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ABSTRACT 

For every fixed k ~ 3 there  exists  a cons tan t  ck wi th  the  following prop- 

erty. Let  H be  a k-uniform, D-regular  hype rg raph  on N vertices,  in 

which no two edges conta in  more  t h a n  one c o m m o n  vertex.  If k ~> 3 t hen  

H con ta ins  a m a t c h i n g  covering all vertices b u t  a t  mos t  ckND -1~(k-I). 

If k = 3, t h e n  H conta ins  a m a t c h i n g  covering all vertices bu t  at  mos t  

c3ND -1/2 In 3/2 D. Th i s  improves previous e s t ima tes  and  implies, for ex- 

ample ,  t h a t  any  Steiner Triple Sys tem on N vertices conta ins  a m a t c h i n g  

covering all vertices bu t  at  mos t  O(N 1/2 In 3/2 N) ,  improving  resul ts  by 

various au thors .  
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1. I n t r o d u c t i o n  

A h y p e r g r a p h  is a pair (V, H),  where V is a finite set of ve r t i ce s  and H is a 

finite family of subsets of V, called edges.  It is k -un i fo rm if every edge contains 

precisely k vertices. The d e g r e e  deg(x) is the number of edges containing x and 

the c o d e g r e e  codeg(x, y), for two distinct vertices x and y, is the number of 

edges containing both x and y. The hypergraph is D- regu la r  if the degree of 

each of its vertices is D and it is s imple  if the codegree of every pair of vertices is 

at most 1. A m a t c h i n g  (or packing)  in a hypergraph is a collection of pairwise 

disjoint edges. 

The "semi-random" method was initiated in [1] and led to the pioneering work 

of R6dl [12] in which he introduced his "nibble" technique. Extensions of his 

result by various researchers including Frankl and RSdl [5] and Pippenger and 

Spencer [11] followed. One of the early extensions is Pippenger's result that  for 

every fixed k and c > 0 there is some ~ = ~(k,e) > 0, and Do = D0(k,e) such 

that any k-uniform hypergraph on N vertices in which all the degrees are between 

(1 - 6)D and D, where D > D0, and all the codegrees are at most 6D contains 

a matching covering all vertices but at most eN. The proof does not supply, 

however, a good bound for the dependence of Do and 5 on e, and such a bound 

is desirable in various applications, such as the one mentioned in Corollary 1.2 

below. 

In the present paper we restrict our attention to the special case of regular, 

simple hypergraphs. For this case, a recent result of Grable [7] implies that  

for any e > 0, any k-uniform, D-regular hypergraph on N vertices contains a 

matching covering all vertices but at most O(N(D/lnN)-l/(2k-l+E)), provided 

D is sufficiently large as a function of k and e. Our main result is the following 

stronger result. 

THEOREM 1.1: Let ( V, H) be a simple k-uniform, D-regular hypergraph on N 

vertices. If k > 3 there exists a matching P covering all vertices but at most 

O(ND-1/(k-1)). 

If k = 3 there exists a matching P covering all vertices but at most 

O(ND -W2 In 3/2 D). 

Here and throughout the constants implicit in 0 and o-type notations depend 

only on k and are uniformly bounded as N, D --~ c~. The proof of the main result 
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(and of a slightly stronger version of it, that  merely assumes the hypergraph is 

nearly regular) is described in the next section. Our central idea is to take, 

repeatedly, a "random bite" out of (V, H). This differs from a "nibble" in that  

it removes a positive proportion of V, and contains a mechanism that keeps the 

remaining hypergraph nearly regular. The details require some careful analysis, 

described in Section 2. One key to the analysis is the use of m a r t i n g a l e s  to 

bound large deviations. The martingale inequality used is given in Section 3. 

Several simple corollaries of the main result, and some related questions are 

described in the final Section 4. Here we only state one such result. 

