) Mit , i2  . . . . .  ih <-~ C 2  ( h ) ,  
il,i2, . . . ,ihEo" 

for all 1 <__ j _< h, ij E 0" and some constant C 2 (h),  depending on h only. • 

PROPOSITION 2.3. For every p > 2, there exists a constant C3 = C3 (p)  < oo 

such that, whenever [~o;}~=1 is a sequence o f  functions in an Lp(t~)-space which 

satisfies the conditions 1 °, 2 ° and 3 ° above, k = min( m p'/2, ( m / n Z / P ) P ( P - 2 ) ) ,  ~, = 

k ~/p and ~o/x = ~oix t l¢it >x l; 1 <_ i <__ m, then a random subset 0 C {1,2 . . . . .  m} of  

cardinality k contains a subset a" o f  cardinality [o"l > 91o[/10 such that 

Z ai~°i~ Lp <~ C~llallp, 
iEa" 

for  sll a = (al,02 . . . . .  am) E lp. 

PROOf. F i x a n i n t e g e r q > p ,  c h o o s e O < O < l s o t h a t  1 / p = O / q + ( l - O ) / 2  

and notice that, by H61der's inequality, 

i=l i=l i=1 i=1 

from which it follows that 

~-]ai~°~x <- ~-] aicP~ilP/q ° . ~ l a , ~ l  p/2 ,~o, 
i=1 Lp Lq i=1 

for all a E lp. 

In order to evaluate the expressions appearing on the right-hand side, let h be 

an integer standing for either 2 or q and observe that 

lai~°xl p/h h = Z lai, ai2'''aihlP/hMi,,iz ..... 'h' 
i=1 Lh 1_<i1,i2,. •. ,ih'<m 
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where 

Mi,,i2 . . . . .  ih f [ x × . . . .  ), [ P/h d #  ' 
= ~Oil ~Oi2 " "rib I 

for  1 < il,i2 . . . . .  ih < m. 

Let now o be a r andom subset o f  [ 1, 2 . . . . .  m } having cardinali ty k and o" C a 

the subset o f  cardinali ty (r" I > 91 ol/10 given by Lemma  2.2 such that  

Z ( j )  M i l , i 2  . . . . .  ih ~ C 2 ,  
/ 1 , i 2 ,  • . • ,  ihE o# 

for  some C2 = C2(h) < ~ ,  all 1 _<j _< h and ij E o". Define next an h-linear form 

T:  R )°"lh --, R by setting 

T(a l ,  a2, , ah) : Z 1 2 "'a~Mi,,i2, • " " a i l a i2"  . . . , i h )  
i l ,  i 2 ,  - .  - ,  ih Eo~ 

for  a j = (aiJ)~o.," 1 <_ j <_ h. Notice that ,  for  each 1 <_ j < h, 

I T ( a l , a  z . . . . .  ah)t 

-< Z )-I, u) Ila~llo* " '" IlaJ-lll~la~l I laJ+ ' l l~""  I l a h l l o ~ M i l , i 2  . . . . .  ,h 
ijEo" il,i2 . . . . .  ihEo" 

--- C211a"llo~'" Ila j-llloollajllllla j+l I1~"" Ila hll~, 
for  any a j E RI°"I; 1 < j  < h. Therefore,  by multilinear interpolation (cf., e.g., [2] 

p. 20), we conclude that  

[T(a t ,a  z . . . . .  ah)l _< c3lla I IlhllaZllh . . .  Ilahllh, 

for  some constant  C3, depending only on p (since h depends on  p only),  and all 

a j E lth""l; 1 <_ j <_ h. Hence,  for  any sequence a = (ai)i~o. with [] a ]]p <_ 1, we have 

that  

N lai~Xi[ p/h = T(lalP/h, ial p/h . . . . .  lal "/h) -< C311a"/hll~ <-- C3, 

which fur ther  yields that  

I ~-] ai~oix I <-C 3. • 
i~e"  Lp 

COROLLARY 2.4. For every p > 2, there exists a constant D = D ( p )  < ~ such 

that, whenever [~oi}7'=t is a sequence o f  elements in an Lp(~)-space, f o r  some 
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probability measure #, which satisfies the conditions 1 °, 2 ° and 3 ° above, then a 

random subset a C { 1,2 . . . . .  m } o f  cardinality 

k = m i n  (m p'/2, (m/n 2/p)p/(p-2) ) 

contains in turn a subset cr 0 o f  cardinality [ o0[ > [ o[ /2 such that 

,~o a'~'* L, -< Ollallp, 

for  any choice o f  a = (ai)i~oo E lip °°1 . 

