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Summary. - -  We describe a new method to obtain the first direct measurement of 
the Lense-Thirring effect, or dragging of inertial frames, and the first direct 
detection of the gravitomagnetic field. This method is based on the observations of 
the orbits of the laser-ranged satellites LAGEOS and LAGEOS II. By this new 
approach one achieves a measurement of the gravitomagnetic field with accuracy of 
about 25%, or less, of the Lense-Thirring effect in general relativity. 

PACS 11.90 - Other topics in general field and particle theory. 
PACS 04.80.Cc - Experimental test of gravitational theories. 

1. - The gravi tomagnet ic  field, its invariant  character izat ion and past attempts  
to measure it 

Einstein's theory of general relativity [1, 2] predicts the occurrence of a ~,new- field 
generated by mass-energy currents,  not present  in classical Galilei-Newton mechanics. 
This field is called the gravitomagnetic field for its analogies with the magnetic field in 
electrodynamics. 

In general relativity, for a stationa~T mass-energy current  distribution ~,2 v, in the 
weak-field and slow-motion limit, one can write [2] the Einstein equation in the 
Lorentz  gauge: Ah --- 16~Q ,,~v, where h - (h01, h02, h03) are the (0/)-components of the 
metric tensor; h is called the gravitomagnetic potential. For  a localized, stationary 
mass-energy distribution, in the weak-field and slow-motion limit, we can then write: 
h ~- - 2 ( ( J  • x ) / r ~ ) ,  where J is the angular momentum of the central body. In general 
relativity, one can also define [2] a gravitomagnetic field H given by H = V • h.  

The Lense-Thirr ing effect is a consequence of the gravitomagnetic field and 
consists of a tiny perturbation of the orbital elements of a test  particle due to the 
angular momentum of the central body. To characterize the gravitomagnetic field 
generated by the angular momentum of a body, and the Lense-Thirr ing effect, and 
distinguish it from other relativistic phenomena, such as the de Sitter effect, due to the 
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motion of a gyroscope in a static gravitational field, one can give [2,3] a description of 
the gravitomagnetic field by spacetime-curvature invariants. The pseudoinvariant *R. 
R, that is: (1/2) e~Z~176 (where t az'Q is the Levi-Civita pseudotensor) built the 
Riemann tensor R and its dual *R, gives an invariant characterization of 
gravitomagnetism since it is nonzero in the field of a central body if and only if the body 
is rotating. Indeed the invariant *R .R is proportional to the angular momentum of the 
central body. 

Thus, one may describe gravitomagnetism as that phenomenon of nature such that 
spacetime curvature is generated by the spin of a body. This phenomenon has never 
been measured or detected, until the method described in this paper has been used to 
directly detect it for the first time. 

Several perturbations are due to the gravitomagnetic field H. 
A test gyroscope precesses with respect to ,an asymptotic inertial frame, with 

angular velocity: Q = - ( 1 / 2 )  H = [ - J  + 3(J.2) 2 ] / Ix l  3, where J is the angular 
momentum of the central object. This phenomenon is the ,,dragging of gyroscopes,, or 
,,dragging of inertial frames,, of which the gyroscopes define the axes [1, 2, 4]. 

The orbit of a test particle around a central body with angular momentum J has a 
secular rate of change of the longitude of the nodes (intersection between the orbital 
plane of the test particle and the equatorial plane of the central object), discovered by 
Lense-Thirring (1918)[5]; see eqs. (1) and (3) below. 

Similarly, by integrating the equation of motion of a test particle, one can find the 
formulae for the secular rates of change of the argument of pericenter &, (defining the 
Lenz vector), eqs. (9) and (10) below, and of the mean orbital longitude L0. 

Since 1896 many experiments have been discussed and proposed to measure the 
dragging of inertial frames [2, 4]. Of special interest for their extensive feasibility 
studies are the NASA Gravity Probe-B experiment, to measure the gravitomagnetic 
precession of a gyroscope orbiting Earth, and the LAGEOS III experiment. We just 
briefly review here the main proposals. 