A S t e i n e r  Tr ip le  S y s t e m  is a 3-uniform, simple hypergraph in which every 

pair of vertices is contained in precisely one edge. Improving previous results by 

various authors (see [10], [15], [16]), Brouwer [3] proved that any Steiner Triple 

System on n vertices contains a matching which covers all vertices but at most 

5n 2/3. Since a Steiner Triple System is clearly d = (n - 1)/2-regular, Theorem 

1.1 supplies the following asymptotic improvement. 

COROLLARY 1.2: Any Steiner Triple System on n vertices contains a matching 

covering all vertices but at most O(n a/2 In 3/2 n). 

2. P r o o f  of  t h e  m a i n  r e su l t  

We first define a bite without reference to randomness. 

BITE. A bite is determined by a choice of edges X C_ H, called chosen edges, 

and a choice of vertices W C_ V called wasted vertices. Given X, W we set 

M = { E  c X : E A  E' = 0 for all other E' E X}  

and call all E C M isolated edges. These are clearly disjoint. We then set 

V * = V - [ . . J M - W  

and 

H* = HIv.,  

where H]v* denotes the induced subhypergraph of H on V*. 

THE BIG PICTURE. Begin with (V, H) = (V0, H0). At stage i given (Vi, Hi) we 

take an appropriate bite Xi, Wi giving Mi and a new (V~+I, Hi+l) = (V*, H*). 
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We continue until we reach some (V~, H~) when we quit. Then P = Ui<~Mi is 

our packing. All vertices not in U P are either in V~ or in some Wi so 

w-UP[  <_ IV l+  lWJ. 
i<w 

(A w E Wi might well be in U Mi so this is an overcount.) Because the bite has 

to be iterated the difficulty lies in giving conditions on an intermediate value of 

(Vi, Hi) so that  we can take a "good-sized bite" and still have (Vi+l,///+1) meet 

those same conditions. The exact statement is given in Theorem 2.1 below. 

WASTE. W h y ,  you might well ask, should we ever "waste" vertices w E V. 

The original (V, H) is regular but as we take successive random bites the values 

of deg(x) (in (V~, Hi)) have a tendency to get further and further apart. The 

(suitably random) wastage W is a stabilization mechanism, designed to keep the 

values deg(x) reasonably close together. 

DEGREES. Returning to the bite of (V,H) we define, for x E V*, deg*(x) to 

be the degree of x in V*, the number of E E H* with x E H*. For analysis we 

consider deg* (x) to be the number of E E H with x E E such that E -  {x} C V*. 

This is defined for all x E V and the definitions coincide when x E V*. 

LIMITED EFFECT. Suppose smallbite and bigbite were identical except for one 

E E H, chosen in bigbite but not in smallbite, tf  E is isolated in bigbite then it 

is in M for bigbite but not smallbite. On the other side, if E I O E ¢ 0 and E ~ 

is isolated in smallbite then E ~ is in M for smallbite but not bigbite. This can 

hold for at most k sets E I, one for each vertex of E, as two E ~ sharing a common 

vertex with E cannot both be isolated. Thus M differs in at most k --= O(1) places 

between smallbite and bigbite. Hence ]V*] differs by at most k(k + 1) -- O(1). 

For any x E V the sets E - {x}, x E E E H are mutually disjoint as, critically, 

H is simple. Thus the values deg*(x) differ by at most k(k + 1) = O(1) between 

smallbite and bigbite. More easily, now suppose smallbite and bigbite differ only 

in that  x E W for bigbite but not for smallbite. This affects V* by at most one 

vertex (x itself) and deg* (y) by at most one and then only for those y sharing 

an edge with x. 

RANDOM BITE. Let (V, H) be given along with parameters D, A such that  

D - A _< deg(x) _< D 
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for all x E V. We take X random with 

1 
Pr[E E X] = 

for all E E H,  the events E E X being mutually independent. For v E V set 

p(v) = Pr[v E E for some E E M]. 

