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ABSTRACT 

We prove that  there exist self-similar sets of zero Hausdorff measure, 
but positive and finite packing measure, in their dimension; for instance, 

for almost every u E [3, 6], the set of all sums ~ o  a n 4 - n  with digits 

with an E {0, 1, u} has this property. Perhaps surprisingly, this behavior 
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is typical in various families of self-similar sets, e.g., for projections of 
certain planar self-similar sets to lines. We establish the Hausdorff mea- 
sure result using special properties of self-similar sets, but the result on 
packing measure is obtained from a general complement to Marstrand's 
projection theorem, that relates the Hausdorff measure of an arbitrary 
Borel set to the packing measure of its projections. 

1. I n t r o d u c t i o n  

Self-s imilar  sets,  i.e., compac t  sets  /E t h a t  sa t isfy  /E = Ui  S i ~  for some finite 

col lec t ion of  con t rac t ing  s imi l i tudes  {Si},  are  well u n d e r s t o o d  under  s e p a r a t i o n  

condi t ions ,  such as the  "Open  Set Condi t ion"  (OSC, see [9]), bu t  t hey  r ema in  

qui te  mys te r ious  when a r b i t r a r y  overlaps are pe rmi t t ed .  In  genera l  i t  is known 

t h a t  t he  Hausdorff ,  Minkowski  and  packing d imensions  of a self-s imilar  set  co- 

incide  [4], b u t  much less is known a b o u t  the  behav ior  of Hausdorf f  and  pack ing  

measu res  on  genera l  self-similar  sets. We prove 

k . h ,  • •  

• • L . •  

F i g u r e  1. P ro j ec t i ng  an s -d imens iona l  Sierpinski  gasket  for s < 1. 
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THEOREM 1.1: There exist self-similar sets in • that have zero Hausdorff 

measure but positive and finite packing measure in their dimension. In par- 

ticular, i f  1 < r < ½, then this holds for the self-similar sets 

o o  

n ~ 0  

for a.e. u in a certain nonempty  interval. 

Up to scaling, ]C~ can be identified with the orthogonal projection of the s- 

dimensional Sierpinski gasket G ~ (where s = s(r) = log3/[ logr[ )  on the line 

y = ux, see Figure 1. 

Other dynamical  settings where it has been shown that  the natural  measures 

are packing measures rather  than Hausdorff measures are limit sets of certain 

Kleinian groups [26] and parabolic Julia sets [3]; in these cases the phenomenon 

is due to parabolic fixed points. Self-similar sets have a more rigid structure, 

and it seems much harder to construct an explicit example of a self-similar set 

as in the theorem. Indeed, no such example is known, and in particular it is an 

unsolved problem to exhibit specific parameters  r, u for which the conclusion of 

Theorem 1.1 holds. 

Next, we illustrate our results on families arising from projections of a given 

set in the plane. The i.f.s. {Si}i~_m is said to satisfy the O p e n  Se t  C o n d i t i o n  

(OSC) if there exists a non-empty open set U such that  SiU are disjoint and lie 

in U for i = 1 , . . .  ,m.  Consider a self-similar set/(:  C R 2, defined as the unique 

non-empty compact  satisfying 

m 

(1.1) )E= U ( r i ) E + b i ) '  w i t h r i C ( 0 , 1 )  and b i c R  2 
i = l  

(thus, rotations are not allowed). We assume that  the similitudes Si(x)  := r ix+bi  

for i -- 1 , . . .  , m  satisfy the OSC. It is well-known (see [9]) that  the Hausdorff 
m S dimension dimH/C equals the similarity dimension s, defined by ~i=1 ri -- 1, 

and the s-dimensional Hausdorff measure 748(/C) is positive and finite. For any 

0 E [0,Tr) the orthogonal projection of/C on the line ycos0  -- xs in0 ,  denoted 

proje ](:, is self-similar. If  s < 1, then Marstrand 's  theorem (see [5]) says tha t  

dimH(proje/C) = s for Lebesgue-a.e. 0. Thus, it is natural  to inquire about  the 

s-dimensional measures of projections. To state our Hausdorff measure result, 

let 

Z P  = {0 E [0, Tr): proj0 : K~ --+ R is not one-to-one} 
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(the letters "ZP" stand for "intersection parameters"). In the second part of the 

theorem we assume the S t rong  Sepa ra t ion  Cond i t ion ,  i.e., that  

S~ (;C) n Sj (~:) = 0 for i # j .  

THEOREM 1.2: Let IC C ]~2 be a self-similar set (1.1) of dimension s E (0, 1) 

that is not on a line. 

(i) I f  the i.f.s. {Si}i<_m satisfies the OSC, then 7-/8(projo ]C) -- 0 for Lebesgue- 

a.e. 0 E 2:P. 

(ii) I f  the i.f.s. { Si}i<_m satisfies the Strong Separation Condition, then :£P is 

a compact perfect set, and the set {8 E :£P: 7-/S(projo K:) = O} is a dense G~ set 

in ZP.  

Part (i) of the theorem has content only if ZP  has positive Lebesgue measure, 

but part (ii) is always meaningful. One case where the theorem applies was 

indicated in Theorem 1.1; see Example 2.8. As another example, consider K~ -- 

C~ x Cr where C~ is the standard middle-c~ Cantor set, with c~ -- 1 - 2r. We have 

s = dimHK: ---- log4/ l logr  I, so s < 1 when r < ¼. We show in Example 6.1 that  

the set Z P  -~ I P ( r )  contains a non-empty interval for r E (~, ¼). 

Next we state the result on packing measure 7 ~s, again restricting attention to 

projections. The method of proof can be traced to Kaufman [11]. 

PROPOSITION 1.3: Let ~. C •2 be any Souslin set such that 7/s(~) > 0 for some 

s • (0, 1). Then ~ ( p r o j 0  K:) > 0 for a.e.O. Moreover, 

dimH(0 • [0, r):  7~'~(proj0 K:) -- 0} < s. 

Remarks: (a) Note that the assumption involves the Hausdor~ff measure of K:. It 

cannot be stated in terms of the packing measure of K:, since packing dimension 

may drop for almost all projections, see J£rvenp~K~ [10] and Falconer-Howroyd [6]. 
(b) Proposition 1.3, in conjunction with Theorem 1.2 and Example 2.8, yields 

Theorem 1.1. 

(c) Proposition 1.3 is quite close to Mattila [15, Theorem 4.3], we derive it 

from a more general result (Theorem 4.1) that applies to parameterized families 

where the similarity dimension varies. For instance, this theorem implies that  

the set IC~ = ~ ~-~n~=o anr'h an • (0, 1, u)'~ has positive packing measure in its 

dimension s(r) = log3/l logrl ,  for every u • [2,4] and a.e. r • [t-~,½]; see 

Example 2.9. This result cannot be obtained from a statement on orthogonal 

projections. 

To prove the result on packing measure, we derive estimates that also determine 

which kernels assign positive capacity to typical projections. 
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Let @ C Cl(0,(:x)) be a nonnegative decreasing function which vanishes 

for all x sufficiently large. Recall that for any Souslin set F,  the capacity 

Cape (F) is positive if and only if F supports a positive Borel measure such that  

f f @(I x - Yl) d~(x)d~,(y) < oo (see [2]). 

