EMBEDDING l_p^k IN SUBSPACES OF L_p FOR p > 2

BY

J. BOURGAIN^a AND L. TZAFRIRI^{b,†}

^aI.H.E.S., 35 route de Chartres, 91440 Bures-sur-Yvette, France and The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; and ^bThe Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

The aim of the present paper is to estimate in a precise manner the integer $k = k(p,m,n,\epsilon)$ so that an arbitrary *m*-dimensional subspace X of the space l_p^n ; p > 2, contains an $(1 + \epsilon)$ -isomorph of l_p^k . The main argument of the proof consists of a probabilistic selection which uses a lemma of Slepian. The same method also shows that any system of normalized functions in L_p ; $p \ge 2$, which is equivalent to the unit vector basis of l_p^n , contains, for any $\epsilon > 0$, a subsystem of size *h* proportional to *n*, which is $(1 + \epsilon)$ -equivalent to the unit vector basis of l_p^n .

0. Introduction

The geometry of finite dimensional subspaces of the space L_p has been studied intensively and quite precise numerical estimates have been proved in many cases. For instance, it was shown that any *m*-dimensional subspace X of l_{∞}^n of dimension $m \ge n^{\delta}$, for some $\delta > 0$, contains a well isomorphic copy of l_{∞}^k , with $k \ge C(\delta)m^{1/2}$, where $C(\delta)$ is a constant depending on δ only (cf. [9] in the case when *m* is proportional to *n* and [4] for a general δ). It was also noticed in [9] that, for a random subspace X of l_{∞}^n , the above estimates are best possible.

The aim of this paper is to consider the similar problem in l_p^n with p > 2, i.e., to estimate the maximal k so that a well isomorphic copy of l_p^k can be found in any subspace X of l_p^n ; p > 2, of a fixed dimension m. The dual case was considered in [6]. There it has been proved that if X is an m-dimensional subspace of l_p^n , p > 2, then its dual X* contains a well isomorphic copy of l_p^k , with p' = p/(p-1) and k of order of magnitude $(m/n^{2/p})^{p/(p-2)}$. This estimate is best pos-

[†]The authors were supported by Grant No. 87-0079 from BSF.

Received May 31, 1990

sible. We shall see in the sequel that one cannot expect to prove such a strong assertion for X itself.

Fix p > 2 and $1 \le m < n$, and let $\mathcal{G}_{n,m}$ denote the Grassman manifold of all *m*-dimensional subspaces of L_p^n . It follows from [13] that any $X \in \mathcal{G}_{n,m}$ contains a 2-Hilbertian subspace of dimension about m/d_X^2 , where d_X stands for the euclidean distance of X. Since, by [1], this number cannot exceed a multiple of $n^{2/p}$ we conclude that $d_X \ge cm^{1/2}/n^{1/p}$, for some constant c > 0. By using the isoperimetric inequality in the usual way, one can show that, for random elements X of $\mathcal{G}_{n,m}$, the euclidean distance is minimal (i.e. d_X is of order of magnitude $m^{1/2}/n^{1/p}$) and even that

$$||x||_{L_p^n} \le C \frac{m^{1/2}}{n^{1/p}} ||x||_{L_2^n},$$

for all $x \in X$ and some constant $C = C_p < \infty$ (see, e.g., [15]).

For a sequence $x = (a_1, a_2, \dots, a_n)$ in \mathbb{R}^n , the reader should distinguish between the norm $||x||_p = (\sum_{j=1}^n |a_j|^p)^{1/p}$ in l_p^n and $||x||_{L_p^n} = (\sum_{j=1}^n |a_j|^p/n)^{1/p}$ in L_p^n .

Suppose now that X is a random element of $G_{n,m}$ and let $k = k_p(X, K)$ be the maximal dimension of a subspace of X which is K-isomorphic to l_p^k . The case $m \le n^{2/p}$ is trivial since, under this assumption, X is Hilbertian. If $m > n^{2/p}$ choose 2 < r < p such that $m = n^{2/r}$ and note that the above considerations show that on X the L_2^n and L_r^n norms are equivalent and, therefore, also that

$$\max_{\substack{x \in X \\ x \neq 0}} \|x\|_{L^{n}_{r}} / \|x\|_{L^{n}_{1}} = C < \infty,$$

for some constant $C = C_r < \infty$, depending on r only.

Let *E* be a subspace of *X* for which there exists an invertible operator $T: l_p^k \to E$ such that $||T|| ||T^{-1}|| \le K$ and let E_q stand for *E* when *E* is considered as a subspace of L_q^n ; $1 \le q \le \infty$. Denote by $I_{q,s}$ the formal identity map from L_q^n into L_s^n and, by $i_{q,s}$, that from l_q^n into l_s^n . Consider the following diagram:

$$l_{\infty}^{k} \stackrel{i_{\infty,p}}{\to} l_{p}^{k} \stackrel{T}{\to} E_{p} \stackrel{I_{p,\infty}}{\to} E_{\infty} \stackrel{I_{\infty,1}}{\to} E_{1} \stackrel{I_{1,r}}{\to} E_{r} \stackrel{I_{r,p}}{\to} E_{p} \stackrel{T^{-1}}{\to} l_{p}^{k} \stackrel{i_{p,\infty}}{\to} l_{\infty}^{k}$$

and note that the 1-summing norm $\pi_1(l_{\infty}^k)$ of the identity operator on l_{∞}^k satisfies the inequalities

$$k \le \pi_1(I_{\infty}^k) \le \|i_{\infty,p}\| \|T\| \|I_{p,\infty}\| \pi_1(I_{\infty,1}) \|I_{1,r|X}\| \|I_{r,p}\| \|T^{-1}\|$$
$$\le KCk^{1/p} n^{1/p} n^{1/r-1/p} = KCk^{1/p} n^{1/r}.$$

It follows that

$$k_p(X,K) \leq (KC)^{p'} m^{p'/2}$$

SUBSPACES OF L_p

i.e., k cannot exceed a multiple of $m^{p'/2}$. Besides the example of random elements of $\mathcal{G}_{n,m}$, one can consider the following type of subspaces of L_p^n . Fix again $n^{2/p} < m < n$, take $j = (m/n^{2/p})^{p'(p-2)}$ and N = n/j (under the assumption that all these numbers are integers which can be made without any loss of generality). Since L_p^N contains a K-isomorph of $l_2^{N^{2/p}}$, for some $K < \infty$, it follows that L_p^n contains a subspace X which is K-isomorphic to the direct sum in the sense of l_p^j of j copies of $l_2^{N^{2/p}}$. It is easily checked that $k_p(X,K) = j = (m/n^{2/p})^{p/(p-2)}$ while dim $X = jN^{2/p} = j^{1-2/p}n^{2/p} = m$.

By combining the two estimates obtained above, we conclude that, for each value of $n^{2/p} < m < n$ and p > 2,

$$k_{\max}(n,m,p,K) = \max\{k_p(X,K); X \in \mathcal{G}_{n,m}\}$$

satisfies the inequality

$$k_{\max}(n,m,p,K) \leq M \min(m^{p'/2},(m/n^{2/p})^{p/(p-2)}),$$

for some constant $M = M(p, K) < \infty$.

It turns out that this is, up to a constant, the right order of magnitude.

THEOREM 0.1. For every p > 2 and $\epsilon > 0$, there exists a constant $c = c(p, \epsilon) > 0$ such that, whenever m < n and X is an m-dimensional subspace of L_p^n , then X contains a subspace E of dimension

$$k \ge c \min(m^{p'/2}, (m/n^{2/p})^{p/(p-2)})$$

which is $(1 + \epsilon)$ -isomorphic to l_p^k .