In 1896, B. and I. Friedl~nder tried to measure the dragging effect due to a rapidly 
rotating, heavy fly-wheel on a torsion balance. In 1904, A. FSppl tried to measure on a 
gyroscope the dragging effect due to the rotation of Earth, he reached an accuracy of 
about 2% of the Earth's angular velocity. However, the general relativistic dragging 
effect on a gyroscope at the surface of Earth (at a US or European latitude) is about 2. 
10-1o of its rotation rate. In 1916, de Sitter calculated the tiny shift of the perihelion of 
Mercury due to the rotation of the Sun, a particular case of the shift of the pericenter of 
an orbiting test particle due to the angular momentum of the central body. However, 
this shift is of the order of -0.002"/century, about 5.10 .5 times smaller than the 
Mercury standard general relativistic precession of ---43"/century. In 1918 Lense and 
Thirring calculated the gravitomagnetic secular perturbations of the moons of various 
planets, in particular the V moon of Jupiter has a considerable gravitomagnetic secular 
precession, however the observations do not yet allow separation and measurement of 
this effect. In 1959 Yilmaz proposed to use polar satellites to detect the gravitomagnet- 
ic field, avoiding in such a way the effects due to the nonsphericity of the Earth's 
gravity field. In 1976 Van Patten and Everitt proposed measuring the Lense-Thirring 
nodal precession using two drag-free, guided satellites, counterrotating in the same 
polar plane. The reason for proposing two counterrotating satellites was to avoid the 
error associated with the determination of the inclination. In 1984, we proposed [6, 7] 
the LAGEOS III experiment, to detect the gravitomagnetic field by measuring its 
orbital drag on nonpolar, passive, laser-ranged satellites. We can decompose the 
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fundamental idea[6] of the LAGEOS III experiment into two parts. Position 
measurements of laser-ranged satellites, of LAGEOS (1976) type (see below), are 
accurate enough to detect the very tiny effect due to the gravitomagnetic field, the 
Lense-Thirring precession; and to ,,cancel out,, all the enormous perturbations due to 
the nonsphericity of the Earth's gravity field, we need a new satellite: LAGEOS III, 
with inclination supplementary to that of LAGEOS, and with the other orbital 
parameters, a and e, equal to those of LAGEOS. With the LAGEOS III experiment one 
may achieve a measurement of the Lense-Thirring effect with accuracy of about 3%, or 
less. Finally, we have the well known NASA-Stanford Gravity Probe-B, GP-B, 
experiment [8], to measure the precession of the spin axis of a gyroscope orbiting 
Earth, with accuracy of 1%, or less. 

2. - A new method to detect the gravitomagnetic field using existing data from 
orbiting satellites 

One of the relativistic effects best measurable on the orbital parameters of satellites 
of LAGEOS type, with e<<l, is the precession of the nodal lines. For LAGEOS, the 
observed total nodal precession is t)~176 and the Lense-Thirring 
precession is [2, 6]: 

(1) ~Lense-Thirr ing = 2 J  ~ 31 milliarcsec/year, 
ai3(1 - e~) 3/2 

where J e  = 5.9.104o g cm 2/s --- 145 cm 2 (in geometrized units) is the angular momentum 
of Earth. 

The total nodal precession can be measured on LAGEOS with an accuracy of the 
order of 0.5 milliarcsec/year. 

Unfortunately, the Lense-Thirring precession cannot be extracted from the 
experimental value of ~ObSLAGEOS because of the uncertainty in the value of the classical 
precession [9]: 

(2) ~;2 Class = - -n3 ( R e )  2 c ~  
2 a (1 - e2) 2 

"{J2+J4 [5(Re)  2(7sin2I-4) 1+(3/2)e'z] } -(1 ---~)i + XN2, • J2, , 

where the J2~ are the nonnormalized even zonal harmonic coefficients, Je~ = 
-= ~ + 1 C2,0, the C2~0 are the normalized even zonal harmonic coefficients, N2~ 
are the coefficients (in the equation for the nodal rate) of the J2n, n = 2Jr/P is the 
orbital mean motion, and R e is the Earth's equatorial radius. This classical precession 
is due to the quadrupole and higher multipole mass moments of Earth, measured by 
the coefficients C2,~o. The orbital parameters n, a and e in formula (2) are determined 
with sufficient accuracy via the LAGEOS laser ranging [10] and one can determine the 
average inclination angle I with sufficient accuracy over a long enough period of time 
(see below). Any other quantity in eq. (2) can be determined or is known with sufficient 
accuracy, apart from the C2~0. Indeed, the largest uncertainty in the classical 

~Class precession LAGEOS arises from the uncertainty in the coefficients C2~0. This 
uncertainty, relative to C20, is of the order of [11, 12]: 5C2no/C2o ~ 10 6 to 10 -~. For C2o, 
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this corresponds, from formula (2), to an uncertainty in the nodal precession of about 
450 to 45 milliarcsec/year, in addition we have the uncertainty due to the higher C2no 
coefficients. Therefore, the uncertainty in the modeling of t~CJassLAGEOS is larger than the 
Lense-Thirring precession. 