COROLLARY 1.4: Let ~ C ]~2 be a Souslin set, and let s c (0, 1). Consider a 

kernel @ as above. 

(i) I f  Tic(t:) > 0 and f o  r~l@'(r)l dr < cx~, then 

dimH{O: Cap¢(proj 0 K:) -- 0} _< s. 

(ii) IYPs(IC) < ~ and f o  r~]@'(r)l dr = oo, then 

Cap¢(proj0K; ) = 0 for all O e [0,~r). 

(Part  (ii) is easily derived, and is included for comparison.) 

B a c k g r o u n d .  Let/(: be a self-similar set on the real line. Schief [23], building 

on the work of Bandt and Graf [1], showed that  7~s(/C) > 0 is equivalent to the 

OSC. In many interesting examples it appears that the iterated function system 

has an "overlap"; however, it is non-trivial to verify that  the OSC fails since 

the open set U may be rather complicated. Pollicott and Simon [22] considered 

families defined by A-expansions with deleted digits, with the contraction ratio A 

as parameter. They proved that in many cases the Hausdorff dimension coincides 

with the similarity dimension for almost every A in some interval J ,  in spite of 

an apparent overlap. Solomyak [25] showed that the self-similar sets studied in 

[22] have zero Hausdorff measure in their dimension for a.e. A E J.  The proof 

used in an essential way arithmetic properties of those sets and did not extend 

even to the simplest families of projections. 

The rest of the paper is organized as follows. Section 2 contains general state- 

ments of results for one-dimensional self-similar sets and examples. The proofs of 

Hausdorff measure results are in Section 3. In Section 4 we prove a general result 

on packing measure in the setting of a family of maps from a metric space to 

JR. Capacities in general kernels are considered in Section 5 where Corollary 1.4 

is derived. Further examples are collected in Section 6. Section 7 contains gen- 

eralizations to higher dimensions, concluding remarks, and open questions. The 

reader is referred to the books [5, 16] for background in dimension theory and 

material concerning self-similar sets. 
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2. Self-s imilar  sets  

Consider a one-parameter family of iterated function systems (i.f.s.) 
A . ,  S'~m}AEj where 

S~(x) = ri(A)x + hi(A) for x e II~, 

and J C R is a closed interval. We assume that ai(A) and ri(A) belong to CI ( J )  

and 

(2.1) 0 < : / 3 < r i ( A ) < p < l  f o r a l l i < m  and A C J .  

Let/~A be the self-similar set corresponding to A, that is,/C A -- uiml K:~ where 

K:~ -- S~(/CA). The similarity dimension s(A) is the unique solution of the 

equation ~--~i~1 r~(A)(~) = 1. If ri(A) -- r(A) for all i < m, we say that  the 

i.f.s. (S~}i<_m is homogeneous ;  then s(£) = logm/llogr(A)]. Denote .4 = 
{ 1 , . . . , m }  and f~ = A N . For u E ,4 n we write S~ --= S~1 o . . . o S ~  and 

r~(~) = r ~ , ( A ) . . . . ,  r ~  (/k). The map II(A, .): ~ --+/C A defined by 

o o  

(2.2) II(A, w) = lim S A (0) = E r~l...~,_, (A)ao~, (A) 
n - - } o 0  ~J1 ""OJn 

n ~ l  

will be called the "natural projection map" below. It follows from (2.1) and (2.2) 

that  II(., w) C C ~ (J) for all w C f~, and moreover, 

(2.3) the map w ~+ H(-, w) is continuous from Ft to C 1 (J). 

Denote 
fw,r (~) ---- II(X,w) - II(A, T). 

We say that  the t r an sve r sa l i t y  cond i t i on  holds on J if for any w, T E fl, 

i f3AEJ : fo~ ,~(A)=f~ ,~(  ) = 0  then fo~,~---O. (2.4) 

Define 

(2.5) Z P  :-- {~ C J: 3W, T E ~: f~,r()~) = 0 but f~o,r ~f 0}. 

When we considered, in Theorem 1.2, the projections of a planar self-similar 

set K:, we assumed that /C is not on a line and (in part (ii)) that  it satisfies the 

Strong Separation Condition. The analogues of these assumptions in the current 

general setting are 

(2.6) VA E J, /C A is not a singleton 
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and 

(2.7) f~,~ - 0 ~ w = T. 

THEOREM 2.1: Suppose that the one-parameter family of iterated function 

systems {S ~ , . . .  ,S~m)Xej satisfies (2.1), (2.4) and Z P  ~ ~. Then 

(i) 7/~(x)(]C ~) ~- 0 for Lebesgue-a.e. ;~ E ZP.  

(ii) Suppose, in addition, that (2.6) and (2.7) hold. Then Z P  is a compact 

perfect set, and the set {~ c ZP: 7-/~(~)(K: ~) -- 0) is a dense G~ set in ZP.  

(iii) Suppose that (2.1), (2.4) and (2.7) hold, and moreover, ri(A) --- r~ (~) for 

some positive function ~()~) and some reals ri E (0, 1). Then 0 < 7 ~s(~) (]C A) < oo 

for all )~ C J except a set of Hausdorff dimension 8ma x ~-- s u p A E j  S (~ ) .  

Remarks: (a) Par t s  (i) and (ii) are proved in Section 3; par t  (iii) is derived 

in Section 4 from a more general theorem which has nothing to do with self- 

similarity. 

(b) Pa r t  (i) of the theorem has content  whenever the set Z P  has positive 

Lebesgue measure.  We discuss below how to check this. 

(c) The  condit ion on contract ion rates r~(A) in par t  (iii) is satisfied, e.g., when 

{SiA}i<_m is a homogeneous i.f.s, for all A C J ,  or when ri()~) - ri. 

Given an i.f.s, of similitudes {Si}i<m and a probabil i ty vector {P~}~<m, the 

corresponding s e l f - s im i l a r  m e a s u r e  is defined as the unique Borel probabil i ty  

measure  u satisfying ~ -- ~-~.i<mPiU o S~-1; see Hutchinson [9]. Of course, u is 

suppor ted  on the self-similar set for the i.f.s. The  self-similar measure is called 

n a t u r a l  if Pi -- r~ where s is the similarity dimension. 

COROLLARY 2.2: For  any self-similar set 1C with similarity dimension s, if  

0 < "Ps(1C) < oo, then Psi1 c is the natural self-similar measure up to scaling 

(the same is true for the Hausdorff measure). In particular, under  the condi- 

tions of  Theorem 2.1(iii), for all A E J except a set of  Hausdorff dimension Sma~, 

the normalized restriction of 7 ~(~) to IC ~ coincides with the natural self-similar 

measure on ]C ;~. 