REMARK. By using [5] Theorem 4.3, one can strengthen Theorem 0.1 so as to assert that E is also c^{-1} -complemented in L_p^n .

The above result can be used to provide a negative solution to the following question raised by V. Milman in [14].

PROBLEM 0.2. Does there exist, for every K > 1 and $\epsilon > 0$, a constant $c(K,\epsilon) > 0$ such that, whenever X and Y are finite dimensional spaces with dim $X = \dim Y = n$ and $d(X, Y) \le K$, then one can find subspaces X_{ϵ} of X and Y_{ϵ} of Y for which $d(X_{\epsilon}, Y_{\epsilon}) < 1 + \epsilon$ and dim $X_{\epsilon} = \dim Y_{\epsilon} \ge c(K,\epsilon)n$?

Indeed, fix $\epsilon > 0$ and $K > (1 + \epsilon)^2$, and suppose that the problem above has a solution $c = c(K, \epsilon) > 0$. Fix $p_0 > 2$, let *n* be an integer satisfying $n^{1/2-1/p_0} > K$, and select $2 so that <math>n^{1/p-1/p_0} = K$. Then the spaces $X = l_{p_0}^n$ and $Y = l_p^n$ clearly satisfy the condition d(X, Y) = K. Let now X_0 be a subspace of X of di-

mension $\geq cn$. By using Theorem 0.1, we conclude the existence of a subspace X_1 of X_0 such that

$$d = \dim X_1 \ge a n^{p_0'/2}$$
 and $d(X_1, l_{p_0}^d) < 1 + \epsilon$,

for some $a = a(K, \epsilon, p_0) > 0$. It follows that, for any subspace Y_1 of Y with dim $Y_1 = d$, we have that

$$(1+\epsilon)d(X_1,Y_1) \ge d(l_{p_0}^d,Y_1) \ge d^{1/p-1/p_0} \ge a^{1/p-1/p_0} K^{p_0'/2} \ge a^{(\log K/\log n)} K^{1/2},$$

which shows that $d(X_1, Y_1)$ remains bounded away from 1, as $n \to \infty$.

Before presenting the proof of Theorem 0.1 in detail, we describe briefly its components.

Given an *m*-dimensional subspace X of L_p^n , for some p > 2, one constructs first a system of about *m* normalized vectors $\{\varphi_i\}_{i=1}^m$ in X whose upper *p*-estimate is $m^{1/2-1/p}$ and, after a change of density, is orthogonal and has a square function which is pointwise bounded by $n^{1/p}$. Each of these functions is then truncated at the level $\lambda = k^{1/p}$, where $k = \min(m^{p'/2}, (m/n^{2/p})^{p/(p-2)})$ is basically the dimension of the space l_p^k that we want to embed in X.

The main ingredient of the proof consists of a probabilistic selection result which can be used to lower the upper *p*-estimate of a system of uniformly bounded functions in L_p ; p > 2, by passing to a suitable subsystem, provided one has a good estimate on the square function and the pointwise bound of these functions. This selection theorem allows us to show that each random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality about k contains a subset σ' of size $|\sigma'| \ge 9|\sigma|/10$ so that the flat parts $\{\varphi_{i,\lambda}\}_{i\in\sigma'}$ of $\{\varphi_i\}_{i\in\sigma'}$ have a bounded upper *p*-estimate.

The peak parts $\varphi_i^{\lambda} = \varphi_i - \varphi_{i,\lambda}$; $1 \le i \le m$ are then considered separately and, by an argument using multilinear interpolation, one shows again that a generic subset σ of $\{1, 2, \ldots, m\}$ of cardinality k contains a subset σ'' with $|\sigma''| \ge 9|\sigma|/10$ such that $\{\varphi_i^{\lambda}\}_{i\in\sigma''}$, also has a bounded upper p-estimate. A standard argument of restricted invertibility (cf. [5]) proves then the existence of a subset η of $\{1, 2, \ldots, m\}$ of cardinality proportional to k such that $\{\varphi_i\}_{i\in\eta}$ is equivalent to the unit vector basis of $l_p^{|\eta|}$.

In order to pass to an almost isometric copy of l_p^k , we prove the general fact that any sequence $\{f_i\}_{i=1}^h$ of functions in L_p ; $2 \le p < \infty$, which is equivalent to the unit vector basis of l_p^h contains, for any $\epsilon > 0$, a subsequence $\{f_i\}_{i \in \tau}$, with $|\tau|$ proportional to h, which is $(1 + \epsilon)$ -equivalent to the natural basis of $l_p^{|\tau|}$. This is done by basically applying the previous part of the proof to the functions $\{f_i\}_{i=1}^h$ instead of $\{\varphi_i\}_{i=1}^m$ except that this case is handled easier.

1. Random selections

We start by proving the main part of the argument needed in the proof of Theorem 0.1.

PROPOSITION 1.1. For every q > 2, there exists a constant $C = C(q) < \infty$ such that, whenever $2 and <math>\{\psi_i\}_{i=1}^m$ is a set of functions in the space $L_p(\mu)$, for some probability measure μ , so that

(i)
$$\left\|\sum_{i=1}^{m}a_{i}\psi_{i}\right\|_{L_{p}}\leq\Gamma\|a\|_{p},$$

for all $a = (a_1, a_2, ..., a_m) \in l_p^m$,

(ii)
$$\left\| \left(\sum_{i=1}^{m} |\psi_i|^2 \right)^{1/2} \right\|_{L_q} \le B,$$

for some $B < \infty$, and

(iii)
$$\|\psi_i\|_{L_{\infty}} \leq \lambda,$$

for some $\lambda < \infty$, then, for any choice of $0 < \delta < 1$, a random subset σ of $\{1, 2, ..., m\}$ of cardinality $|\sigma| = [\delta m]$ contains in turn a subset σ' such that $|\sigma'| \ge 9|\sigma|/10$ and

(iv)
$$\left\|\sum_{i\in\sigma'}a_i\psi_i\right\|_{L_p} \le C(\delta^{1/p'}\Gamma + \delta^{1/2-1/p}Bm^{-1/p} + (\delta m)^{-1/p}\lambda)\|a\|_p,$$

for any $a = (a_i)_{i \in \sigma'} \in l_p^{|\sigma'|}$.

PROOF. Fix p, q, Γ, B, λ and consider a system of functions $\{\psi_i\}_{i=1}^m$ that satisfies (i), (ii), and (iii), as above. Put $r = q', \tau = m^{1/p'}/\Gamma$ and consider

$$\mathcal{G}_r = \{ x = (f, \tau \langle f, \psi_1 \rangle, \tau \langle f, \psi_2 \rangle, \dots, \tau \langle f, \psi_m \rangle); f \in L_r(\mu) \}$$

as a subspace of the direct sum $L_r(\mu) \oplus L_r^m$. Then, for an arbitrary subset η of $\{1, 2, ..., m\}$, define the operator $T_\eta : \mathcal{G}_r \to l_1^{|\eta|}$ by setting

$$T_{\eta}x = (\tau \langle f, \psi_i \rangle)_{i \in \eta}; \qquad x \in \mathcal{G}_r.$$

Fix $0 < \delta < 1$, let $\{\xi_i\}_{i=1}^m$ be a sequence of $\{0,1\}$ -valued independent random variables of mean δ over some probability space (Ω, Σ, ν) and put

$$\eta(\omega) = \{1 \le i \le m; \xi_i(\omega) = 1\}; \qquad \omega \in \Omega.$$