A solution would be to orbit several high-altitude, laser-ranged satellites, similar to 
LAGEOS, to measure C20, C40, C~0, etc., and one satellite to m e a s u r e  ~Lense-Thirring. 

Another solution would be to orbit polar satellites; in fact, from formula (2), for 
polar satellites, since I = 90 ~ ~cl~ss is equal to zero. 

A third solution [6, 7] would be to orbit a second satellite, of LAGEOS type, with the 
same semimajor axis, the same eccentricity, but the inclination supplementary to that 
of LAGEOS. Therefore, (,LAGEOS III,, should have the following orbital parameters: 
/ I I I =  180 ~ _ 1 I ~ 7 0  o, a i i i = a  I, and e III ----e I. With this choice, since the classical 
precession ~Class is linearly proportional to cos I, ~2 clas~ will be equal and opposite for 
the two satellites. By contrast, since the Lense-Thirring precession ~Lense-Thirring, eq. 
(1), is independent of the inclination, ~,~Lense-Thirring will be the same in magnitude and 
sign for both satellites. Then, by properly combining the measured nodal precessions, 
we will get the Lense-Thirring precession. Several investigations have been published 
on the LAGEOS III experiment, together with comprehensive and extensive error 
analyses, computer simulations of the experiment and (,blind tests,, performed in joint 
studies by ASI (Italian Space Agency), NASA, University of Texas at Austin, US Air 
Force, and several other universities and research centers in the US and 
Italy [7, 13, 14]. Present error analyses and other studies show a total error in the 
LAGEOS III gravitomagnetic measurement of about 3%, or less, of the Lense-Thirring 
effect, over a three-year period [3, 15]. However, this measurement cannot be 
performed until the LAGEOS III satellite will be constructed and launched. 

Let us now describe the new method that is leading [16] to the first detection of the 
Lense-Thirring effect. 

In October 1992, the LAGEOS II satellite (built by Alenia), a copy of LAGEOS, was 
successfully launched by NASA and by the Italian Space Agency, ASI. The LAGEOS II 
semimajor axis is a--12,163 km, the eccentricity e ~ 0.014, and the inclination I--- 
52.65 ~ Similarly to LAGEOS, one of the relativistic effects best measurable on the 
orbital parameters of LAGEOS II is the precession of the nodal lines. For LAGEOS II, 

h o b s  -231~ and the Lense-Thirring the total nodal precession is: :'LAGEOSII----~ 
precession is for LAGEOS II: 

(3) ~LIense-Thirring = 2J  

( 1 - d i ) 3 / 2  
31.5 milliarcsec/year, 

However, in spite of the highly accurate gravity field solutions today available, the 
uncertainties in the Earth's even zonal harmonics do not allow the measurement of the 
Lense-Thirring effect using the two observable quantities DLAGEOS and t~LA~EOSH, 
nodal rates of LAGEOS and LAGEOS II. 

Today one of the most accurate Earth's gravity field solutions available is JGM-3, 
jointly developed by NASA-Goddard and by the Center for Space Research (CSR) of 
the University of Texas at Austin. Furthermore, a new improved Earth gravity field 
solution has been recently developed in US. Let us first analyse the gravity field 
solution JGM-3. The values of the main five even zonal harmonic coefficients C2~0 of the 
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JGM-3 solution are: 

(4) 

C2o -= - 484.1653754" 1 0  - 6  , 

C4o --- 0.5397771.10 - 6  , 

C6o -= - 0.1496716" 1 0  - 6  , 

C86 --- 0.0491180"10 .6 , 

Clo, o --- 0.0541304.10 -6 . 