Proo~ The  argument  is analogous to tha t  in [9, 5.3(1)(iii)], bu t  we provide it for 

completeness.  Suppose tha t  1C = Ui<m(SJC) = Ui<_m 1Ci and Si has contract ion 

factor ri.  By  subaddit ivi ty,  

i < m  i < m  
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Thus, the inequality above is an equality; since 0 < T's(/C) < cx~, we must have 

Ps(]C i N/Cj) = 0 for i ~ j .  Therefore, for any Borel set A C ](:, 

i ~ m  i~rn  

i ~ m  

This shows that the restriction of :ps to K: satisfies the equation defining the 

natural self-similar measure, and the claim follows by its uniqueness. I 

Next we give some useful consequences of (2.7). We note that (2.7) holds in 

all natural applications, except in the case of projections of a self-similar set 

satisfying the OSC but without Strong Separation. 

LEMMA 2.3: Suppose that (2.7) holds. Then 

(i) Z P = { A E J : 3 i ~ j ,  I C ~ A I C ~ O } .  
(ii) I P  is compact. 

(iii) IrA C Z P ,  then 7-/s(~)(/C ~) > 0. 

(iv) I f  (2.4) holds on J, then there exists ~ > 0 such that for all w, r E fl with 

(2.8) e J, If , (x)l < > 8. 

Proof: (i) If ), E ZP,  then there exist w ¢ ~- such that  f~,¢(A) = 0. Using that  
H(A, aw) = S~II(A, w) for all a E {1 , . . . ,  m}, and the invertibility of S~, we find 

T I A w', with i = w~ ~ T~ = j such that f~,,¢, (A) : 0, whence K:~ M/Cj ~ 0. The 
other direction follows from (2.7). 

(ii) By part (i), A0 E clos(ZP) implies that there are A,~ --+ A0 such that  
f~(-),r(-) ()~n) -- 0 for some w (n) and T (~) with w~ n) ~ T~ n). Using compactness 

of ~t we obtain that  A0 E ZP.  

(iii) If A ¢ I P  then, by part (i), the i.f.s. {S~}i<m satisfies the Strong 

Separation Condition and hence 7-/~(~) (K: ~) > 0. 

(iv) By (2.3), the set {f~,¢: wl ~ T1} is compact in CI(J) .  If (2.8) is false, then 

the compactness argument shows that there are w, T with wl ¢ T1, and A E J ,  

such that  f~,¢(A) -- ff~,¢(A) = 0. In view of (2.3), this is a contradiction. 1 

T h e  m e a s u r e  of  t h e  set  of  in t e r sec t ion  p a r a m e t e r s .  Let £ denote Lebesgue 

measure on ~he line. The following proposition contains a necessary condition 

for F~(ZP) > 0; it is proved in Section 3. 
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PROPOSITION 2.4: Suppose that the i.£s. satisfies conditions (2.1) and (2.4), as 

in Theorem 2.1(i). Then d imHZP <_ 2Smax; thus, i f  Smax E (0, 1) then £.(ZP) = 

O. 

We have an easy-to-check (although far from sharp) sufficient condition for 

£(ZP)  > 0 only in the homogeneous case. Some non-homogeneous families can 

be handled as well, see Example 6.2. Denote by Cony(A) the convex hull of a set 

A. 

LEMMA 2.5: Let {S~,. :~ . . ,  S m } A e  J be a one-parameter family of homogeneous 

i.£s. satisfying (2.7). Suppose that for some i ~ j there exists a subinterval 

] C J such that 

(2.9) Conv(K:~) Iq Conv(K:~) ~ 0 For all A e ff 

and 

(2.1o) 1£ ~ - 1E A is an interval for all A E J. 

Then ] C ZP.  

Proo~ Condition (2.10) implies K: ~ - K: ~ = Conv(~ ~) - Conv(/C~). For any set 

A C ~ we have A - A  = {t e ]~: A N ( A + t )  ~ 0}. Since the i.f.s, are homogeneous, 

K:~ and K:~ are both translates of r(A)E~; thus, (2.9) implies K:~ N ~ # 0 for all 

C J ,  and the lemma follows by Lemma 2.3. | 

Remark: Conditions (2.9) and (2.10) are easy to verify. Indeed, let/C be the 

self-similar set for a homogeneous i.f.s. {Si}i<_m, with Si(x) -- rx + el. Then 

/C - ~ is also a self-similar set: 

n = 0  

where F = {ai - aj}i,j<_m. Let g be the minimal gap between two consecutive 

elements of { a i } i < _ m  and let G be the maximal gap between two consecutive 

elements of F. It is easy to see that Conv(K:i) N Conv(lCj) ~ 0 for some i ~ j if 

and only if 

r 
(2.11) - - m a x F  _> g, 

1 - r  

and K: - / C  is an interval if and only if 

r maxF  > 1 G  
(2.12) 1--~rr - 2 " 
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m Famil ies  of  p ro jec t ions .  Let lE = Ui=I (rile + bi) C ~2 be a self-similar set 
(1.1). We are interested in the one-parameter family of projections 

{pro J0 lE}0e[0,~)- The corresponding similitudes are S~(x) = r i x  + proj 0 hi. 

LEMMA 2.6: The one-parameter family of i.£s. {$1°,..., S°m}0e[0,~) satisfies the 

transversality condition (2.4). 

Proof: Let H: fl --~ lE be the natural projection map. We have 

II(O, w) = proj off(w) = fi(w)- (cos O, sin 0), 
0 

hence 
, 4  2 

In(o, ) - + - = Ifi( ) - f i O - ) l  

Since f~,~(O) =_ 0 if and only if FI(w) = fi(~-), the condition (2.4) follows. II 

Remarks: (a) For a family of projections, 0 C Z P  iff proj0 :/C -+ R is not one-to- 

one. Thus, Theorem 2.1(i)(ii), combined with Lemma 2.6, immediately implies 

Theorem 1.2. 
(b) There is an equivalent way to represent families of projections which 

is sometimes convenient. Let S~(x) = rix + (ci + diA) for i < m. Then 

lE~ = v/1 + A 2 pro j0/C where tan 0 = A and /C is the limit set of the planar 

i.f.s. {(x,y) ~-~ r i (x ,y)  + (ci,di)}i<m. 

The next lemma sharpens Proposition 2.4 for families of projections. 

LEMMA 2.7: Let lE C N 2 be a self-similar set (1.1) that satisfies the Strong Sepa- 

ration Condition. Then d i m g Z P  < dimH(lE -- lE). Therefore, if 

dimH(lE -- lE) < 1, then HS(projo/C) > 0 for a.e. O; in particular, this is the 
1 case i f s  = dimgK: < ~. 

Proof: The Strong Separation Condition implies that there exists ~ > 0 such 

that  Ui#j(lEi - lEj) c {x E R2: Ixl _> ~}; note that T(x) := x/Ixl is Lipschitz 

on the latter set. By Strong Separation, the family of projections satisfies (2.7). 

Hence Lemma 2.3(i) implies that 

ZP  = {OE [0,7@ (cos0, sin0) E T( U(lEi I ~ ))} " 
i#j 

Thus, d i m g Z P  < maxi,j dimg(lEi -- lEj) < dimH(lE -- lE). The last claim follows 

by Lemma 2.3(iii). | 

The following example was already mentioned in Theorem 1.1. 
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Example 2.8: Let 

o o  

(2.13) /C: = { E anrn: an E {0, 1,u}}. 
n=0 

We fix r and let u C ~ be the parameter. According to the remark above, 
/C r { ~ } ~  is affine-equivalent to the family of projections of the s-dimensional Sier- 

pinski gasket G r = ~ Z  °° n }, n=oenr : cn E {0,1,i} where s = log3/I logrl. Thus, 
% 

the transversality condition (2.4) holds by Lemma 2.6. The property £(ZP) > 0 
is checked with the help of Lemma 2.5. We have F = {0, 4-1, +u,  + (u  - 1)}. 