Then

$$\int_{\Omega} \|T_{\eta(\omega)}\| d\nu = \tau \int_{\Omega} \sup_{\substack{x \in \mathcal{G}_r \\ \|x\| \le 1}} \left[\sum_{i=1}^{m} \xi_i(\omega) |\langle f, \psi_i \rangle| \right] d\nu$$
$$\leq \tau \delta \sup_{\substack{x \in \mathcal{G}_r \\ \|x\| \le 1}} \left[\sum_{i=1}^{m} |\langle f, \psi_i \rangle| \right] + \tau \sqrt{2\pi} \int_{\Omega'} \int_{\Omega} \sup_{\substack{x \in \mathcal{G}_r \\ \|x\| \le 1}} \left[\left| \sum_{i=1}^{m} \xi_i(\omega) g_i(\omega') |\langle f, \psi_i \rangle| \right| \right] d\nu d\nu',$$

where $\{g_i\}_{i=1}^{m}$ is a sequence of mean zero independent Gaussian random variables over a probability space (Ω', Σ', ν') which are normalized in $L_2(\nu')$. By using Slepian's inequality (see, e.g., [7] Lemma 1.5 or [8]), we conclude that

$$\begin{split} \int_{\Omega} \|T_{\eta(\omega)}\| \, d\nu &\leq \delta m + D_1 \tau \int_{\Omega'} \int_{\Omega} \sup_{\substack{x \in \mathcal{G}_r \\ \|x\| \leq 1}} \left[\left| \left\langle \sum_{i=1}^m \xi_i(\omega) g_i(\omega') \psi_i, f \right\rangle \right| \right] d\nu \, d\nu' \\ &\leq \delta m + D_1 \tau \int_{\Omega} \left\| \left(\sum_{i=1}^m \xi_i(\omega) |\psi_i|^2 \right)^{1/2} \right\|_{L_q} d\nu, \end{split}$$

for some constant $D_1 < \infty$. The integral can be easily estimated by repeating the argument above (cf. [6]) and we obtain that

$$\begin{split} J &= \int_{\Omega} \left\| \left(\sum_{i=1}^{m} \xi_{i}(\omega) |\psi_{i}|^{2} \right)^{1/2} \right\|_{L_{q}} d\nu \\ &\leq \delta^{1/2} \left\| \left(\sum_{i=1}^{m} |\psi_{i}|^{2} \right)^{1/2} \right\|_{L_{q}} + D_{2} \int_{\Omega} \left\| \left(\sum_{i=1}^{m} \xi_{i}(\omega) |\psi_{i}|^{4} \right)^{1/4} \right\|_{L_{q}} d\nu \\ &\leq \delta^{1/2} B + D_{2} J^{1/2} \| \max_{1 \le i \le m} |\psi_{i}| \|_{L_{q}}^{1/2} \le \delta^{1/2} B + D_{2} J^{1/2} \lambda^{1/2}, \end{split}$$

for some $D_2 < \infty$. Hence,

$$\int_{\Omega} \|T_{\eta(\omega)}\| d\nu \leq D_3(\delta m + \tau \delta^{1/2} B + \tau \lambda),$$

for some numerical constant $D_3 < \infty$, which yields that, for a random subset $\sigma \subset \{1, 2, \ldots, m\}$ of cardinality $|\sigma| = [\delta m]$, we have that

$$\tau \sum_{i \in \sigma} |\langle f, \psi_i \rangle| \leq 2D_3 (\delta m + \tau \delta^{1/2} B + \tau \lambda) \left(\|f\|_{L_r} + \tau m^{-1/r} \left(\sum_{i=1}^m |\langle f, \psi_i \rangle|^r \right)^{1/r} \right),$$

SUBSPACES OF Lp

for all $f \in L_r(\mu)$. Therefore, by using a standard argument involving p'-stable variables (see, e.g., [5] Proposition 3.7), we get that the adjoint T_{σ}^* of T_{σ} is *p*-summing when considered as acting from $L_{\infty}^{|\sigma|}$ into $L_p(\mu) \oplus L_p^m$ and

$$\pi_p(T_{\sigma}^*: L_{\infty}^{|\sigma|} \to L_p(\mu) \oplus L_p^m) \le D(q) \| T_{\sigma}: L_r(\mu) \oplus L_r^m \to L_1^{|\sigma|} \|$$
$$\le 2D_3 D(q) (\delta m)^{-1} (\delta m + \tau \delta^{1/2} B + \tau \lambda),$$

where D(q) is a constant depending on q only. Then, by the factorization theorem of Pietsch (cf. [16]), one concludes that, for some $\sigma' \subset \sigma$ of cardinality $|\sigma'| \ge 9|\sigma|/10$ and some constant C(q), depending on q only, we have that

$$\|T_{\sigma'}^*: L_p^{|\sigma|} \to L_p(\mu) \oplus L_p^m\| \le C(q)(1 + \tau \delta^{-1/2}m^{-1}B + (\delta m)^{-1}\tau \lambda),$$

i.e., that

$$\begin{aligned} \tau(\delta m)^{-1/p'} &\left(\sum_{i \in \sigma'} |\langle f, \psi_i \rangle|^{p'}\right)^{1/p'} \\ &\leq C(q)(1 + \tau \delta^{-1/2}m^{-1}B + (\delta m)^{-1}\tau \lambda) \left(\|f\|_{L_{p'}} + \tau m^{-1/p'} \left(\sum_{i=1}^m |\langle f, \psi_i \rangle|^{p'}\right)^{1/p'}\right), \end{aligned}$$

for all $f \in L_{p'}(\mu)$.

However, it is easily verified that

$$\left(\sum_{i=1}^{m} |\langle f, \psi_i \rangle|^{p'}\right)^{1/p'} \leq \Gamma ||f||_{L_{p'}}; \quad f \in L_{p'}(\mu),$$

which yields, in view of the choice of τ , that

$$\left(\sum_{i\in\sigma'} |\langle f,\psi_i\rangle|^{p'}\right)^{1/p'} \le C(q) (\delta^{1/p'}\Gamma + \delta^{1/2 - 1/p}m^{-1/p}B + (\delta m)^{-1/p}\lambda) \|f\|_{L_{p'}},$$

for all $f \in L_{p'}(\mu)$. This, of course, implies our assertion.

2. Proof of Theorem 0.1

The object of this section is to present the proof of Theorem 0.1 in detail. To this end, we study systems of vectors $\{\varphi_i\}_{i=1}^m$ in an $L_p(\mu)$ -space, for p > 2 and some probability measure μ , which satisfy the following conditions:

(1°)
$$\left\|\sum_{i=1}^{m} a_{i} \varphi_{i}\right\|_{L_{p}} \leq m^{1/2 - 1/p} \|a\|_{p},$$

for any sequence $a = (a_1, a_2, \ldots, a_m) \in l_p^m$,

(2°)
$$\left\|\left(\sum_{i=1}^{m}|\varphi_i|^2\right)^{1/2}\right\|_{\infty}\leq n^{1/p},$$

$$\|\varphi_i\|_{L_p} \le 1,$$

for all $1 \le i \le m$.

The "flat" parts of the functions $\{\varphi_i\}_{i=1}^m$ are considered first in the next result.