The corresponding estimated errors associated with each of these zonal harmonics 
coefficients are of the order of: 

(5) 

f ~)C2o ~ 0.05' 10 -9 , 
5C40-- 0.1.10 9, 

6C60 ~ 0.2.10 -9 , 

6Cso ~ 0.2 " 1 0  - 9  , 

6Cl0, o --- 0.2.10 - 9  . 

Now, there is a basic problem to evaluate if these estimated errors in the spherical 
harmonic coefficients of the Earth 's  gravity field solution are consistent with the true 
errors in the value of these coefficients. To see where the main errors are likely to be 
concentrated in the estimated C2~o coefficients one might take the difference between 
two different gravity field solutions. This method has been, for example, applied by 
Lerch et al. [17] to the solution GEMT-2. Let  us then consider [11] the older gravity 
field solution GEMT-3S, computed without altimeter and surface gravity information, 
using exclusively satellite tracking data up to 1988, without LAGEOS II data. The 
values of the main five even zonal harmonic coefficients, C2,o, of the GEMT-3S solution 
are: 

f C2o --- -484.1650994-10 - 8  , 

C4o ~ 0.5395212" 10-6,  

(6) C60 --- - 0.1495135.10 .8 , 

C80 -- 0.0488832 �9 10 .8 , 

C10, 0 -- 0.0540650.10 6. 

The corresponding estimated errors associated with each of these zonal harmonic 
coefficients are of the order of: 

(7) f 
5C20--- 0.2"10 9, 

5C40 --~ 1.10 9, 

6C60 --- 1.10 .9 , 

5Cso -= 2.10 .9 , 

~)Clo, o ~ 2 " 1 0  . 9  . 
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Le t  us then compare the differences AC2no between the corresponding even zonal 
harmonic coefficients of the solutions GEMT-3S and JGM-3, and the est imated errors  
given by  GEMT-3S and JGM-3, 

(8) 

I AC2o I ~ 0.276.10-9 ; 

I AC4o I ~ 0.256.10 .9 ; 

IAC6o I --- 0.158.10 -9 ; 

IACso I ~ 0.235.10 -9 ; 

IAC10,01 -- 0.0654.10 .9 ; 

~)c2G0 E M T - 3 S  --  0.2.10 .9 ; 

6C4GoEMT 3S ~ 1" 10 9 ; 

5C6GoEMT - 3 S  ~____ 1.10 -9 ; 

568~ E M T -  3S _~ 2.10-9 ; 

~)g~ GEMT - 3S ~1o, o -= 2"10-9 ; 

6C~o aM-~ _-_ 0.05.10 .9 ' 

5 c J G M  - 3  ____~ 0.1 "10 .9 , 

5c~0GM -3 _--__ 0.2 "10 -9 , 

6Cs JGM-~ _= 0.2.10 .9 ' 

~)fYJGM - 3  ~ 0 . 2 " 1 0  - 9  ~gl0, 0 = 

However,  in order  to measure  the Lense-Thirr ing effect, one has to investigate how 
the er rors  in the C2n0 coefficients propagate  in the two observable quantities, the nodal 
ra tes  of LAGEOS and LAGEOS II ,  and compare these nodal er rors  with the 
corresponding size of the Lense-Thirr ing effect on the nodes. Thus, for the nodes of 
LAGEOS and LAGEOS II,  one has (in units of b I  L-T and ~ L - T ) :  

5bi /~2~ -'r 
due to JGM3 
estimated errors 

due to difference 
(JGM3 - GEMT3) 

5C2o 
5C4o 
5C6o 
6Cso 
6Clo, o 

- 1.5 
1.5 
0.76 
0.06 
0.04 

- 8 . 3  

- 3 . 8  

- 0.6 
0.07 
0.01 

and 

6bHibh -~ 
due to JGM3 
estimated errors 

a bi, / b~i T 
due to difference 
(JGM3 - GEMT3) 

6C2o - 2.7 - 15 
5C4o - 0.51 - 1.3 
6C~o - 1.2 - 0.92 
5Cso N 0.28 - 0.33 
~)Clo, o ~ 0.07 - 0.02 