Assume, without loss of generality, that u > 2. Then maxF  = u, g = 1, and 
I-~ 2(1-T)~ G - -  max{1, u - 2 } .  It follows from (2.11) and (2.12) t h a t Z P  D [ r , 1-3~ J" 

This interval is nonempty for r E ( 1  ½). Theorem 2.1 implies that  7-/~(/C~) -- 0 
1 1 l r r ,  and 0 < P ~ ( ~ )  < oe for all r • (g, 5) and a.e. u • [ 2(11_~-~) ]. Note that  ~ 

satisfies the Strong Separation Condition and Gr _ G~ is self-similar with similar- 
s r 1 and ity dimension log7/] logn I. Thus, by Lemma 2.7, 7/ (K]u) > 0 for all r < 

a .e .u .  The case r • (1, ~) remains open although we suspect that £(ZP)  > 0 
for a.e. such r. 

Fami l ies  w i t h  c o n t r a c t i o n  r a t e  as p a r a m e t e r .  Suppose that  S/~ (x) = )~x+ai 
for i G m. The self-similar set for this i.f.s, is 

]C)~ = ]C)~(D) = { ~-~ cn~n: cn • D}  where D = {a~)i<_m. 
n = O  

The study of such a family with the simplest apparent "overlap", for D -- {0, 1, 3} 

and ,~ > ~, was initiated by Keane and Smorodinsky, see [12]. Pollicott and 

Simon [22] introduced the transversality condition and verified it in several cases. 

A more efficient method to check transversality was found by Solomyak [24] and 

refined by Peres and Solomyak [20]. The reader is referred to [21, 25] for a 

detailed discussion of this method and its consequences. 

Example 2.9: Let K:~ be as in (2.13) but, unlike Example 2.8, we fix u and use 

r as a parameter. Since we are concerned with sets of Hausdorff dimension less 

than one, r < ~.1 Assume, without loss of generality, that  u _> 2. It follows from 

[21, Cor. 5.2(ii)] that  if u • (2, 4) then transversality in r holds for r • (0, ½). 

Lemma 2.5 implies (after a little calculation) that  the property £ (ZP)  > 0 holds 
1 1 in all these cases, with Z P  D [ ~ ,  ~]. Theorem 2.1 implies that  7-ts(~)(K:~) = 0 

and 0 < Ps(~)(ICr~) < oo, with s(r) = log3/ l logr l ,  for all u e (2,4) and a.e. 
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Note tha t  in the special case u = 3, Solomyak [25] showed 7-/~(~)(]C~) --- 0 for 

a.e. r • (~, ½). However, the proof depended on the ar i thmet ic  na ture  of the 

digits and did not  extend to other  values of u. 

3. Z e r o  H a u s d o r f f  m e a s u r e  

Recall t ha t  .4 = { 1 , . . . , m }  and denote  .4* = U,~_>o.4 ~. Write lul = n for 

u • .4n and let win = Wl . . .wn for w • ft. The  proof  of Theorem 2.1(i),(ii) uses 

the B a n d t - G r a f  criterion for zero Hausdorff measure of a self-similar set. For 

S: ]R d --~ ]~d let IlSll = sup{[Sxl: ] x] < 1}. 

THEOREM 3.1 (Bandt  and Graf  [1]): Let K~ be a serf-similar set for the i.£s. 

{Si}ieA, and let s be the similarity dimension. Then 7ts(IC) = 0 if  and only i f  

for any  e > 0 

3u, v • A*, u # v, IIS  Sv-Idll<c. 

In the set t ing of Theorem 2.1 we have S~(x) = rdA)x  + a~(A), so 

_,  ~ ( r . (A)  _ 1 ) (x  - xo(A)) + S~(xo(A)) - S~(xo(A)) 
((SO) S .  - I d ) (x )  : \ r~(A) r=(),) 

Here x0(A) is arbi t rary;  it is convenient to take x0(A) = H(A,T) where i- = 

111 . . .  • ft. Then  S~(zo(A)) = H(A, vT). 

Definition: 

such tha t  

(3.1) 

and 

Let  V~ be the set of A • J such tha t  there exist dist inct  u, v • `4* 

• ( e - ° , e  

(3.2) ILy,, (A)I : In(A, - H(A, uT) l < 

Proof of Theorem 2.1(0: By Theorem 3.1, 7-ff(;')(/C ~) = 0 if and only if A E V~ 

for all ¢ > 0. Thus  it is enough to prove tha t  :/:P \ 1;~ has zero Lebesgue measure 

for any ¢ > 0. To this end, we will show tha t  $ P  \ l;~ has no Lebesgue density 

points. Fix z > 0 and A0 E ZP .  Since A0 E ZP ,  there  exist ~v, T • fi such tha t  

f~,~ ~ 0 bu t  f~,~-(~0) = 0. Then  K:~ n N K:~p ¢ 0 for any n,p  • N. 

Now we outl ine the proof  in a special case, to indicate the idea (which is 

inspired by [17]), and then  provide all the details in the general case. Assume, 

for simplicity, tha t  ri(A) = r for a l l i <  m and a l lA  • J .  Let  u = w i n a n d  

v = Tin. The  intersecting cylinders/C~° and K:~ ° have the same diameter  clr n. 
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Transversa l i ty  implies tha t  (for n sufficiently large) these cylinders move relative 

to each other ,  as A varies close to ,~0, wi th  a speed tha t  is uni formly bounded  

f rom bo th  zero and infinity. Thus,  within a dis tance c2r ~ f rom ,~0 there is an 

interval I of size c3~r n such tha t  [H(,~,vT) - II(A, uT)I _ CClr n for all )~ • I .  

This  means  t ha t  I C V~, and since III/c2r n -- c3~/c2 does not depend on n, we 

see t ha t  ,~0 is not  a densi ty point  for Z P  \ ]d e. This  concludes the  outl ine of the  

proof  in the  special  case. 

To deal wi th  the  general case we use the following two lemmas.  The  first one 

is a s t anda rd  result  f rom renewal theory:  for the proof  see [7, Vol. II,  L e m m a  

5.4.2]. 

LEMMA 3.2: For any ~ > 0, fl • (01 1), and )~0 • J there exists  N • N wi th  the 

following property:  For any s, t • A*, with r~()~o)/rt(,~o) • [fl, fl-1], there exist 

u, v • A* such that  s, t are their respective prefixes, M - Isl < N,  I~1 - Itl < N ,  

and 
~.(~o) 
- -  • ( e - ' ,  e ' ) .  
r.(.~0) 

LEMMA 3.3: For any u • A* and A1,)~2 • J ,  

(3.3) r~(~2) < e ~ l ~ l , l ~ _ ~  I 
r~(.~l) - 

where fl is f rom (2.1) and n := maxi  IIr~llc(j ). 