This is given precisely by 

p(v) = E Pr[E E MI = E 1--  
v6E v6E 

where f (E)  is defined as the number of E '  E H overlapping E.  As H is simple 

no E '  overlaps E in more than one vertex so 

f (E)  = E (deg(v') - 1). 
v'EE 

Define p* as the maximal p(v) over all v E V. Now let W be a random subset of 

V with the events w E V mutually independent and 

Pr[w E W] = c(w) 

(c for compensatory) where c(w) is that  value satisfying 

p ( w )  + - p ( w ) c ( w )  = p*. 

With the probability space now defined X, M, deg*(x), V*, H* become random 

variables. Our definition assures 

Pr[w E V*] = 1 - p(w) - c(w) + p(w)c(w) = 1 - p* 

precisely for all w E V. That ,  indeed, is the purpose of the wastage W. Note a 

subtle point, that  the value c(w) is determined by (V, H)  and does not depend 

on the actual value of X. Hence the probability space defined by the random 

bite can be (and will be) considered as one generated from mutually independent 

events of the forms E E X and w E W. 

THEOREM 2.1: Let k >_ 3 be fixed. Then there exist K, Dm~n so that:  Let (V, H)  

be a k-uniform simple hypergraph on N vertices such that D - A < deg(x) _< D 

for all x e V where D > Dmi,, and 

A = KDX/2 In 1/2 D. 
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Then there exists a bite X,  W with 

IWI = O ( N D  -1/2 In 1/2 D) 

with (V*,H*)  having N* vertices, D* - A* <_ deg*(x) <_ D* for all x C V* with 

N* < N(1 - e-k)(1 + O(D-°'4)), 

- ~ -  : (1 + O ( D - ° ' 4 ) )  

and, critically, 
A* = K(D*) 1/2 in 1/2 D* 

with the same I(. 

The relationship between N* and D* could certainly be tightened but it will 

suffice for our purposes. It is the near-regularity of (V*, H*) that will be most 

important. We shall show that with positive probability the random bite X, W 

defined above satisfies these conditions. 

LITTLE COMPENSATION. We first note that all f ( E )  = kD + O(A) so that all 

p(v) = (D + O ( A ) ) ~  ( l  _ ~ )  kD+°(zx) 

= (1 + O ( A / D ) ) e  -k = (1 + O(D-1/2 ln  U2 D))e -k 

so that 
p* = (1 + O(D -1/2 In 1/2 D))e -k 

(in particular, p* = e -k + o(1)) and the compensatory 

e(w) = O(D -1/2 in 1/2 D) 

for all w E V. Now 

E[IWI] = ~ c(w) : O ( N D  -1/2 In 1/2 D) 

and [W I is the sum of mutually independent indicator random variables. 

apply Chernoff bounds (see, e.g., the appendix of [2]) to give 

(1) Pr[IW I > c t N D  -1/2 in U2 D] = e -f~(ND-1/21nl/2 D) 

We 

for an appropriately large constant cl. 
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VERTICES. We have precisely 

E[IV*I] = E P r [ v  E V*] = (1 -p*)N.  
U 

Our probability space is determined by at most N D / k  choices of whether X E E 

and N choices of whether w E W. The first type is yes with probability D -1, 

the second with probability O(D -1/2 In 1/2 D). By limited effect, each choice can 

change IV*l by only a constant. The Martingale Inequality of Section 3 then 

gives 

Pr[[ [V*]- (1 - p*)N [ > aN 1/2] < e -~(~2) 

We set c~ = NU2D-1 (not needing the tightest result here) so = o~1vl,2).'--~" for 

that 

(2) Pr[[ IV*l-  (1 - p * ) N l >  ND -1] < e -~(ND-2). 

It is worth noting that a = N1/2D-°'4 would also suffice here, but (2) will do as 

well. 

Now we turn to degrees. Fix x E V and set Z = deg*(x). By Linearity of 

Expectation 

(3) E[Z] = E Pr[E - {/} C_ V*]. 
xEE 

CLAIM 1: F i x  E E H containing x .  T h e n  

P r [ E -  {x} C V*] -- (1 + O(D-1))(1 _p . )k -1 .  