F rom these uncertainties in the nodal ra tes  of LAGEOS and LAGEOS II,  both by 
considering the est imated errors  and the differences between the two Ea r th  gravity 
field solutions (that should provide upper  limits to the t rue er rors  in the modeling of 
the C2no), it is manifest  that  the dominant e r ror  sources are due to the uncertainties in 
C2o and C4o , and in par t  to the uncertainty in C6o. However,  much smaller errors,  
compared to the Lense-Thirr ing effect, are due to the higher even zonal harmonics. 
Therefore,  in order  to get  a measurement  of the Lense-Thirr ing effect one needs at 
least  to eliminate the errors  arising from C~o and C4o. This cancellation must  also 
include the uncertainties in the temporal  and seasonal variations of the even zonal 
harmonics: to get  a measurement  of the Lense-Thirr ing effect one needs at  least to 
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eliminate the uncertainties in C~0. Indeed, it is necessary to take into account that if one 
uses the JGM-3 covariance matrix, by considering the correlations of the errors in the 
even zonal harmonics higher than C40, the estimated error in the measurement of the 
Lense-Thirring effect is further reduced (see below). Then, summarizing, one has at 
least three unknowns: 5C.20, 5C40 and Lense-Thirring effect, but only two observable 
quantities: ~LAGEOS and ~r~LAGEOSII. At this point it is important to observe that the 
orbital eccentricity of LAGEOS II is larger than the orbital eccentricity of LAGEOS. 
Indeed, in regard to the perigee, the observable quantity is ea(o, where e is the orbital 
eccentricity of the satellite. Thus, since the LAGEOS eccentricity is about 4.10 -~, the 
perigee precession, &, is a quantity extremely difficult to be measured for LAGEOS. 
However, the LAGEOS II orbit is more eccentric, its eccentricity is about 0.014, and, in 
addition, the Lense-Thirring effect on the LAGEOS II perigee is almost twice larger, 
in magnitude, than the Lense-Thirring effect on the LAGEOS perigee. Indeed, the 
argument of pericenter (perigee in our analysis), w, of a test particle, that is the angle 
on the orbital plane measuring the departure of the pericenter from the equatorial 
plane, has a secular perturbation due to the gravitomagnetic field [2]. One has for 
LAGEOS I: 

(9)  ~)Lense-Thirring = - 6 J  
ai 3 ( 1 - e~)~/e cos II ~ 32 milliarcsec/year 

and for LAGEOS II: 

(10)  (~)Lense-Thirring _-- - 6 J  

a~ ( 1 - e~)3/2 
cos IH --- - 57 milliarcsec/year. 

Thus, for example, if one is able to determine the quantity eaw with an accuracy, 
over several orbits, of about 2 cm (indeed, for LAGEOS II, the r.m.s, of the residuals of 
the best orbital fits is, over several orbits, of the order of a few cm), one can determine 
aw with an accuracy of about 140 cm at the LAGEOS II altitude, corresponding to 
about 24 milliarcsec. Then, since the Lense-Thirring drag of the LAGEOS II argument 
of the perigee is - 5 7  milliarcsec/year, one can achieve, in determining a~b in one year 
period, an accuracy of the order of 40% of the Lense-Thirring effect on the LAGEOS II 
perigee. 

In summary, since the Lense-Thirring drag is almost twice larger, in magnitude, on 
the perigee of LAGEOS II than on the perigee of LAGEOS and since the orbital 
eccentricity of LAGEOS II is much larger than the eccentricity of LAGEOS, in order 
to determine the ,~frame-dragging, effect, in addition to the nodes of LAGEOS and 
LAGEOS II, one can also use the LAGEOS II perigee. By using the perigee one 
introduces an observational error much larger than in case of the nodes. However, this 
-new, observable quantity, the perigee of LAGEOS II, allows to eliminate errors, due 
to the uncertainties in the gravity field, that are much larger than the observational 
errors in the LAGEOS II perigee. Let us investigate how the errors in the C2,0 
propagate on the perigee rate of LAGEOS II and compare these perigee errors with 
the size of the Lense-Thirring effect on the perigee. The observed perigee precession is 
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for LAGEOS Ih  (~)LAGEOSII ~- 160~ ar, and the classical perigee precession is: 