P r o o f  We have 

r~ (~ )  < I r , ( ~ )  - ~,(~1)1 < LI~  ~ 
log All 

r i ( ~ l )  - r ~ ( ~ l )  - f l  

for any  i < m by (2.1), and (3.3) follows. | 

Next  we make  some pre l iminary  observat ions needed in the proof. For ~ and 

in ~t let ~ A ~ denote  their  largest  common  prefix (an e m p t y  word if ~1 ¢ ~1). 

I t  follows f rom (2.1) and (2.2) tha t  

(3.4) If¢,~(X)[ _< 2Clr¢^~(A) for all ¢,~ • f~ 

where 

Fur ther ,  by (2.3), 

(3.5) 

o !  = m 2 x  l l~* l to( j )  " (1 - p ) -~ .  

{f¢,¢()~): ¢,~ • f~} is compac t  in C I ( J ) .  
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Proof  of Theorem 2.1(0 continued: Recall that e > 0 and Ao E Z P  are fixed 

and we are trying to prove that A0 is not a density point for Z P  \ Ve. Let 

W,T C ~ be such that f~,~(A0) = 0 but f~,~ ~ 0. F i x a l a r g e  k C N and find 

minimal n ,p  such that  r~ln(Ao) < pk and trip(A0) < pk. Then n ,p  <_ k and 

r~l,~(Ao)rHp(AO) E [/3,/3 -1] where /3 is defined in (2.1). By Lemma 3.2, there 

exist u ,v  E .A* with ]u I - n < N, Iv[ - p < N, such that uln = win, vlp = Tip, 

and 

~(~o___~) c (e -~/3, e~/3). 
~ . ( ~ o )  

Lemma 3.3 now implies that  for 

]A - Aol _< 
c/3 

3L(k + N)  

we have 

ru(A) r~(A) 
(3.6) r~(Ao---~ E (e -E/a, e ~/3) and ~ E (e -e,  e~). 

Next we find an interval of A for which (3.2) holds. Since f~,¢(A0) = 0, it 

follows by the choice of u, v and (3.4) that 

(3.7) IL~,~(,Xo)l _< lf~T,~-()'o)l + IA~,~(Ao)I <_ 4Clp k. 

We have ]f~,~(Ao)l > (f for some 6 > 0 by the transversality condition (2.4). By 

(3.5), we can find ~ :> 0 and k0 E N so that 

(3.8) IA - A0I < ~/ and k > ko :=~ I]~i,~(A)I > (f. 

Denote Fk := [,ko- 4Clpk/6, ~o + 4CIpk/5] • If k > ko and 4C~pk/5 < ~/, then, in 

view of (3.7) and (3.8), 

(3.9) 3A1 E Fk such that fv- f ,u~(~l)  : O. 

We will show that  A0 is not a density point for Z P  ". "l;c. To this end, we estimate 

£{Fk M V~} from below. We can assume that e ~/3 < 2 and k is so large that  

4C1 p k 

5 - -  < min{ 2L( k + N)" ~}" 

Then (3.1) holds on Fk by (3.6). Also by (3.6) we have 

13N+lp k < r~(Ao) < 2r~(A) for A e Fk. 
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Thus, for (3.2) to hold, it suffices that  

(3.10) (6/2)I~N+lp k" 

It follows from (3.5) that  there exists C2 > 0 such that  IIf , tlc(j) _< c~ for all 

~,~ • ~. Thus, If.7,~7(A)I <_ C21A-AI], and the inequality (3.10) holds whenever 

(3.11) I )~ - )~11 -< 
~N+lpk C 

2C2 

Choose e small enough so that 

~N+lpk~ 4Clpk - - <  
C 2  - 

It follows from (3.9) and (3.11) that 

/3N+lpke/(2C2) (~N+le 
Z:{Fk n _> lekl"  SCipk./  = le t "  16C, C2" 

Since IFk] --+ 0 as k -+ 0% we conclude that ~0 is not a density point for Z P  \ )2~. 

The proof is complete. I 

Proof of Theorem 2.1(ii): Here (2.7) was assumed, hence Z P  is compact by 

Lemma 2.3(ii). Thus, the Baire Category Theorem holds in ZP.  For e > 0 let 

]2~ be as in the proof of part (i). Then 

{~ • ZP:  H~(x)(~ x) = O} -- N ('~l/n MZP). 
hEN 

It suffices to show that )2~ r~ZP is dense in Z P  for any ~ > 0 (it is immediate from 

(3.1) and (3.2) that  )2~ is open). But this was, in fact, verified, in the course of 

the proof of part  (i), since the point A1 from (3.9) is in ~ N ZP.  The argument 

in part  (i) can also be adapted to show that  Z P  is perfect: Given A0 • Z P  

and w,T • fl such that  f~,~(~0) = 0 we may find, using the assumption (2.6), 

sequences & and -? in ~ that  agree with w and T respectively in the first n digits, 

and satisfy f~,÷(A0) ~ 0. Then, using transversality, we find )~1 • Z P  close to )~0 

such that  f~,~(A1) = 0 and, in particular, ~1 • ZP. I 

Proof of Proposition 2.4: Say that A0 E ZP~ if there exist w, T E ~ and 6 > 0 

such that  f~,T(A0) ---- 0 and lf~,T()~0)l _> 5. By the transversality condition (2.4), 

we have Z P  = U , ~ N Z P w n ,  so it suffices to show that  dimgZP~ _< 2Sma~ for any 

fixed (f > 0. For u • ,4* denote I~ = C o n v ( ~ ) .  If A0 • ZP~ and w, T • 12 are 
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as above, then the intervals I~ and I~ move relative to each other with a speed 
bounded below by 5/2 as A varies close to A0, provided that u, v are sufficiently 

long prefixes of w, T. (This follows from (3.5), as in the proof of Theorem 2.10). ) 

Thus, the set {A E J: I~ M I~ # 0} is a union of at most c intervals, each of 

which has length at most ~ max{[In ~] + II~1: A E J}, with a uniform constant C. 

Let us write u c Ce(A) if [I~] = ru(A) < e and no prefix of u has this property. 
,-~ s(~) Since 2-.,~ec~(x)r~ -- 1, the cardinality of Ce(A) is at most /?-le-~(~). Let 

J = [A1, A2]. Observe that  

. log ri(A) 
(3.12) I!~1 ~ Iw ~1 t, where t:---- m:n logri(A1) 

for all A E J and w E .4*. It follows from the discussion above that the set 

ZP~ may be covered by c/3-2e-2*(x~) intervals each of length not greater than 

2~at. Thus, dimHZPa _< 2s l / t  <_ 2Sm~x/t. Subdividing J into small intervals we 

can assume that  t in (3.12) is arbitrarily close to one, hence dimHZPa < 2Smax. 
m 

4. Pos i t ive  pack ing  m e a s u r e  

THEOREM 4.1: Let (12, d) be a complete separab/e metric space and A c ~ a 

Souslin subset with 7t~(A) > O. Suppose that we are given a one-parameter 

family of maps Hx: A --+ R, with A E J, where J c R is a dosed interval 

Assume that for some positive function a(A) there exist positive 5 and M such 

that for all w # r the functions 

- 

d(cv, r)~(a) 

belong to C 1 ( J) and satisfy 

(4.1) ][q[[cl(j) -< M 

and the transversality condition: 

(4.2) Iq(A)l + [~'(A)I > for MI A E d. 