We set E -  = E - {x} for convenience. As Pr[y E V*] = 1 - p* we need to 

show the events y E V* are "nearly" (k - 1)-wise independent. We reach this in 

stages. 

Suppose 1 < l < k - 1 and let 11, ~ ,  A be over 1 < i < I. First let F1 , . . . ,  Fl E 

H be disjoint. Then 11 Pr[Fi E M] and Pr[AF~ E M] differ only in that  Pr[F ~ X] 

is multiply counted in 11 for the O(1) edges F overlapping two or more of the 

Fi. Thus 

Pr[AF~ E M] = (1 + 0 ( 0 - 1 ) ) I I  Pr[Fi E M]. 

Now let Yl . . . .  yl E E - ,  and compare 

I-[p(yi) = ~ YIPr[F~ E M], 
y~EF~ 
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where the sum ranges over all/-tuples of edges Fi satisfying Yi E Fi, with 

Pr[Ayi E U M ]  = Pr[E • M] + Z Pr[AFi E M], 
y, EFI 

where ~ *  is over all choices of l disjoint edges Fi with Yi E Fi. Then y~'~* is 

missing O(D ~-1) of the ,,~ D t terms (F1, . . . ,  Ft) with Yi • Fi of Y~. The terms of 

are comparable. Deleting O(D z-l) terms changes it by a 1 + O(D -1) factor, 

the change from 1-[ Pr to Pr[A] is another 1 + 0(D-1) ,  and Pr[E • M] = O(D -1) 
is a third 1 + O(D -1) factor so that 

II[AYi • U M] = (1 + 0 ( 9 - 1 ) )  1-IP(Yi)" 

Let further Z l , . . . ,  zs • E -  be distinct (though possibly zj = Yi)- Then 

Pr[Ayi • U M  A hzj • W] = (1 + 0(O-1))  l ip(y , )  x YI  c(zj) 

as Pr[zj • W] = c(zj) and this event is independent of all other choices. As this 

product is at most one we can rewrite 

P r [ A y i e U M A A z j  • W]= I I p ( y i  ) x I I c ( z j )+O(9-1) .  

The event E -  C_ V* may be written as a Boolean combination of the "atomic" 

events y • U M and z • W over all y ,z  • E - .  By Inclusion-Exclusion 

Pr [E-  C_ V*] can be written as the sum and difference (with 3 k-1 = 0(1) terms) 

of probabilities of conjunctions of atomic events and so the probability is within 

an additive O(D -1) of what it would be if the atomic events were independent. 

But in that  case we would have Pr [E-  c_ V*] = 1-IPr[y • V*] = (1 - p.)k-1. 
Thus Pr [E-  C_ V*] = (1 - p.)k-1 + O(D-1). As (1 - p.)k-1 ,.~ (1 - e-k) k-I is 

bounded away from zero we can rewrite this in the form on the Claim. | 

From Claim 1 and (3) Z = deg* (x) has 

E[Z] = deg(x)(1 - p*)k-l(1 + 0(9-1))  

so the bounds on deg(x) of Theorem 2.1 give from above 

D(1 - p,)k-1 + 0(1) _> E[Z] 

and from below 

E[Z] >_ D(1 - p,)k-1 _ (K(1 - p,)k-1 + o(1))D1/2 i n l / 2  D. 
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This is an important savings, the discrepancy A in the degrees in (V, H) is multi- 

plied by (1 _p. )k-1  ,,~ (1 - e - k )  k-1 in going to (V*, H*). This is counterbalanced 

by the new variation in the degrees due to the randomness, which we now address. 

CLAIM 2: For o~ --- o(D 1/2) 

Pr[[Z - E[Z][ > aD 1/2] < e -n('~). 