PROPOSITION 2.1. For every p > 2, there exists a constant $C_1 = C_1(p) < \infty$ such that, whenever $\{\varphi_i\}_{i=1}^m$ is a sequence of functions in an $L_p(\mu)$ -space which satisfies the conditions 1°, 2° and 3° above, then a random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality

$$k = \min(m^{p'/2}, (m/n^{2/p})^{p/(p-2)})$$

contains in turn a subset σ' of cardinality $|\sigma'| \ge 9|\sigma|/10$ such that the truncations $\psi_i = \varphi_i \chi_{\{|\varphi_i| \le k^{1/p}\}}$; $i \in \sigma'$, of $\{\varphi_i\}_{i \in \sigma'}$ satisfy the inequality

$$\left\|\sum_{i\in\sigma'}a_i\psi_i\right\|_{L_p}\leq C_1(p)\|a\|_p,$$

for any $a = (a_i)_{i \in \sigma'} \in l_p^{\lceil \sigma' \rceil}$.

PROOF. Put $\lambda = k^{1/p}$ and $\varphi_i^{\lambda} = \varphi_i - \psi_i$; $1 \le i \le m$. Then notice that

$$\lambda \left\| \sum_{i=1}^m \chi_{[|\varphi_i| > \lambda]} \right\|_{\infty}^{1/2} \leq \left\| \left(\sum_{i=1}^m |\varphi_i|^2 \right)^{1/2} \right\|_{\infty} \leq n^{1/p},$$

which yields

$$\left\|\sum_{i=1}^m \chi_{[|\varphi_i|>\lambda]}\right\|_{\infty} \leq \lambda^{-2} n^{2/p}.$$

Hence, by Hölder's inequality, we get that

$$\left|\sum_{i=1}^{m} a_i \varphi_i^{\lambda}\right| \leq \sum_{i=1}^{m} |a_i \varphi_i^{\lambda}| \leq (\lambda^{-2} n^{2/p})^{1/p'} \left(\sum_{i=1}^{m} |a_i \varphi_i^{\lambda}|^p\right)^{1/p}$$
$$\leq (n/k)^{2/pp'} \left(\sum_{i=1}^{m} |a_i \varphi_i|^p\right)^{1/p}$$

and, further, that

for all $a \in l_p^m$. It follows that

$$\left\|\sum_{i=1}^{m} a_i \psi_i\right\|_{L_p} \leq (m^{1/2-1/p} + (n/k)^{2/pp'}) \|a\|_p,$$

for all $a \in l_p^m$, again. Thus, by Proposition 1.1 applied to the functions $\{\psi_i\}_{i=1}^m$ with $\Gamma = m^{1/2-1/p} + (n/k)^{2/pp'}$, $B = n^{1/p}$, $\lambda = k^{1/p}$ and $\delta = k/m$, we get that a random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality k contains a subset σ' such that $|\sigma'| \ge 9|\sigma|/10$ and

$$\left\|\sum_{i\in\sigma'}a_i\psi_i\right\|_{L_p} \le C_1[(k/m)^{1/p'}(m^{1/2-1/p}+(n/k)^{2/pp'}) + (k/m)^{1/2-1/p}(n/m)^{1/p}+1] \le 4C_1$$

for some constant C_1 , depending on p, and all $a \in l_p^{|\sigma'|}$ of norm ≤ 1 .

We like to prove a similar estimate for the "peak" parts $\{\varphi_i^{\lambda}\}_{i=1}^m$ of $\{\varphi_i\}_{i=1}^m$. To this end, we present first the following lemma.

LEMMA 2.2. For every integer h, there exists a constant $C_2 = C_2(h) < \infty$ such that, whenever $\{\varphi_i\}_{i=1}^m$ is a sequence of functions in an $L_p(\mu)$ -space; p > 2, that satisfies conditions 1°, 2° and 3° above, $k = \min(m^{p'/2}, (m/n^{2/p})^{p/(p-2)}), \lambda = k^{1/p}, \varphi_i^{\lambda} = \varphi_i \chi_{\{|\varphi_i| > \lambda\}}; 1 \le i \le m$, then a random subset $\sigma \subset \{1, 2, \ldots, m\}$ of cardinality k contains a subset σ'' of cardinality $|\sigma''| > 9|\sigma|/10$ such that, for all $1 \le j \le h$,

$$\sum_{i_1,i_2,\ldots,i_h\in\sigma''}^{(j)}\int |\varphi_{i_1}^{\lambda}\varphi_{i_2}^{\lambda}\cdots\varphi_{i_h}^{\lambda}|^{p/h}\,d\mu\leq C_2(h);\qquad i_j\in\sigma'',$$

where $\sum_{i_1,i_2,\ldots,i_h\in\sigma'}^{(j)}$ denotes summation over all indices $i_1, i_2, \ldots, i_h\in\sigma''$, except i_j , which remains fixed.

PROOF. In order to simplify our notation, put

$$M_{i_1,i_2,\ldots,i_h}=\int |\varphi_{i_1}^{\lambda}\varphi_{i_2}^{\lambda}\cdots\varphi_{i_h}^{\lambda}|^{p/h}d\mu,$$

for any $1 \le i_1, i_2, \ldots, i_h \le m$. Next, observe that, with $\delta = k/m$,

$$\int \frac{m}{m} + \frac{1}{2} \int \frac{m}{m} \frac{1}{m} = \frac{1}{2} \int \frac{m}{m} \frac{1}{m} \frac{$$

Also, if $s > \max(p/2, h)$ then we have that

$$\int \left(\sum_{i=1}^{m} |\varphi_i^{\lambda}|^{p/s}\right)^s d\mu \leq \int \left(\sum_{i=1}^{m} |\varphi_i^{\lambda}|^{p/s-2} |\varphi_i|^2\right)^s d\mu$$
$$\leq \lambda^{p-2s} \int \left(\sum_{i=1}^{m} |\varphi_i|^2\right)^s d\mu \leq k^{1-2s/p} n^{2s/p} = (n/k)^{2s/p} k \leq \delta^{-s} k,$$

in view of the fact that $k \le (m/n^{2/p})^{p/(p-2)}$. Hence, by Hölder's inequality, we conclude that, for each $1 \le t \le s$,

$$\int \left(\sum_{i=1}^m |\varphi_i^{\lambda}|^{p/t}\right)^t d\mu \leq \delta^{-t} k.$$

Then, with $\{\xi_i\}_{i=1}^m$ being again a sequence of $\{0,1\}$ -valued independent random variables of mean δ over some probability space (Ω, Σ, ν) and $l(i_1, i_2, \ldots, i_h)$ denoting the exact number of distinct indices in the tuple (i_1, i_2, \ldots, i_h) , it follows that

$$\sum_{1 \le i_1, i_2, \dots, i_h \le m} \int \xi_{i_1}(\omega) \xi_{i_2}(\omega) \cdots \xi_{i_h}(\omega) \, d\nu \, M_{i_1, i_2, \dots, i_h}$$
$$\leq \sum_{l=1}^h \delta^l \sum_{\substack{1 \le i_1, i_2, \dots, i_h \le m \\ l(i_1, i_2, \dots, i_h) = l}} M_{i_1, i_2, \dots, i_h}.$$

Now, for a fixed *l* and fixed decomposition of *h* as a sum $h = h_1 + h_2 + \cdots + h_l$ of integers $\{h_j\}_{j=1}^l$, consider all the tuples (i_1, i_2, \ldots, i_h) which contain exactly *l* distinct integers j_1, j_2, \ldots, j_l having h_1, h_2, \ldots, h_l as their respective multiplicities. Then the sum Σ' over these tuples only can be estimated by

$$\begin{split} & \Sigma' M_{i_1, i_2, \dots, i_h} \leq \int \prod_{j=1}^l \left(\sum_{i=1}^m |\varphi_i^{\lambda}|^{ph_j/h} \right) d\mu \\ \leq & \prod_{j=1}^l \left[\int \left(\sum_{i=1}^m |\varphi_i^{\lambda}|^{ph_j/h} \right)^{h/h_j} d\mu \right]^{h_j/h} \leq \prod_{j=1}^l \left(\delta^{-1} k^{h_j/h} \right) = \delta^{-l} k \end{split}$$

(use Hölder's inequality with the indices $\{h/h_j\}_{j=1}^l$ which clearly satisfy

$$1/(h/h_1) + 1/(h/h_2) + \cdots + 1/(h/h_l) = 1$$
.