The next major step in the proof of Theorem 0.1 is to construct a suitable sys- 

tem of vectors in an arbitrary m-dimensional subspace X of an Lp-space for 

which Corollary 2.4 can be applied. 

PROPOSITION 2.5. For every p > 2, there exists a constant c = c (p )  > O such 

that any m-dimensional subspace X o f  L~ contains a sequence { ¢i}~='n of  elements 

that satisfies conditions 1 °, 2 ° and 3 ° above and, in addition, m'  > m/lO and 

II ~e II L~ -> c, 

for  all l < i <_ m'. 

PROOF. Fix p > 2, 1 < m <__ n, and let X be an m-dimensional subspace of Lp. 

By a result of D. Lewis [12], one may assume that, after a change of density, 

)(2 (i.e. X considered as a subspace of the corresponding L~(~)-space) admits an 

L~(#)-normalized orthogonal system { ~'i}m= 1 such that 

~-] I ~-i12 = m. 
i=1 

Since any other orthonormal system in X2 is obtained from {~/}m= 1 by applying a 

unitary transformation it follows that any L~(#)-normalized orthogonal system 
[ ' m  ~'i ]i=~ satisfies the condition 

1~'/'12 = m. 
i=1 

Next, we use a well-known result of F. John [10] in order to conclude the exis- 

tence of an invertible operator u from 1~' onto Xp (i.e. X considered as a subspace 

of  L~(#)) such that 11 u [I = I and r 2 ( u - l )  = m 1/2 

In order to avoid confusion, we shall denote the norm in the space l~' by [. [2 

to distinguish it from that in L~(/~), which is denoted by I[. 1[/4" 
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(i) 

(ii) 

(iii) 

(iv) 

for all 1 < j  :~j '  < J. 

The operator u is then used to construct, by induction, a sequence of vectors 

{ wi}]= ~ in l~' such that J >_ m / 3  and 

Iwjl2 = l, 

wj .L wj, in/~',  

l[ U(wj)UL~, > 1/2, and 

u(wy) .L u(wj , )  in L~, 

Indeed, suppose that {wj }J=l have already been constructed for some 1 < m / 3  

so that conditions (i)-(iv) are fulfilled and notice that the subspace H of 17, de- 

fined by 

H =  [ W 1 , W  2 . . . . .  WI] ± 0 U-I([u(wI) ,U(W2)  . . . . .  U(WI)]±), 

is of dimension _> m - 21 > m/3  and the identity map in on H can be written as 

iH= ul-.~n~ o uiH. 

Hence, 

(m /3 )  1/2 < r2( in )  < ~2(u-1)llulHU -< ml/ZllutHII 

which further yields that 

)lul~ll >_ 1/4g. 

It follows that there exists a vector wt+~ in H s o  that I wt+112 = 1 and 11 u (wt+~)tlL~ > 

1/2, thus completing the induction argument. 

Define 

and notice that 

l < _ j < J ,  

for any choice of (aj)J=l E lp J. 

Assume now that [~bj}j~l have been reordered so as to have 

/ '° 
= 2 lajl 2 <_ 2m l/2-1/p [ajl p , 

2 \ j = l  

II 4, IIL~ -< II ~211L~ - < " - <  II ~IIL~ 
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and that J is an even integer. By the inequality above and the orthogonality of the 

vectors [~bjl]=l in L~, we have that 

-> --- -> II ~,J2 I1L~, 
j=J/2 j j=J/2 

for all J (ai)i=j/2. Thus, as we have explained in the introduction, 

2[[~bj/21lZ~ > d(['" ~J ,J/2, lip -- ~jJj=J/2,12 I >--- a m l / 2 / n  , 

for some constant 1 > a > 0, depending on p only. Consequently, 

II ~jllLg -< 2n l/p/am l/2; 1 <_ j <_ J/E, 

from which one deduces that 

a/2 4nE/P ~ i~jl = 4n2 /p  
Z l f f J l  ~ <  a__E - < - -  

j=l - ~ = II ~j l l~ a ~ 

Therefore, the system ¢j = a~j/2; 1 <_j <_ J/2, will satisfy the conditions 1 °, 2 ° 

and 3 ° above with m'  > m/ lO.  Moreover, [I'P:IILg = a/2, for all 1 <_j <_ J/2. • 