Call E E H primary if it contains x, secondary if it overlaps a primary edge, 

tertiary if it overlaps a secondary edge. In case of multiple designation take the 

earliest. Z is determined by these edges and W. In the sense of Section 3 we give 

a strategy for "Paul" to determine Z. Paul first asks "Carote" which primary 

and secondary E are in X. Then call a secondary E important if E E X and no 

other overlapping secondary E is in X. There are only O(D) such E, at most 

one containing each y sharing an edge with x. Paul then asks if E '  E X for each 

tertiary E' that  overlaps an important E. There are only O(D 2) such E I. Now 

which secondary E are in M is determined. Finally Paul asks if y E W for each 

of the O(D) vertices y sharing an edge with x. Now Z is determined precisely. 

By Limited Effect each query has effect O(1). There were O(D 2) queries, each 

yes with probability D -1 followed by O(D) queries each yes with probability 

O(D-x/2 lnl/2 D). Claim 2 then follows from the Martingale Inequality of Section 

3. 

Remark: Querying only O(D 2) instead of all O(D 3) of the tertiary E'  above 

was a critical savings. This well illustrates the power of the Martingale Inequal- 

ity. Paul's queries on the tertiary E r do depend on Carole's responses on the 

secondary E. 

We take a = c In 1/2 D with c large so that, say, 

P r [ [ Z -  E[Z][ > cD1/21n 1/2 D] < D -2°. 

Note that  c does not depend on K.  We combine this with the always true bounds 

on E[Z]. Let BAD(x) be the event that either 

deg*(x) > D(1 - p,)k-x + (c + 1)D 1/2 In 1/2 D 

or  

deg*(x) < D(1 - p,)k-1 _ [K(1 - p,)k-1 + c + 1]D 1/2 In 1/2 D. 
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Then 

Pr[BAD(x)] < D -2°. 

The event BAD(x) depends only on primary, secondary and tertiary edges and 

vertices on pr imary edges. We define a dependency graph on V, making x, y ad- 

jacent if there is a link x = xo, Xl, x2, x3, x4, x5, x6 -- y (or shorter) with xi, Xi+l 

sharing an edge. The dependency graph has degree O(D 6) and BAD(x) is mu- 
1 tually independent of all BAD(y) with y not adjacent to x. As O(D6)D -2° < 

the conditions of the Lov~sz Local Lemma (cf., e.g., [2]) apply and 

Pr[ABAD(x)] > H I 1  - 2 Pr[BAD(x)]] > e -3ND-~°. 

This probability is much larger (!) than the large deviation probabilities (1),(2) 

for IWI and IV*I. Thus with positive probability the random bite satisfies 

-,BAD(x) for all z E V, 

[W[ = O(ND -1/2 In 1/2 D), 

[]Y*[- N(1-p*)] < NO -1. 

Hence there exists a bite with these properties. Of course, we only really need 

-~BAD(x) for x E V*. 

Lets check that  this bite satisfies Theorem 2.1. We set 

D* = D(1  - p , ) k - 1  + (c + 1 )D 1/2 In 1/2 D ,  

N* = IV*l = N(1 - p*)(1 + O(D-1)), 

so that  both 

N* = N(1 - e-k)(1 + O(D-° '4) )  

and 

-V= 

with room to spare. Now we may take 

(1 + O(D-° '4))  

A* = [K(1 - p . )k-1  + 2c + 2]D t/2 In 1/2 D. 

As D* N D(1 - p . ) k - 1  we have 

A* ~ [K(1 - p.)k-1 + 2C + 2](1 - p,)-(k-1)/2. 
(D*)I/2 In 1/2 D* 
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Having chosen c and noting p* = e-k+o(1)  we pick K to be a constant (dependent 

only on k) so that 

[K(1 - e-k) k-1 + 2c + 2](1 - e-k) -(k-1)/2 < K 

and the proof of Theorem 2.1 is completed. | 

Now we prove Theorem 1.1. Begin with (V, H) = (Vo, H0) with N, D. Let 

K be the constant of Theorem 2.1. The conditions of Theorem 2.1 certainly 

apply as (V, H)  is precisely D-regular. Apply it repeatedly giving M~, Wi and 

(Vi+l, Hi+l)  until reaching (V~, H~) with D~ < Drain so that  Theorem 2.1 no 

longer applies. We have 

Di (1 + 0(D7°4)). 