Therefore, we conclude that

$$\sum_{i\leq i_1,i_2,\ldots,i_h\leq m}\int \xi_{i_1}(\omega)\xi_{i_2}(\omega)\cdots\xi_{i_h}(\omega)\,d\nu\,M_{i_1,i_2,\ldots,i_h}\leq C_0k,$$

for some constant $C_0 = C_0(h) < \infty$. Hence, for a random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality $|\sigma| = \delta m = k$, we get that

$$\sum_{i_1,i_2,\ldots,i_h\in\sigma}M_{i_1,i_2,\ldots,i_h}\leq 2C_0k.$$

This, of course, yields that any such σ contains in turn a subset σ'' of cardinality $|\sigma''| > 9|\sigma|/10$ such that

$$\sum_{i_1,i_2,\ldots,i_h\in\sigma''}^{(j)} M_{i_1,i_2,\ldots,i_h} \le C_2(h),$$

for all $1 \le j \le h$, $i_j \in \sigma''$ and some constant $C_2(h)$, depending on h only.

PROPOSITION 2.3. For every p > 2, there exists a constant $C_3 = C_3(p) < \infty$ such that, whenever $\{\varphi_i\}_{i=1}^m$ is a sequence of functions in an $L_p(\mu)$ -space which satisfies the conditions 1°, 2° and 3° above, $k = \min(m^{p'/2}, (m/n^{2/p})^{p(p-2)}), \lambda =$ $k^{1/p}$ and $\varphi_i^{\lambda} = \varphi_i \chi_{\{|\varphi_i| > \lambda\}}; 1 \le i \le m$, then a random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality k contains a subset σ'' of cardinality $|\sigma''| > 9|\sigma|/10$ such that

$$\left\|\sum_{i\in\sigma''}a_i\varphi_i^\lambda\right\|_{L_p}\leq C_3\|a\|_p,$$

for all $a = (a_1, a_2, ..., a_m) \in l_p^m$.

PROOF. Fix an integer q > p, choose $0 < \theta < 1$ so that $1/p = \theta/q + (1 - \theta)/2$ and notice that, by Hölder's inequality,

$$\sum_{i=1}^m \left| a_i \varphi_i^\lambda \right| = \sum_{i=1}^m \left| a_i \varphi_i^\lambda \right|^{\theta p/q} \left| a_i \varphi_i^\lambda \right|^{(1-\theta)p/2} \le \left(\sum_{i=1}^m \left| a_i \varphi_i^\lambda \right|^{p/q} \right)^{\theta} \left(\sum_{i=1}^m \left| a_i \varphi_i^\lambda \right|^{p/2} \right)^{1-\theta},$$

from which it follows that

$$\left\|\sum_{i=1}^m a_i \varphi_i^{\lambda}\right\|_{L_p} \leq \left\|\sum_{i=1}^m |a_i \varphi_i^{\lambda}|^{p/q}\right\|_{L_q}^{\theta} \cdot \left\|\sum_{i=1}^m |a_i \varphi_i^{\lambda}|^{p/2}\right\|_{L_2}^{1-\theta},$$

for all $a \in l_p^m$.

In order to evaluate the expressions appearing on the right-hand side, let h be an integer standing for either 2 or q and observe that

$$\left\|\sum_{i=1}^{m} |a_i \varphi_i^{\lambda}|^{p/h}\right\|_{L_h}^h = \sum_{1 \le i_1, i_2, \dots, i_h \le m} |a_{i_1} a_{i_2} \cdots a_{i_h}|^{p/h} M_{i_1, i_2, \dots, i_h},$$

where

$$M_{i_1,i_2,\ldots,i_h}=\int |\varphi_{i_1}^{\lambda}\varphi_{i_2}^{\lambda}\cdots\varphi_{i_h}^{\lambda}|^{p/h}\,d\mu,$$

for $1 \le i_1, i_2, ..., i_h \le m$.

Let now σ be a random subset of $\{1, 2, ..., m\}$ having cardinality k and $\sigma'' \subset \sigma$ the subset of cardinality $|\sigma''| > 9|\sigma|/10$ given by Lemma 2.2 such that

$$\sum_{i_1,i_2,\ldots,i_h\in\sigma''}M_{i_1,i_2,\ldots,i_h}\leq C_2,$$

for some $C_2 = C_2(h) < \infty$, all $1 \le j \le h$ and $i_j \in \sigma''$. Define next an *h*-linear form $T: \mathbf{R}^{|\sigma''|h} \to \mathbf{R}$ by setting

$$T(a^{1}, a^{2}, \ldots, a^{h}) = \sum_{i_{1}, i_{2}, \ldots, i_{h} \in \sigma''} a^{1}_{i_{1}} a^{2}_{i_{2}} \cdots a^{h}_{i_{h}} M_{i_{1}, i_{2}, \ldots, i_{h}},$$

for $a^j = (a_i^j)_{i \in \sigma^*}$; $1 \le j \le h$. Notice that, for each $1 \le j \le h$,

$$\begin{aligned} |T(a^{1}, a^{2}, \dots, a^{h})| \\ &\leq \sum_{i_{j} \in \sigma''} \sum_{i_{1}, i_{2}, \dots, i_{h} \in \sigma''} ||a^{1}||_{\infty} \cdots ||a^{j-1}||_{\infty} |a^{j}_{i_{j}}| ||a^{j+1}||_{\infty} \cdots ||a^{h}||_{\infty} M_{i_{1}, i_{2}, \dots, i_{h}} \\ &\leq C_{2} ||a^{1}||_{\infty} \cdots ||a^{j-1}||_{\infty} ||a^{j}||_{1} ||a^{j+1}||_{\infty} \cdots ||a^{h}||_{\infty}, \end{aligned}$$

for any $a^j \in \mathbb{R}^{|\sigma''|}$; $1 \le j \le h$. Therefore, by multilinear interpolation (cf., e.g., [2] p. 20), we conclude that

$$|T(a^1, a^2, \ldots, a^h)| \le C_3 ||a^1||_h ||a^2||_h \cdots ||a^h||_h$$

for some constant C_3 , depending only on p (since h depends on p only), and all $a^j \in l_h^{|\sigma^r|}$; $1 \le j \le h$. Hence, for any sequence $a = (a_i)_{i \in \sigma^r}$ with $||a||_p \le 1$, we have that

$$\left\|\sum_{i\in\sigma''}|a_i\varphi_i^{\lambda}|^{p/h}\right\|_{L_h}^h=T(|a|^{p/h},|a|^{p/h},\ldots,|a|^{p/h})\leq C_3\|a^{p/h}\|_h^h\leq C_3,$$

which further yields that

$$\left\|\sum_{i\in\sigma^*}a_i\varphi_i^{\lambda}\right\|_{L_p}\leq C_3.$$

COROLLARY 2.4. For every p > 2, there exists a constant $D = D(p) < \infty$ such that, whenever $\{\varphi_i\}_{i=1}^m$ is a sequence of elements in an $L_p(\mu)$ -space, for some

probability measure μ , which satisfies the conditions 1°, 2° and 3° above, then a random subset $\sigma \subset \{1, 2, ..., m\}$ of cardinality

$$k = \min(m^{p'/2}, (m/n^{2/p})^{p/(p-2)})$$

contains in turn a subset σ_0 of cardinality $|\sigma_0| > |\sigma|/2$ such that

$$\left\|\sum_{i\in\sigma_0}a_i\varphi_i\right\|_{L_p}\leq D\|a\|_p,$$

for any choice of $a = (a_i)_{i \in \sigma_0} \in l_p^{|\sigma_0|}$.