(11) & c ~ _  43 ( R e )  2 1 - 5 c ~  - - a  ( 1 - e 2 )  2 J 2 -  

- [[ 15nR~ (108 + 135e 2 + 208 cos (2I) + 252e 2 cos (2I) + 196 cos (4I) + 

+ 189e z cos (4I))]/(1024a4(1 - e2)4)] J4 + ,~P2n x J2n, 

where the P2, are the coefficients (in the equation for the perigee rate) of the 

nonnormalized even zonal harmonics J 2 , -  - ~  + 1 C2,o. Thus, for the perigee of 
LAGEOS II, one has (in units of (~)hense-Thirring): 

6 ~ii/o)LI -T 
due to JGM3 
estimated errors 

a~i[//03h -T 
due to difference 
(JGM3 - GEMT3) 

5C2o - 1.1 - 5.9 
5C40 - 2.1 ~ 5.3 
6C60 - 0.41 ~ 0.32 
6C8o -- 0.68 -- 0,8 
6Clo, o - 0.22 - 0.07 

From these uncertainties in the perigee rate of LAGEOS II, similarly to what 
inferred for the nodal rates, it is manifest that  the dominating error sources are due to 
the uncertainties in C2o and C4o. 

Thus, summarizing, we have now the three unknowns 5C2o, 6C4o and Lense- 
Thirring effect, and the three observable quantities ~LAGEOS, ~LAGEOSII, and 
0)LAGEOS II" 

The main unmodeled part  of the LAGEOS I nodal rate, due to the uncertainties in 
the even zonal harmonics, to the errors in the value of the orbital parameters (mainly 
the inclination), and including the Lense-Thirring effect (to be determined), is: 

(12) 5~21=(-9.3"1011) xbCzo-(4.62"lO11)xbC4o+Y, N2,~x6C2~o+6• 

where 5 d2 is in units of milliarcsec/year, and 6I in milliarcsec. This formula shows the 
main error sources in the calculated nodal rate (apart from the errors due to tides and 
to nongravitational perturbations; see below). In this formula the first two 
contributions are due to the uncertainties 5C2o and 5C4o, we then have the error due to 
the uncertainties in the higher even zonal harmonics 5C2,,o (with 2n I> 6), and the error 
due to the uncertainties in the determination of the inclination 5I~. In this formula we 
have also included the Lense-Thirring [2] parameter /~, by definition 1 in general 
relativity: /2 GR-- 1, that, if not incorporated in the modeling of the orbital 
perturbations, will affect the orbital residuals. One can write a similar expression for 
the node of LAGEOS II: 

(13) ~)~II = (17.17"1011) x 5C2o + 

+(1.68.1011) x 6C4o +Y.N~'~ x 6C2,~o + 5.3 x 8Iii + 31.5/~ 
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and for the perigee of LAGEOS II: 

(14 )  50ii = (--11.87"1011) • 5C20- 

-(11.79.1011) x 8C4o + Y, P2~ x 5C2no - 16 x 5 / i i  - 57re. 

Thus, using these three observable quantities, we can solve for/~ and eliminate 6C2o 
and 6C40: 

(15) 6 ~ I  + kl 6 ~r q- k2 8 (5)11 = tt(31 + 31.5k 1 - 57k2) milliarcsec/year + 

+ [other errors sources (5C60, 6Cso, ..., 5Ii, 6III,...)], 

where k I and k2 are: 

kl ~ , ~ I  �9 I I  , G I  �9 I I x  -~,G, I I  �9 I I  ~ , I I  �9 I I x  
= I ,~d40)2 - -  "~d20)4 )/I,~d2 0)4 - -  ~d4 (2 )2 )  ~ 0 . 2 9 5  

and 

t r  r , .~II 3~I x ~ / 3 ~ I I  �9 II  -%1I �9 I I x  (16) k2 ---- ~ 4  ~ 2  - -  "~d2 $ Z 4 ) / I , ~ ' 2  0)4 - -  t J 4  0)2 ) ~ - 0 . 3 5 ,  

where d22, d24, &2, and &4, are the coefficients of C20 and C4o in the equations for nodal 
rates, d2, and perigee rate, cb. 

Finally, we need to consider the other error sources and the error budget 
corresponding to this new method to measure the Lense-Thirring effect. It is 
necessary and important to observe that by using this new method one eliminates not 
only the error in the static part of C2o and C4o, but also the errors arising from the 
unknown, mismodeled or unmodeled, temporal variations in C2o and C40, including their 
tidal variations, and their secular and seasonal variations. 