As the Di are dropping geometrically the product of the 1 + O(D~ -°4) terms is 

bounded from below and above by positive constants so that multiplying over 

0 < i < w  

and since we continue until D~ = (9(1) the process stops with 

IV~I = N., = O(ND-1/(k-1)) .  

The "wasted" vertices have 

IWil = O( NiD'( 1/2 In 1/2 Di ). 

Changing from i to i + 1 N is multiplied by roughly 0 = 1 - e -k and D by 

roughly 0 k-1 while ln D remains asymptotically the same. Thus the bound on 

Wi is multiplied by 01-(k-1)/2. 

Now (finally!) we separate the k > 3 and k = 3 cases. Suppose k > 3. Then 

1 - (k - 1)/2 < 0 and 8 < 1 so the bounds on IWil increase geometrically and 

hence ~ i < ~  IW~I is bounded by a constant times the bound on IW~_ll. But this 

is at most the total number N~-I  of vertices at this penultimate stage which is 

at most a constant times the number of vertices N~ at the end. So 

IW~l = O(N~) = O ( N D  -1~(k-U) 
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giving the desired bound on I V -  U PI. Now suppose k = 3. We get (Vi, Hi) with 

IV,,I = O(ND-t/2).  But now 

\ D i  ~ In 1/2 Di 

as N~D~ 1/2 remains near-constant. The D~ drop geometrically. Working back- 

wards from w, In D~_~ grows linearly in i up to i = w. Then 

E lnl/2 Di = O( E 21/2) = O(w3/e). 
j<w 

As the Di drop geometrically from D there are w = O(ln D) steps so the total 

wastage is 
O(ND -1/2 In a/a D). 

This dominates IV~I and so gives the bound for IV - UPI .  This completes the 

proof of Theorem 1.1. | 

3. Martingale inequalities 

Martingales have become in recent years a very powerful tool for the Probabilistic 

Method. A general discussion is given in [2]. The junior author's breakthrough 

[9] as well as several previous papers (see, e.g., [8]) illustrated how to make use 

of small probabilities. Still, both [2] and [9] deal with an essentially static case in 

which the order of the martingale exposures has no relevance. Here we give a quite 

general inequality which also precisely suits our purposes. A similar inequality 

appears in Lemma 3.4 of [8]. Our presentation is entirely self-contained, though 

a rereading of [2] might help with motivation. 

We assume our underlying probability space is generated by a finite set of 

mutually independent Yes/No choices, indexed by i E I. In our case the choices 

are of the forms E E X and w E W. We are given a random variable Y on this 

space, in our cases IV*I and deg*(x). Let Pi denote the probability that  choice 

i is Yes. Let ci be such that  changing choice i (keeping all else the same) can 

change Y by at most ci. We call ci the effect of i. Let C be an upper bound on 

all ci. In our cases C = O(1), what we called Limited Effect. We call pi(1 -p i )c  2 

the var iance  of choice i. 

Now consider a solitaire game in which Paul finds the value of Y by making 

queries of an always truthful oracle Carole. The queries are always of a choice 
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i E I. Paul's choice of query can depend on Carole's previous responses. A 

strategy for Paul can then naturally be represented in a decision tree form. A 

"line of questioning" is a path from the root to a leaf of this tree, a sequence 

of questions and responses that determine Y. The total variance of a line of 

questioning is the sum of the variances of the queries in it. 

MARTINGALE INEQUALITY: For all ~ > 0 there exists 5 > 0 so that the follow- 

ing holds. Suppose Paul has a strategy for finding Y such that every line of 

questioning has total variance at most cr 2. Then 

(4) Pr[IY - E[Y][ > aa] <_ 2 e - ~  

for all positive a with aC < a(1 + e)5. 