The next major step in the proof of Theorem 0.1 is to construct a suitable system of vectors in an arbitrary *m*-dimensional subspace X of an L_p^n -space for which Corollary 2.4 can be applied.

PROPOSITION 2.5. For every p > 2, there exists a constant c = c(p) > 0 such that any m-dimensional subspace X of L_p^n contains a sequence $\{\varphi_i\}_{i=1}^{m'}$ of elements that satisfies conditions 1°, 2° and 3° above and, in addition, m' > m/10 and

$$\|\varphi_i\|_{L_p^n} \ge c,$$

for all $1 \leq i \leq m'$.

PROOF. Fix p > 2, $1 < m \le n$, and let X be an m-dimensional subspace of L_p^n . By a result of D. Lewis [12], one may assume that, after a change of density, X_2 (i.e. X considered as a subspace of the corresponding $L_2^n(\mu)$ -space) admits an $L_2^n(\mu)$ -normalized orthogonal system $\{\zeta_i\}_{i=1}^m$ such that

$$\sum_{i=1}^m |\zeta_i|^2 = m$$

Since any other orthonormal system in X_2 is obtained from $\{\zeta_i\}_{i=1}^m$ by applying a unitary transformation it follows that any $L_2^n(\mu)$ -normalized orthogonal system $\{\zeta_i'\}_{i=1}^m$ satisfies the condition

$$\sum_{i=1}^m |\zeta_i'|^2 = m.$$

Next, we use a well-known result of F. John [10] in order to conclude the existence of an invertible operator u from l_2^m onto X_p (i.e. X considered as a subspace of $L_p^n(\mu)$) such that ||u|| = 1 and $\pi_2(u^{-1}) = m^{1/2}$.

In order to avoid confusion, we shall denote the norm in the space l_2^m by $|\cdot|_2$ to distinguish it from that in $L_2^n(\mu)$, which is denoted by $\|\cdot\|_{L_2^n}$.

The operator u is then used to construct, by induction, a sequence of vectors $\{w_i\}_{i=1}^J$ in l_2^m such that $J \ge m/3$ and

$$|w_j|_2 = 1,$$

(ii)
$$w_j \perp w_{j'}$$
 in l_2^m ,

(iii)
$$||u(w_j)||_{L^n_p} > 1/2$$
, and

(iv) $u(w_j) \perp u(w_{j'})$ in L_2^n ,

for all $1 \le j \ne j' \le J$.

Indeed, suppose that $\{w_j\}_{j=1}^l$ have already been constructed for some l < m/3 so that conditions (i)-(iv) are fulfilled and notice that the subspace H of l_2^m , defined by

$$H = [w_1, w_2, \ldots, w_l]^{\perp} \cap u^{-1}([u(w_1), u(w_2), \ldots, u(w_l)]^{\perp}),$$

is of dimension $\geq m - 2l > m/3$ and the identity map i_H on H can be written as

$$i_H = u_{|u(H)}^{-1} \circ u_{|H}.$$

Hence,

$$(m/3)^{1/2} < \pi_2(i_H) \le \pi_2(u^{-1}) ||u_{|H}|| \le m^{1/2} ||u_{|H}||$$

which further yields that

$$\|u_{|H}\| \geq 1/\sqrt{3}.$$

It follows that there exists a vector w_{l+1} in H so that $|w_{l+1}|_2 = 1$ and $||u(w_{l+1})||_{L_p^n} > 1/2$, thus completing the induction argument.

Define

$$\psi_j = u(w_j) / \| u(w_j) \|_{L_p^n}; \quad 1 \le j \le J,$$

and notice that

$$\left\|\sum_{j=1}^{J} a_{j} \psi_{j}\right\|_{L_{p}^{n}} \leq 2 \left|\sum_{j=1}^{J} a_{j} w_{j}\right|_{2} = 2 \left(\sum_{j=1}^{J} |a_{j}|^{2}\right)^{1/2} \leq 2m^{1/2 - 1/p} \left(\sum_{j=1}^{J} |a_{j}|^{p}\right)^{1/p},$$

for any choice of $(a_j)_{j=1}^J \in l_p^J$.

Assume now that $\{\psi_j\}_{j=1}^J$ have been reordered so as to have

$$\|\psi_1\|_{L_2^n} \le \|\psi_2\|_{L_2^n} \le \cdots \le \|\psi_J\|_{L_2^n}$$

and that J is an even integer. By the inequality above and the orthogonality of the vectors $\{\psi_i\}_{i=1}^J$ in L_2^n , we have that

$$2\left(\sum_{j=J/2}^{J}|a_{j}|^{2}\right)^{1/2} \geq \left\|\sum_{j=J/2}^{J}a_{j}\psi_{j}\right\|_{L_{p}^{n}} \geq \left\|\sum_{j=J/2}^{J}a_{j}\psi_{j}\right\|_{L_{2}^{n}} \geq \left(\sum_{j=J/2}^{J}|a_{j}|^{2}\right)^{1/2} \|\psi_{J/2}\|_{L_{2}^{n}},$$

for all $(a_j)_{j=J/2}^J$. Thus, as we have explained in the introduction,

$$2\|\psi_{J/2}\|_{L_2^n}^{-1} \ge d([\psi_j]_{j=J/2}^J, l_2^{J/2}) \ge am^{1/2}/n^{1/p},$$

for some constant 1 > a > 0, depending on p only. Consequently,

$$\|\psi_j\|_{L^n_2} \le 2n^{1/p}/am^{1/2}; \qquad 1 \le j \le J/2,$$

from which one deduces that

$$\sum_{j=1}^{J/2} |\psi_j|^2 \leq \frac{4n^{2/p}}{a^2m} \sum_{j=1}^{J/2} \frac{|\psi_j|^2}{\|\psi_j\|_{L_2^n}^2} \leq \frac{4n^{2/p}}{a^2}.$$

Therefore, the system $\varphi_j = a\psi_j/2$; $1 \le j \le J/2$, will satisfy the conditions 1°, 2° and 3° above with m' > m/10. Moreover, $\|\varphi_j\|_{L_p^n} = a/2$, for all $1 \le j \le J/2$.