PROOF OF THEOREM 0.1. Let X be an m-dimensional subspace of Lg, for 

some p > 2. By Proposition 2.5, construct a system { ~j }7='~ of vectors in X with 

m' > m/ lO which satisfies the conditions 1 °, 2 ° and 3 ° above and, in addition, 

][ ~jl[L~ -> c, for some c = c(p)  > 0 and all 1 <_j <_ m'. Then, by using Corollary 

2.4, conclude the existence of a subset o0 C [ 1, 2 . . . . .  m'  } of cardinality _> bk, for 

some b = b (p )  > 0, such that 

j~ooa:~: ~ <- Dllall,,, 

for all a E/plOOl, where D is the constant appearing in the statement of Corollary 

2.4. This upper estimate together with the fact that [[ ~oj lILT, -> c, f o r j  E Oo, imply, 

by interpolation, that 

I[ max I~:1 II~, -> el [aol l/p, 
jEoo 

for some constant c~ = cl (p) > 0. Therefore, there exists a subset ol C o0 of 

cardinality [ ol [ > ci ° 1 Oo[/2 and mutually disjoint subsets [ ~j }i~Ol of [ 1,2 . . . . .  n } 

such that II ~jx~jllL~ -> </ ,~ ;J  ~ o1. Hence, in view of Proposition 4.4 from [5], 

it follows that 
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aj j czllal]p, 

for  some constant  c2 = c z ( p )  > 0, some subset cr z C ai o f  cardinality propor t ional  

to that  o f  Ol and all a E lp 1°21 . This proves  the assert ion o f  T h e o r e m  0.1 for  some  

> 0. The  passage f rom this par t icular  case to the general one follows f rom the 

result presented in the next section. • 

3. Almost isometric copies of lp; p _> 2 

The object  o f  this section is to show that,  for  p _> 2, a sequence o f  vectors in an 

Lp-space, which is equivalent to the unit vector basis o f  lp,  contains in turn a sub- 

sequence of  length m '  p ropor t iona l  to m that  spans an a lmost  isometr ic  copy of  

l p ' .  The  exact s ta tement  is as follows. 

THEOREM 3.1. For every p >_ 2, 1 < K < oo and 0 < ~ < 1, there exists a con- 

stant c = c (p,  K, ~ ) > 0 such that, whenever  { f,. ]'F= 1 is a sequence o f  normalized 

func t ions  in an Lp-space which satisfies the condition 

m 
g-lllallp< i~=l aifi Lp < gtlallp'  

f o r  all a = (ai)m=~ E lp ,  then one can f i n d  a subset  r C {1, 2 . . . .  , m ]  such that 

I l -> c m  and 

(1 - e)[lallp - i~raif,  " L, <- (1 + e)llall p, 

f o r  any a = (ai)iEr E lip < • 

REM~a~K. The  assert ion o f  T h e o r e m  3.1 is false for  1 < p < 2, as s imple exam- 

ples show. It  is also false even, for  p _> 2, if  the under lying space is not  an 

Lp-space.  

PROOI: OF T r m o R n i  3.1 FORp = 2. Consider  the matr ix  ((f/,f~>)i,mj= l as a lin- 

• ear  ope ra to r  T acting on l~'. The  assumpt ions  made  on the funct ions  [fi}T=l im- 

ply tha t  T is o f  n o r m  _< K 2 and  has l ' s  on the d iagonal .  The re fo re ,  by  [5] 

T heo rem 1.6 (or [7] Corol la ry  1.2 for  a sharper  version), one can conclude the ex- 

istence o f  a constant  c = c(2 ,K ,  e ) > 0 and of  a subset r C 11, 2 , . . . ,  m} such that  

It[ >_ cm and [ [ R T ( T -  I)R~[[ < ¢2, where R~ denotes  the restriction ope ra to r  de- 

fined by 
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R7 aiei = aiei, 
iEr 

for all a = (a/)m=~ E 17. 

However,  for any choice of  a = (ai)i~, ~- !12 ~1 with norm equal to 1, we have 

that  

i , j  

which, of  course, completes the proof  in this case. 