We apply this inequality in this paper only when C = O(1) and a = o(a) 

so that the side condition on a does hold and the upper bound on the tail 

distribution can be written as 2exp[-~2(a2)]. When a specific (though not best 

possible) bound is desired we note that e = 5 = 1 meet these conditions. The 

term variance and letter ~ are deliberately suggestive and indeed it can be shown 

that a 2 is an upper bound on the variance of Y. 

For simplicity we replace Y by Y - E[Y] so that we shall henceforth assume 

ElY] = O. By symmetry we shall bound only the upper tail of Y. We set, with 

foresight, A = a/[a(1 + e)]. Our side assumption gives that CA < 5. We will 

show 
(5) E[e )~Y] < e (1+~)~2a2/2. 

From this the Martingale Inequality follows by the Markov bound 

Pr[Y > aa] < e-~'aE[e xY] < e -~/2(1+c) 

by our (optimal) choice of ~. 

We first claim that for all ~ > 0 there exists 5 > 0 so that for 0 < p < 1 and 

l i t  ___ 

(6) pe (1-p)a + (1 - p ) e  -pa <_ e (l+c)p(1-p)a2/2. 

Take the Taylor Series in a of the left hand side. The constant term is 1, the 

linear term 0, the coefficient of a 2 is ½P(1 - p) and for j > 3 the coefficient of a j 

is ~,p(1 - p ) ~ - 2  + (1 - p)j-2] < ~,p(1 - p). Pick ~ so that  [a] < ~ implies 

-~ a j a 2 
< -W(1 + ~) 7, j=2 
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and note that in particular this holds for e = ~ = 1. Then 

a 2 
pe (1-p)a + (1 - p)e -pa ~ 1 +p(1  -- p)~-(1 + e) 

and (6) follows from the inequality 1 + x _< e ~. 

Using this 5 we show (5) by induction on the depth M of the decision tree. 

For M = 0 Y is constant and (5) is immediate. Otherwise, let p, c, v = p(1 - p ) c  2 

denote the probability, effect and variance respectively of Paul's first query. Let 

ttu, #n denote the conditional expectations of Y if Carole's response is Yes or No 

respectively. Then 0 = E[Y] can be split into 

0 = + (1 - p) n. 

The difference t ty - - t tn  is the expected change in Y when all other choices are made 

independent with their respective probabilities and the root choice is changed 

from Yes to No. As this always changes Y by at most c 

< c. 

Thus we may parametrize 

# y = ( 1 - p ) b  and # n = - p b  

with Ibl < c. From (6) 

pe ~t'~ + (1 - p ) e  :~t''~ <_ e (l+e)p(1-p)b2)~2/2 ~ e (1+~)v)~2/2. 

Let A~ denote the expectation ofe ~(Y-'~) conditional on Carole's first response 

being Yes and let An denote the analogous quantity for No. Given Carole's first 

response Paul has a decision tree (one of the two main subtrees) that  determines 

Y with total variation at most a 2 - v and the tree has depth at most M - 1. So 

by induction Ay, An <_ A-  where we set 

A -  = e (1+~):~2(°~-')12. 

Now we split 

E[e )'Y] = p e ~ A y  + (1 -p)e ;~ ' "An < [pe )'t'y + (1 -p)e)'t"~]A - 

e (l+~)A2(v+(a~-v))/2, 

completing the proof of (5) and hence of the Martingale Inequality. 
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We remark that  this formal inductive proof somewhat masks the martingale. 

A martingale ElY] = ]I0,..., YM ---- Y can be defined with Yi the conditional 

expectation of Y after the first i queries and responses. The Martingale Inequality 

can be thought of as bounding the tail of Y by that  of a normal distribution of 

greater or equal variance. For very large distances from the mean, large a, this 

bound fails. 