Then 
dimH{A C J: -- 0} <_ 8 m a x  

w h e r e  8 m a x  = sup{s(A): A E J} and s(A) = 7/a(A). 
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Remarks: (a) Since the functions ~ are bounded,  the maps  II~ are Hhlder with 

exponent  a(A),  so P~(A)  < co implies tha t  7)s(X)(Hx(A)) < co. 

(b) The  s t a t emen t  of the theorem has content  only when sm~× < 1. 

T h e  proof  of the theorem is based on the following result  on "project ions" 

of a measure .  Recall  t ha t  for a Borel probabi l i ty  measure  v on R n the lower 

a -d imens iona l  densi ty is defined by 

D~ (v, x) = lim inf , ( B ( x ,  r)) 
r$0 r a 

where B(x,  r) is the  closed ball of radius r centered at  x. 

THEOREM 4.2: Suppose that we are in the setting of Theorem 4.1 and # is a 

Boret probability measure on ~ such that 

(4.3) ( i z x p ) { ( w , 7 ) E a 2 : d ( w , ~ - ) < r } ~ C r  ~ f o r a l l r > O .  

Then the measure  ua = I I~#  ,satisfies 

(4.4) d imH{A E J: / Vs(A)(v)~,x)dl]A(x ) : oo} <~ Smax- 

In  order  to deduce  Theo rem 4.1 we use the following result: 

THEOREM 4.3 (Taylor and Tricot  [27, Thin.  5.4]): For any a > 0 and n E N 

there exists a constant p(a, n) > 0 with the following property: For any Borel 

probability measure v on N n, Borel set A C N n and C > O, 

D ~ ( v , x )  _< C for 411 x E A ~ 79~(A) > C - l p ( a , n ) , ( A ) .  

Proof of the implication 4.2 ~ 4.1: Since ?/~(A) > 0, by F ros tman ' s  l e m m a  in 

metr ic  spaces,  due to Howroyd [8] (see also [16, p. 120]), we can find a probabi l i ty  

measure  # suppor t ed  on A such tha t  #(B(x ,  r)) < Cr ~ for any ball B(x,  r). Then,  

clearly, (4.3) is satisfied. The  Borel probabi l i ty  measure  v~ = I Ix#  is suppor t ed  

on H~A for all A E J .  If D~(~)(vx,x)  < co for vx-a.e, x, then  Ps(x) (HxA)  > 0 by 

T h e o r e m  4.3. By (4.4), this happens  for all A E J except  on a set of d imension 

less t h a n  or equal to Sm~x, as desired. I 

T h e  proof  of T h e o r e m  4.2 relies on the  following proposi t ion,  which will also 

be useful in Section 5. 

PROPOSITION 4.4: Under the assumptions of Theorem 4.2, let s l  > Smax and let 

be a probability (Frostman) measure on J such that ~(B(x,  p)) ~_ cp ~ for any 

p > O. Then 

(4.5) f f  := ~ f v~(B(x,r~(:q))dv~(x)d~l(A) < Cr ~ for all r > O. 
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Proof of the implication 4.4 ~ 4.2: Suppose that the Hausdorff dimension of the 

set in (4.4) is greater than Sma~. Then Frostman's lemma implies that  there exists 

a measure ~ as in Proposition 4.4, supported on this set. Since s(A) = "y/a(A), 

Fatou's Lemma and (4.5) yield that 

/ j  /D~(~)(v~,x)du~(A)dv(A) = f j  / l im$i:f  

which is a contradiction. | 

~a(B(x, rC~(~))) 
" dv~(x)d~l(A) < c~, 

The proof of Proposition 4.4 uses the following simple lemma. 

LEMMA 4.5: Suppose that • E CI(J)  sat/stles (4.1) and (4.2). Then for p < 5/2 
the set {A E J: [~(A)[ < p} is a union of at most 1 + M]J[/5 intervals of length 
at most 4p/5. 

Proof of Lemma 4.5: By (4.2), if I~(A)[ < p _< 5/2 then I@'(~)1 ~ 5/2, so the 

set {A E J: I~(A)I < p} is a union of intervals on each of which the function 

is monotone. The length of each of these intervals is at most 2p/~/2 = 4p/5. 
Moreover, each of these intervals lies in an interval of the set 

{A E J :  I~(~)1 ~ ~/2}, 

and the latter intervals have length at least 5/M by (4.1). 

intersect, their number is at most 1 + MIJI/5. | 
Since they don't  

Proof of Proposition 4.4: Making a change of variable and exchanging the order 

of integration yields 

Decompose this integral as follows: 

z = / a ~  = j f ~  + ._..<,(...)<,. = & + &. (O3,T)<r k = l  - = 

To estimate ffk recall that  @~,T(A) = [n~(w) - II~(T)]d(w, T) -~(~) and observe 

that  for d(w, T) >_ 2k-lr we have 

r/{).: III~,(w) - H~(T)I < r a(~)} _~ r/{~: Iqg,~,r()01 < r~(A)(2k-lr) -a(:~) } 

= ~{~: I~,.(~)i -< 2 -(k-1)~(~)}  

-< ~{A: I~,.(~)1 -< 2--(k--1)°tmin} 
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w h e r e  O~min ---- inf~eja(A).  Choose ko E N such that  2 -(k°- l)c~mi~ __~ 5/2. Fix 

k > ko and p -- 2 - ( k - 1 ) ~ ° .  Let • = kow,~. Since 7/is a Frostman measure, we 

obtain for k >_ ko by Lemma 4.5: 

(4.6) Z]{/~: ]lI)w,.r(,~)[ ~ 2 -(k-1)ami~} ~ C2 -kami"sl 

where the constant C does not depend on k, w, or T. Now we continue the 

estimate of .7 using (4.6) and (4.3): 

ko- 1 
j < ~ ( ~  × ~1{(~,~1: d ( ~ , ~ )  < 2 ~ }  

k=0 

k=ko 
ko--1 cx) 

~ C '  E (2kr)7 + Ct E 2-kami"Sa(2kr)7 
k=0 k=ko 

~ C "  (2 k° ~- 2 k°(~'-ami~sl)) r "Y. 