PROOF OF THEOREM 0.1. Let X be an m-dimensional subspace of L_p^n , for some p > 2. By Proposition 2.5, construct a system $\{\varphi_j\}_{j=1}^{m'}$ of vectors in X with m' > m/10 which satisfies the conditions 1°, 2° and 3° above and, in addition, $\|\varphi_j\|_{L_p^n} \ge c$, for some c = c(p) > 0 and all $1 \le j \le m'$. Then, by using Corollary 2.4, conclude the existence of a subset $\sigma_0 \subset \{1, 2, \ldots, m'\}$ of cardinality $\ge bk$, for some b = b(p) > 0, such that

$$\left\|\sum_{j\in\sigma_0}a_j\varphi_j\right\|_{L_p^n}\leq D\|a\|_p,$$

for all $a \in l_p^{|\sigma_0|}$, where *D* is the constant appearing in the statement of Corollary 2.4. This upper estimate together with the fact that $\|\varphi_j\|_{L_p^n} \ge c$, for $j \in \sigma_0$, imply, by interpolation, that

$$\| \max_{j \in \sigma_0} |\varphi_j| \|_{L^n_p} \ge c_1 |\sigma_0|^{1/p},$$

for some constant $c_1 = c_1(p) > 0$. Therefore, there exists a subset $\sigma_1 \subset \sigma_0$ of cardinality $|\sigma_1| \ge c_1^p |\sigma_0|/2$ and mutually disjoint subsets $\{\eta_j\}_{j\in\sigma_1}$ of $\{1, 2, ..., n\}$ such that $\|\varphi_j \chi_{\eta_j}\|_{L_p^n} \ge c_1/\sqrt{2}$; $j \in \sigma_1$. Hence, in view of Proposition 4.4 from [5], it follows that

$$\left\|\sum_{j\in\sigma_2}a_j\varphi_j\right\|_{L_p^n}\geq c_2\|a\|_p,$$

for some constant $c_2 = c_2(p) > 0$, some subset $\sigma_2 \subset \sigma_1$ of cardinality proportional to that of σ_1 and all $a \in l_p^{|\sigma_2|}$. This proves the assertion of Theorem 0.1 for some $\epsilon > 0$. The passage from this particular case to the general one follows from the result presented in the next section.

3. Almost isometric copies of l_p^m ; $p \ge 2$

The object of this section is to show that, for $p \ge 2$, a sequence of vectors in an L_p -space, which is equivalent to the unit vector basis of l_p^m , contains in turn a subsequence of length m' proportional to m that spans an almost isometric copy of $l_p^{m'}$. The exact statement is as follows.

THEOREM 3.1. For every $p \ge 2$, $1 < K < \infty$ and $0 < \epsilon < 1$, there exists a constant $c = c(p, K, \epsilon) > 0$ such that, whenever $\{f_i\}_{i=1}^m$ is a sequence of normalized functions in an L_p -space which satisfies the condition

$$K^{-1} \|a\|_p \leq \left\|\sum_{i=1}^m a_i f_i\right\|_{L_p} \leq K \|a\|_p,$$

for all $a = (a_i)_{i=1}^m \in l_p^m$, then one can find a subset $\tau \subset \{1, 2, ..., m\}$ such that $|\tau| \ge cm$ and

$$(1-\epsilon)\|a\|_p \leq \left\|\sum_{i\in r} a_i f_i\right\|_{L_p} \leq (1+\epsilon)\|a\|_p,$$

for any $a = (a_i)_{i \in r} \in l_p^{|\tau|}$.

REMARK. The assertion of Theorem 3.1 is false for $1 \le p < 2$, as simple examples show. It is also false even, for $p \ge 2$, if the underlying space is not an L_p -space.

PROOF OF THEOREM 3.1 FOR p = 2. Consider the matrix $(\langle f_i, f_j \rangle)_{i,j=1}^m$ as a linear operator T acting on l_2^m . The assumptions made on the functions $\{f_i\}_{i=1}^m$ imply that T is of norm $\leq K^2$ and has 1's on the diagonal. Therefore, by [5] Theorem 1.6 (or [7] Corollary 1.2 for a sharper version), one can conclude the existence of a constant $c = c(2, K, \epsilon) > 0$ and of a subset $\tau \subset \{1, 2, \ldots, m\}$ such that $|\tau| \geq cm$ and $||R_{\tau}(T-I)R_{\tau}|| < \epsilon^2$, where R_{τ} denotes the restriction operator defined by

$$R_{\tau}\left(\sum_{i=1}^{m}a_{i}e_{i}\right)=\sum_{i\in\tau}a_{i}e_{i},$$

for all $a = (a_i)_{i=1}^m \in l_2^m$.

However, for any choice of $a = (a_i)_{i \in \tau} \in l_2^{|\tau|}$ with norm equal to 1, we have that

$$\left|\left\|\sum_{i\in\tau}a_if_i\right\|_{L_2}^2-\|a\|_2^2\right|=\left|\sum_{\substack{i,j\in\tau\\i\neq j}}a_ia_j\langle f_i,f_j\rangle\right|=\left|\left\langle (T-I)\left(\sum_{i\in\tau}a_ie_i\right),\sum_{i\in\tau}a_ie_i\right\rangle\right|<\epsilon^2,$$

which, of course, completes the proof in this case.

PROOF OF THEOREM 3.1 FOR p > 2. This case is considerably more complicated than the previous one and requires again the use of Proposition 1.1.

Let $\{f_i\}_{i=1}^m$ be a sequence of functions in an $L_p(\mu)$ -space, for some p > 2 and some probability measure μ , which satisfies the assumptions of Theorem 3.1, for some K > 1. Then, as is easily verified,

$$\left\|\left(\sum_{i=1}^{m} |f_i|^2\right)^{1/2}\right\|_{L_p(\mu)} \leq Km^{1/p}.$$

Put

$$F = \left(\sum_{i=1}^{m} |f_i|^2\right)^{1/2} / \left\| \left(\sum_{i=1}^{m} |f_i|^2\right)^{1/2} \right\|_{L_p(\mu)},$$

define the measure ν by setting $d\nu = F^p d\mu$ and notice that the map $f \rightarrow f/F$ from $L_p(\mu)$ onto $L_p(\nu)$ is a linear isometry that takes the functions f_i into $g_i = f_i/F$; $1 \le i \le m$. Moreover,

$$\left\|\left(\sum_{i=1}^{m} |g_i|^2\right)^{1/2}\right\|_{\infty} \leq Km^{1/p}.$$

Fix now $\epsilon > 0$, 2 < s < p < q and $\lambda = \delta^{1/s} m^{1/p}$, where $0 < \delta < 1$ will be chosen later, and observe that

$$\lambda \left\| \sum_{i=1}^m \chi_{[|g_i| > \lambda]} \right\|_{\infty}^{1/2} \leq \left\| \left(\sum_{i=1}^m |g_i|^2 \right)^{1/2} \right\|_{\infty}.$$

Thus,

$$\left|\sum_{i=1}^m \chi_{[|g_i|>\lambda]}\right|_{\infty} \leq K^2/\delta^{2/s}$$

which further yields that the functions $g_i^{\lambda} = g_i \chi_{||g_i| > \lambda|}$; $1 \le i \le m$, satisfy the estimate

$$\left\|\sum_{i=1}^{m} a_{i} g_{i}^{\lambda}\right\|_{L_{p}(\nu)} \leq (K^{2/p'}/\delta^{2/sp'}) \|a\|_{p},$$

for all $a = (a_i)_{i=1}^m \in l_p^m$. It follows that the truncates $g_{i,\lambda} = g_i - g_i^{\lambda}$ of g_i ; $1 \le i \le m$, satisfy the upper estimate

$$\left\|\sum_{i=1}^{m} a_{i} g_{i,\lambda}\right\|_{L_{p}(\nu)} \leq [K + K^{2/p'}/\delta^{2/sp'}] \|a\|_{p},$$

for $a \in l_p^m$. Therefore, by applying Proposition 1.1, we conclude the existence of a constant $C(q) < \infty$ and of a subset $\sigma \subset \{1, 2, ..., m\}$ so that $|\sigma| = [\delta m]$ and

$$\left\|\sum_{i\in\sigma}a_{i}g_{i,\lambda}\right\|_{L_{p}(\nu)} \leq C(q)\left[K\delta^{1/p'} + K^{2/p'}\delta^{(1-2/s)/p'} + K\delta^{1/2-1/p} + \delta^{1/s-1/p}\right]\|a\|_{p},$$

for $a = (a_i)_{i \in \sigma} \in l_p^{|\sigma|}$.