4. C o n c l u d i n g  r e m a r k s  a n d  o p e n  p r o b l e m s  

A Partial Steiner System S(t, k, n) is a k-uniform hypergraph on n vertices so 

that  every set of t vertices is contained in at most one edge. Such a system is 

called a (full) Steiner System S(t, k, n) if every subset of t vertices is contained 

in precisely one edge. Thus, in particular, a Steiner Triple System on n vertices 

is an S(2, 3, n). Simple counting shows that  the number of edges in any partial  

Steiner System S(t, k, n) cannot exceed 

(?) 

and equality holds if and only if the partial system is in fact a full Steiner System. 

In his original paper  [12], R5dl developed the nibble approach in order to prove 

the conjecture of Erd5s and Hanani [4], which asserts that  for every fixed t < k 

there exists a partial S(t, k, n) with at least 

(1 - o (1 ) ) ( t )  
(I) 

edges, where the o(1)-term tends to 0 as n tends to infinity. For the case t = 

k - 1, an easy corollary of Theorem 1.1 is the following result, which provides an 

effective estimate for the o(1)-term. 

COROLLARY 4.1: For every k > 3 there exists a part ial  S(k - 1, k, n) with at 

m o s t  O(n k-l-kJ~-~ ) uncovered (k - 1)-tuples. 

Proof'. Apply Theorem 1.1 to the k-uniform hypergraph whose vertices are all 

(k - 1)-tuples of a set of size n, and whose edges are all collections of k (k - 1)- 

tuples contained in a k-set. This is a simple hypergraph with N -- (k~_l) vertices, 

which is D = (n-k) - regular ,  and the result thus follows from Theorem 1.1. | 

The above estimate, however, can be improved by an explicit, well known 

construction, showing that  there is a partial system in which the number of 
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uncovered (k - 1)-tuples is at most - ~ ( k : l )  ( -- O(nk-2) )" Indeed, simply let 

the partial system be the family of all k-subsets of {0, 1 , 2 , . . . , n  - 1} the sum 

of whose elements is r modulo n, where r is chosen so that the number of these 
n n k-subsets is at least (k)/ • A simple calculation implies the above claim. 

Another simple application of Theorem 1.1 is the following companion to 

Corollary 1.2. 

COROLLARY 4.2: For any fixed k > 3, any (full) Steiner System S(2, k, n) 

contains a matching covering all vertices but at most O(nl-1/(k-1)). 

The proof of Theorem 1.1 as well as previous results including [12], [14], suggest 

the following random greedy algorithm for constructing a large matching in a D- 

regular, simple, k-uniform hypergraph on N vertices (where k _> 3 is fixed and 

D, N are large). Choose a random order of all the edges of the hypergraph, 

and starting with the empty matching, scan the edges one by one according 

to this random order, adding each one in its turn to the matching iff it does 

not intersect any of the edges already in the matching. We conjecture that the 

expected number of vertices not covered by the matching this algorithm produces 

is O(ND-1/(k-1)(lnN)°(1)). This remains open. See [14], [13] for some related 

results. When applied to the hypergraph described in the proof of Corollary 4.1, 

the above algorithm is the following procedure for constructing a large partial 

S(k - 1, k,n).  Let K1, K2 , . . . ,  Km be a random order of all the m -- (~) k- 

subsets of {1, 2 , . . . ,  n}. Starting with the empty system, scan the k-tuples one 

by one, and pick each Ki in its turn to be a member of the system iff it does not 

cover any (k - 1)-subset which is already covered by one of the k-tuples picked so 

far. Simulation results discussed in [6] supply strong evidence that the expected 

number of uncovered (k - 1)-tuples in the partial system this algorithm produces 

is n k-l-1/(k-1)+°(1), but at the moment we cannot prove that this is the case 

even for k = 3. 

Finally, it would be interesting to decide if the assertion of Theorem 1.1 is 

tight. It is not difficult to give examples of D-regular, k-uniform hypergraphs on 

N vertices in which any matching misses at least f~(N/D) vertices, but this is 

far from the O(N/D 1/(k-1)) upper bound proved in the theorem. 
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