2--~aminSl(]~ X ~){(0.), T): d(W,T) < 2kr} 

In the last inequality we used the hypothesis that  sl > Smax = 7/O~min, The 

proof is complete. | 

Proof of Theorem 2.1 (iii): We let f~ = A N, as in Section 3, and equip it with 

the metric d(w,7) = r~^T(&l) where J = [~1,)~2]- Further, let A = ft and 

HA = H(&,-) be the natural projection map (2.2). Since ri(A) = r~ (~), (3.4) 

implies that  II~ is Hhlder with exponent a(A) = ~()Q/~(AI). Then 

V~,~(),) = n ~ ( ~ )  - U~(~)  _ n ~ ( ~ )  - n ~ o - )  

d(w,7) ~(;q r~^T(A) 
= n ~ ( ~ ' )  - n ~ f f ' )  

where w~ ~ T~. Since (2.7) is assumed, the transversality condition (4.2) holds 

by Lemma 2.3(iv), and (4.1) is obviously satisfied. We have dimHA = "y = 

s(£1), with 7/~(A) > 0. By the definition of the similarity dimension we have 

s(£1)/a(A) = s(A), and the claim follows by Theorem 4.1. | 

Proof of Proposition 1.3: We let (f~, d) be l~ 2 with the Euclidean metric. F~rther, 

A = /C  and H0 = proj 0. Then a(9) = 1 for all 9 and conditions (4.1), (4.2) are 

obviously satisfied. Thus, the claim follows by Theorem 4.1. | 
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5. Pos i t ive  capac i ty  in genera l  kernels  

Let (I) E C1(0, co) be a positive decreasing function which vanishes for all x 

sufficiently large. Recall the following (see [2]): 

Definition: Let u be a Borel probability measure on ]~. The O-energy of v is 

defined by 

f f O(Ix-yl)du(x)d,(y) 
The O-capaci ty  of a Souslin set F C • is defined by 

Cap~(F) = sup{g~(u) - l :u  -- Sorel probability on F}.  

THEOREM 5.1: Suppose that we are in the setting o[ Theorem 4.1, • is a kernel 
as above, and let Oh(r) = O(r 1/~(~)) [or A E J. 

(i) l i f o  rV[O'(r)ldr < c~ and 7/~(A) > 0 then 

(5.1) dimH{A E J: Capv~(II~A) = 0 } _< 8max. 

(ii) I f f o r ~ [ O ' ( r ) l d r  = oo and P~(A) < oc then Cap¢~(H~A) -- 0 for ali 

A E J .  

Proof of Theorem 5.1: (i) As in the proof of Theorem 4.1, let # he the Frostman 

measure supported on A with exponent 3, and let v~ -- IIx#. Then 

(5.2) 

/ .  / .  

~01 = (u~ × p~){(x,y): Ix - Y l  <- ra(~)}lO'(r)ldr. 

Suppose that  the set in (5.1) has dimension sx > Sm~× and let ~/be the Frostman 

measure on this set satisfying 77(I) < c[I[ 81 for any interval I C J.  We have 

f j c ¢ ~  (u~) d~(,~) = f0 °¢ f j /vx(B(x,r~(~)))]O'(r) ldvx(x)d~(A)dr  

/7 <C r~[O'(r)[dr < oo 

by the Fubini Theorem, (5.2), and Proposition 4.4. Thus, Cap¢~ (II~A) > 0 for 

~/-a.e. A, a contradiction. 

(ii) Note that  II~ is a(A)-HSlder for all A E J. Fix any A E J. By the definition 

of packing measure, see [16], there is a countable covering of A by sets of finite 

prepacking measure. Since capacity is countably subadditive, it is enough to 
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prove the s tatement  for each of these sets. Thus, without loss of generality, A 

can be covered by Cr -'y balls of radius r for all r > 0, hence H~A can be covered 

by Cp -~(~) balls of radius p for all p > 0. Changing the variable r = pl/~(~) we 

have // I ¢ ' ~ ( p ) l d p  = r ~ l ¢ ' ( r ) l d r  = co .  

By [2, Thm. IV.2], this yields Cap¢~ (II~A) = 0. I 

6. F ~ r t h e r  e x a m p l e s  

Example 6.1: Let C~ = C~ x C~ where C~ is the middle-a Cantor set for a = 

1 - 2r. The family of projections {projoC2}o<_o<~ is affine-equivalent to the 

family of self-similar sets for the i.f.s. {rx, rx + 1,rx + u, rx + 1 + u}u>0. We 

1 d i m g g  2 < 1. The analysis of this family is similar to assume that  r < ~ so 

the one done in Example 2.8. The transversality condition (2.4) follows from 

Lemma 2.6. To apply Lemma 2.5 we check (2.11) and (2.12). One can check 

that  ZP D F := [arctan 1-2r ,a rc tan  2 1~3~], which is a non-empty interval for 

r • (~, ¼). The conclusion is that  for all r • (~, ¼) and a.e. 8 E F,  

7-/S(projeC 2) = 0 and 0 < PS(projeC 2) < co, where s = l o g 4 / l l o g r  I. 

Since C 2 - C 2 is a planar self-similar set having similarity dimension log 9/I log r I 

1 by Lemma 2.7. The case r E (1 ,1)  remains we have £(ZP) = 0 for all r < 

open although we suspect that  £(ZP) > 0 for a.e. such r. 

Remark: For s -- 1 the statement of Theorem 1.2 still holds, and is well-known. 

In Examples 2.8 and 6.1 this corresponds to r = ½ and r = ¼ respectively. In 

this case more precise information is available: the one-dimensional Hausdorff 

measure is zero for all projections in irrational directions. This was proved by 

Kenyon [13] and Lagarias and Wang [14]. 

N o n - h o m o g e n e o u s  fami l i e s  (see the definition in Section 2). A variant of 

Lemma 2.5 holds for such families, provided (2.9), (2.10) are replaced by 

(a) Cony(K{) intersects K~ for all i ¢ j and A • J;  

(b) the Newhouse thickness of ]C A is greater than one for A • ] .  

(See [19] for the definition of Newhouse thickness.) However, condition (b) is 

not easy to check (note also that  in the homogeneous case (b) is more restrictive 

than (2.10)). Still, the notion of thickness is used to verify that  £(ZP)  > 0 in 

the following example; this example is inspired by Moreira [18]. 
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Example 6.2: Fix a, /3,~ > 0 so that min{c~,/3} > ½ and a + f l + 7  < 1. 

Consider the self-similar set/C C R 2 defined by the i.f.s. {Si}i<3, where S: (x) = 

ax ,  S2(x) = ~3x+ (1,0), and S3(x) = "yx+ (0, 1). Clearly, the Strong Separation 

Condition is satisfied and s -- dimH/C < 1. We are interested in the family of 

projections of/C which is affine-equivalent to the family/C" of self-similar sets 

for the i.f.s. {ax, ~3x + 1, Vx + u},cR on the real line. Transversality (2.4) for the 

family of projections holds by Lemma 2.6. To check when £ (ZP)  > 0 observe 

tha t /C ~ D /C,~ w h e r e / C ~  is the self-similar set for the i.f.s. {ax, t3x+ 1}. Since 
1 min{a,/3} > ~ we have that/C~/~ is a Cantor set of thickness greater than one. 

Let/(:~ = a/C ~ and/C~ = ~/C ~ + u. By the Gap Lemma of Newhouse (see [19]), 

whenever (a/C~Z) n C o n v ( v / ~  + u) # O. Since Conv(K:aZ) -- [0, 1_~1~], the last 

- ~ 0]. Theorem 2.1 implies that  condition certainly holds for u C F := [ 1-~, 

7-/S(projo/C) -- 0 and 0 < PS(proj o/C) < oo for a.e. 0 with aretan0 E F.  

7. Generalizations and concluding remarks 

Multidimensional generalizations. All the statements of the paper extend to 

higher dimensions but we restrict attention to the main results, emphasizing the 

case of projections. Of course, we need transversality conditions. For simplicity, 

we state them in the form most convenient for the proof. 