PROOF Or THEOREM 3.1 VOR p > 2. This case is considerably more complicated 

than the previous one and requires again the use of  Proposit ion 1.1. 

Let [f,-lm=l be a sequence of  functions in an Lp(#)-space,  for some p > 2 and 

some probabili ty measure #, which satisfies the assumptions of  Theorem 3.1, for 

some K > 1. Then, as is easily verified, 

Put  

L 
define the measure v by setting dv = F p d# and notice that the map f - , f / F  f rom 

Lp (#) onto Lp (~) is a linear isometry that takes the functions f / i n t o  gi = f i /F; 
1 _< i _< m. Moreover,  

Fix now E > 0, 2 < s < p < q and X = ~l/sm l/p, where 0 < ~ < 1 will be chosen 

later, and observe that 

Thus, 

1 2< 2)1/2 

X[Igil>x ] < K2 /~  2/s 
c o  
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which fur ther  yields tha t  the funct ions  gX = giXllgil>x]; 1 <_ i <_ m, satisfy the 

est imate 

m Lp(p) i~=l aigi x <- ( K2/p'/~2/sp')II a lip, 

a m _ _ for  all a = ( i)i=l E l~. It  follows that  the t runcates  gi,× = gi - gi x of  gi; 1 < i < 

m, satisfy the upper  es t imate  

m Lp(v) i~=l aigi, h <_ [K + K2/p'/52/sp']llall p, 

for  a E 1~'. Therefore ,  by applying Propos i t ion  1.1, we conclude the existence o f  

a cons tant  C ( q )  < oo and o f  a subset  a C 11,2 . . . . .  m]  so tha t  l al = [~m] and 

i~oaigi, xl < C ( q )  [KtSI/p" + K2/p'ts(I-2/s)/p' + Kt~I/2-1/P + t51/s-I/p]lIaIlp, 
• Lp(v) 

for  a = (ai)ie~r E lip al. 
Suppose  now that  we have chosen 0 < ~ < 1 so as to ensure that  

~a aigi, x -< ~ 11 a lip, 
i~.o Lp(I.Q 

for  a E lp I~l, and consider now the peak  parts  {g/X }ie~ o f  {gi}ieo. Put  

Bi = [[g/I > h] = supPg/x; i E o, 

and consider the matr ix  (fBj Ig/XlPd~),,je~ as a linear opera to r  V acting on  the 

space li °l . Since 

Z Ig~Xl pd~' = IgiXl p Z xB, dv <_ Ilg,.Xll~p~) XB, <- g2/~  2/~, 
jEa \jEe / 

for  all i G o, the opera to r  V has n o r m  _< K2/6  2/~. Thus,  by a result f rom [11] 

or  [3], one can find a constant  c~ = e t ( p , K , c )  > 0 and a subset r C o such tha t  

I r l  > c , [ o ]  and 

IIRAV- I)R, II < eP(t~2/s/g2) p-1. 

This fact can be reinterpreted as to assert that  

[i ~Er laillgihJXOjEzBJ Lp(v) ~ (K2//~2/s)l/p" (i~E, lailPlg~lP~j~rBj) Lp(v) <~ ~ [ [ a l l P '  

j*i j~i 

for  all a E lp Id . Also notice that  
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II g/X xB,- (j~. B/) II Lp (i,) >- II gX tl ~p<~, -- II g/X XBin ( U  Bj) II ~ <,) 
j~:i j~i  

_> 1 - I [ g i ,  x[[L~( ,>-  g~ ~_jXs: >- 1 - 2 e ,  
jE~" Lp(v) 
j~i 

for all i E z. 

By combining these estimates, we obtain that  

j~i 

gi XB i - (~B j )  p )l/p >_ ~,, lail p x - e l l a l l p _ >  (1 - 3 e ) l l a l l p  
i~r  LpO')] 

j~:i 

and 

aigiX Lp(V) < ~-J x 1 a i g i x s i - ( U  Bj) + ellallp ~ (1 + e)llallp, 
iEr i~r jet  Zp(l,) 

j~i 

for any a = (a i ) i~T E l I~1 . This yields that 

I _  
(1 - 4e)llallp < li~a,g, Lp,,, < (1 - 2e)llallp, 

again, for all a E lp I'1 , thus completing the proof.  
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