Suppose now that we have chosen $0 < \delta < 1$ so as to ensure that

$$\left|\sum_{i\in\sigma}a_ig_{i,\lambda}\right|_{L_p(\mu)}\leq\epsilon\,\|a\|_p$$

for $a \in l_p^{|\sigma|}$, and consider now the peak parts $\{g_i^{\lambda}\}_{i \in \sigma}$ of $\{g_i\}_{i \in \sigma}$. Put

$$B_i = [|g_i| > \lambda] = \operatorname{supp} g_i^{\lambda}; \quad i \in \sigma,$$

and consider the matrix $(\int_{B_j} |g_i^{\lambda}|^p d\nu)_{i,j\in\sigma}$ as a linear operator V acting on the space $l_1^{|\sigma|}$. Since

$$\sum_{j\in\sigma}\int_{B_j}|g_i^{\lambda}|^p\,d\nu=\int|g_i^{\lambda}|^p\left(\sum_{j\in\sigma}\chi_{B_j}\right)d\nu\leq \|g_i^{\lambda}\|_{Lp(\nu)}^p\left\|\sum_{i=1}^m\chi_{B_j}\right\|_{\infty}\leq K^2/\delta^{2/s},$$

for all $i \in \sigma$, the operator V has norm $\leq K^2/\delta^{2/s}$. Thus, by a result from [11] or [3], one can find a constant $c_1 = c_1(p, K, \epsilon) > 0$ and a subset $\tau \subset \sigma$ such that $|\tau| \geq c_1 |\sigma|$ and

 $||R_{\tau}(V-I)R_{\tau}|| < \epsilon^{p} (\delta^{2/s}/K^{2})^{p-1}.$

This fact can be reinterpreted as to assert that

$$\left\|\sum_{i\in\tau} |a_i| |g_i^{\lambda}| \chi_{\bigcup_{\substack{j\in\tau\\j\neq i}} B_j}\right\|_{L_p(\nu)} \leq (K^2/\delta^{2/s})^{1/p'} \left\| \left(\sum_{i\in\tau} |a_i|^p |g_i^{\lambda}|^p \chi_{\bigcup_{\substack{j\in\tau\\j\neq i}} B_j}\right)^{1/p} \right\|_{L_p(\nu)} < \epsilon \|a\|_p,$$

for all $a \in l_p^{|\tau|}$. Also notice that

$$\begin{split} \|g_i^{\lambda}\chi_{B_i \sim \left(\bigcup_{\substack{j \in \tau \\ j \neq i}} B_j\right)}\|_{L_p(\nu)} &\geq \|g_i^{\lambda}\|_{Lp(\nu)} - \|g_i^{\lambda}\chi_{B_i \cap \left(\bigcup_{\substack{j \in \tau \\ j \neq i}} B_j\right)}\|_{L_p(\nu)} \\ &\geq 1 - \|g_{i,\lambda}\|_{L_p(\nu)} - \left\|g_i^{\lambda}\sum_{\substack{j \in \tau \\ j \neq i}} \chi_{B_j}\right\|_{L_p(\nu)} \geq 1 - 2\epsilon, \end{split}$$

for all $i \in \tau$.

By combining these estimates, we obtain that

$$\left\|\sum_{i\in\tau}a_{i}g_{i}^{\lambda}\right\|_{L_{p}(\nu)} \geq \left\|\sum_{i\in\tau}a_{i}g_{i}^{\lambda}\chi_{B_{i}\sim\left(\bigcup_{\substack{j\in\tau\\j\neq i}}B_{j}\right)}\right\|_{L_{p}(\nu)} - \epsilon \|a\|_{p}$$
$$\geq \left(\sum_{i\in\tau}|a_{i}|^{p}\left\|g_{i}^{\lambda}\chi_{B_{i}\sim\left(\bigcup_{\substack{j\in\tau\\j\neq i}}B_{j}\right)}\right\|_{L_{p}(\nu)}^{p}\right)^{1/p} - \epsilon \|a\|_{p} \geq (1-3\epsilon)\|a\|_{p}$$

and

$$\left\|\sum_{i\in\tau}a_ig_i^{\lambda}\right\|_{L_p(\nu)} \leq \left\|\sum_{i\in\tau}a_ig_i^{\lambda}\chi_{B_i^{\sim}}(\bigcup_{j\in\tau\atop j\neq i}B_j)\right\|_{L_p(\nu)} + \epsilon \|a\|_p \leq (1+\epsilon)\|a\|_p,$$

for any $a = (a_i)_{i \in \tau} \in l_p^{|\tau|}$. This yields that

$$(1-4\epsilon)\|a\|_p < \left\|\sum_{i\in\tau} a_i g_i\right\|_{L_p(\nu)} < (1-2\epsilon)\|a\|_p,$$

again, for all $a \in l_p^{|\tau|}$, thus completing the proof.

References

1. G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On uncomplemented subspaces of L_p , 1 , Isr. J. Math. 26 (1977), 178-187.

2. G. Bennett and R. Shapley, Interpolation of operators, Academic Press, New York, 1988.

3. J. Bourgain, New classes of \mathcal{L}_p -spaces, Lecture Notes in Math. 889, Springer-Verlag, Berlin, 1981.

4. J. Bourgain, Subspaces of $L_{\mathbb{N}}^{\infty}$, arithmetical diameters and Sidon sets, in Probability in Banach Spaces V, Lecture Notes in Math. 1153, Springer-Verlag, Berlin, 1985.

5. J. Bourgain and L. Tzafriri, Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Isr. J. Math. 57 (1987), 137-224.

6. J. Bourgain, N. J. Kalton and L. Tzafriri, Geometry of finite dimensional subspaces and quotients of L_p , in Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1987-88 (J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes in Math. 1376, Springer-Verlag, Berlin, 1989.

7. J. Bourgain and L. Tzafriri, On a problem of Kadison and Singer, to appear.

8. X. Fernique, Regularite des trajectories des fonctions aleatoires gaussiennes, in École d'Eté de Probabilite 1974, Lecture Notes in Math. 480, Springer-Verlag, Berlin, 1975.

9. T. Figiel and W. B. Johnson, Large subspaces of l_n^{∞} and estimates of the Gordon-Lewis constant, Isr. J. Math. 37 (1980), 92-112.

10. F. John, *Extremum problems with inequalities as subsidiary conditions*, Courant Anniversary Volume, Interscience, New York, 1948, pp. 187-204.

11. W. B. Johnson and G. Schechtman, On subspaces of L_1 with maximal distances to Euclidean spaces, Proc. Res. Workshop on Banach Spaces Theory (Bor-Luh-Lin, ed.), University of Iowa, 1981, pp. 83-96.

12. D. R. Lewis, Finite dimensional subspaces of L_p , Studia Math. 63 (1978), 207-212.

13. V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Funct. Anal. Appl. 5 (1971), 28-37.

14. V. D. Milman, Geometrical inequalities and mixed volumes in local theory and Banach spaces, Asterisque 131 (1985), 373-400.

15. V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer-Verlag, Berlin, 1986.

16. A. Pietsch, Absolute p-summierende Abbildugen in normierten Raumen, Studia Math. 28 (1967), 333-353.