We consider similitudes in R e which do not involve any rotations, that  is, 

S~(x) -- r~(A)x + ai(A) for i < m and A E J. Assume that J C ]~v is open, with 

p > g, the condition (2.1) holds, ri C Cl(clos J) ,  and ai E Cl(clos J -+ ]~e). The 

set-up at the beginning of Section 2 readily extends to this situation (including 

the definitions of II(A, w), f~,r, and ZP).  The only modification needed is in the 

definition of transversality. We write ~p  for the Lebesgue measure in ]~P. 

Say that  the p-parameter family of i.f.s. {S~ , . . . ,  S~}~ej  satisfies the transver- 

sality condition if for any w ¢ T in f~ such that fo~,r ~ 0, there exist C1, C2 such 

that  for all r, e > 0 and A0 G J ,  

if [fw,r(A0)[ < r then 

(7.1) • If ,r( 0)l < C2ee £p( B( Ao, C] r) ). >_ 

THEOREM 7.1: Suppose that the family of i.£s. satisfies (2.1) and (7.1). I fZP 
O, then 
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(i) 7/~(~)()E x) = 0 for a.e. A E ZP.  

(ii) If, in addition, (2.7) holds, then {A E ZP: 7/~(~)()E x) = 0} is a dense G~ 

set in ZP .  

Recall tha t  G(n, 6) is the Grassmann manifold of all 6-planes in IR n passing 

through the origin and d imG(n ,  6) = 6(n - 6), see [16]. Denote by projo the 

orthogonal projection of l~ n on (9 E G(n, 6). 

COROLLARY 7.2: Le t /C = Ui<m(riK: + ai), with ri E (0, 1) and ai E 1~,  be a 

self-similar set in R ~, and let s be the similarity dimension. 

(i) I f  the OSC holds, then ?-/S(proje/C) = 0 for a.e. (9 E ZP.  

(ii) I f  the Strong Separation Condition holds, then {(9 E ZP: ?-/~(proj e ]C) = O} 

is a dense G~ set in ZP.  

One can show tha t  in the setting of Corollary 7.2, 

Z P  = {@ E G(n, 6): projo {K: is not one-to-one}. 

Next we state  the analog of Theorem 4.1. 

THEOREM 7.3: Let (~, d) be a complete separable metric space and A C f~ a 

Souslin subset with 7iV(A) > O. Suppose that we are given a one-parameter 

family of maps II;~: A --+ R t, with A E J, where J c ~P is open and p > 6. 

Assume that for some function a(A) there exist M, C > 0 such that for all w ~ ~- 

the functions 
~(A) = ~ ~(A) = n~(~)  - H~(T) 

' d (~a ,  ~-)~(~) 

belong to C a (clos J), with [[ g/[[c1 <- M,  and satisfy the transversality condition: 

for all r > O, 

(7.2) {A E J:  II~(~)ll < r} can be covered by Cr ~-p balls of radius r. 

Then 

dimH{A E J:  Ps(A)(HAA) = 0} < 8ma x + ( p -  6) 

w h e r e  = 

COROLLARY 7.4: Let  lC C ~('~ be any Souslin set such that 7-ls(lC) > 0 

for some s E (0, g). Then 7)~(proje/C) > 0 for a.e. (9 E G(n,g). Moreover, 

dimH{O E G(n,  6): P~(proje/C ) = 0} < 6(n - 6) + (s - 6). 

Outline of the proof of Theorem 7.1: Let us restrict a t tent ion to the measure- 

theoretic s ta tement  in Theorem 7.1 (i); the topological s ta tement  follows the same 
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general scheme, but  is easier. The argument follows the proof of Theorem 2.1(i), 

so we refer to it without repeating all the notation. Since contraction rates 

ri(X) are scalar, the beginning of the proof requires no change. The point where 

distinctions arise is after (3.7) where the transversality condition was applied. 

Now we use transversality (7.1) with r = Cp k and see that  A0 is not a Lebesgue 

density point. | 

P roof  of  Corollary 7.2: Here the parameter  set J is a local coordinate chart for 

the Grassmann manifold G(n, g), with p = dim G(n, g) = g(n -6) .  As a metric d 

on G(n, g) we take the Hausdorff metric for the intersections of gplanes  with the 

unit sphere in R ~. Let rio(w) be the orthogonal projection of H(w) E /~ C II~ n 

on the plane O E J where H is the natural  projection map from the sequence 

space ~t to /~.  We need to check the transversality condition (7.1). Observe that  

f~,r(O) is the orthogonal projection of the vector x := H(w) - H(z) ~= 0 on 

O E J.  If If~,~(O0)l < r, then there exists an e-plane O1 orthogonal to x, such 

that  d(O0, O1) ~ Cir. Now it is easy to see that  the set 

{0 • B(e0, Clr): IL,r(e)} < er} 

contains an (sr)-neighborhood of a manifold of dimension dim G(n  - 6, 6) -- 

g(n - g - 1) intersected with B(Oo, Clr). This implies 

~p{O • B(O0,  e l / ' ) :  [fw,~-(O) I < E/'} ~C(cr)gr g(n-g-1) 

>C' ~ Lp(B(Oo, C~r) ), 

and (7.1) is verified. Thus, Theorem 7.1 can be applied and the claim follows. 

1 

Proof of Theorem 7.3: The proof of Theorem 4.1 transfers, except that  instead 

of the application of Lemma 4.5 in (4.6), we refer to the transversality condition 

(7.2). II 

Proof of Corollary 7.4: As in the proof of Corollary 7.2, the parameter  set J is 

a local coordinate chart for the Grassmann manifold G(n, 6), with p = g(n - 6 ) .  

Fhrther, rio(w) is the orthogonal projection of w E /C = A C R ~ on the plane 

O C J and a ( e )  = 1 for all e E J .  The only issue which requires discussion is the 

transversality condition (7.2). By definition, ~(O) is the orthogonal projection of 

a unit vector in N ~ to O. It  is easy to see that  {O e G(n,~): [qJ(O)[ < r} lies in a 

cr-neighborhood of a smooth manifold of dimension dim G ( n -  1,6) = g(n - g -  1) 
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in G(n, 6) and is therefore contained in the union of no more that  C(r-1)  e(~-e-1) 

balls of radius r. This proves (4.2) and Theorem 7.3 may be applied. | 

O p e n  Q u e s t i o n s .  In the first three questions, we restrict attention to orthogonal 

projections of a self-similar set ~ in the plane that  satisfies the OSC and has 

dimension s E (0, 1). 

(i) Is it true that  PS(proj0/(7) > 0 for a residual set of 0? 

(ii) We have shown that  in many cases 7-/~(proje K:) = 0 for a typical 0 in some 

interval. Is there a gauge function ~ such that  ?-/~ is the natural  measure 

(up to scaling) for such projections? 

(iii) Find a bound on the dimension (Hausdorff or packing) of the exceptional 

set in Theorem 1.2(i) on Hausdorff measure of projections. 

(iv) Find a specific self-similar set of zero Hausdorff measure and positive pack- 

ing measure. 
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