If we combine the nodes of LAGEOS and LAGEOS II and the perigee of 
LAGEOS II according to formula (15), and by using the JGM-3 covariance matrix we 
have: Error (6~21 + k16~2ii + k2 50I I )  C2"~176 -~ 17% X (60.2 milliarcsec/year), that is 
(6/,) Ca'~ > C~~ --- 17%/~. 

In regard to tidal perturbations and other temporal variations in the Earth's 
gravity field, we have used and adapted to the present analysis previous results and 
studies of the LAGEOS III experiment [7, 13, 14]; of course tidal perturbations have 
different effects on the orbital elements of LAGEOS II and LAGEOS III. One of the 
main tidal errors is due to the 18.6 year tidal perturbation of the satellites orbits 
associated with the period of the Moon's node. A large part of the error associated with 
this 18.6 year tide is due to the uncertainty, 6C2o, in its 1 = 2, m = 0 component, 
however any tidal error in Ceo and C4o, and any error due to other unmodeled temporal 
variations in C2o and C4o, including their secular and seasonal variations, is eliminated 
using the combination (15). Thus, we obtain a preliminary upper limit for the error due 
to tidal perturbations and temporal variations in Cen0: 6/~tides~<5%tt. 

Then, we have to consider the nongravitational perturbations, they are particularly 
effective on the perigee. The nongravitational perturbations include direct solar 
radiation pressure, Earth's albedo, Yarkovsky anisotropic thermal radiation, Rubincam 
effect (anisotropic re-radiation of Earth's infrared radiation absorbed by the LAGEOS 
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retro-reflectors), particle drag and errors due to the estimated value of the satellite 
reflectivity and estimated 15-day along-track acceleration. 

With regard to the mismodeling of the nodal rates due to nongravitational 
perturbations, previous extensive error analyses and results for the LAGEOS III 
experiment [7, 13, 14] have shown a total error of less than 3%. Then, we may 
substantially apply these results, for the nongravitational perturbations, to the nodal 
rates of LAGEOS and LAGEOS II. In regard to the effects of neutral and charged 
p artic~ drag on the perigee, one has to consider that any drag-like force of the type 

F -  v v gives a null secular contribution to the perigee rate; this result also applies to 
any unmodeled, constant, 15-day acceleration. In regard to the radiation pressure, the 
unmodeled effects on the nodes of LAGEOS and LAGEOS III, and also LAGEOS II, 
have been calculated to be small. However, the effect of unmodeled radiation pressure 
may be large on the perigee. The radiation pressure effect is large on the perigee 
because of the special dependence of the perigee rate on the transversal and radial 
components of this perturbation. In this preliminary error analysis we have assumed an 
error of about 5% in the value of the reflectivity of LAGEOS II (after estimating it by 
best fits of the observations), and an error of about 0.1% in the value of the solar 
constant. Indeed, the radiation pressure effects on a satellite have a unique and 
characteristic signature, one can thus separate them from the other perturbations and 
one can accurately estimate and then adjust the reflectivity to best fit the observations. 
Furthermore, whereas the Lense-Thirring effect on the perigee rate is secular, the 
direct radiation pressure perturbations of the perigee are nonsecular, they are 
periodical, on the perigee, with known periods. Then, by choosing a long enough period 
of observation, one can average to a small number the direct radiation pressure 
perturbations. In addition, by identifying the characteristic frequencies of the radiation 
pressure perturbations on the perigee one can remove, over a long enough period of 
observation, the unmodeled radiation pressure effects on the perigee with these typical 
frequencies. Then, we have simulated the orbit of LAGEOS II corresponding to 
different cases, each with a different value of the reflectivity of the satellite according 
to the above-mentioned uncertainties. Then, by removing the main direct radiation 
pressure effects with periods of less than 3 years we have estimated a total error of the 
gravitomagnetic parameter tt of less than 20% • 1/3 - 7  %; the factor 1/3 originates in 
formula (15), where the perigee rate contributes to/~ by about 1/3 only. 

Then, in conclusion, the effect of the nongravitational perturbations on the 
combination (15) should not exceed 10%; that is 5/~n~ < 10%/~. 

The order of magnitude of the observational errors (one can obtain the accurate 
figure by performing the analysis with the real data) may be estimated by observing 
that the uncertainty in the determination of the orbit, indicated by the r.m.s, of the 
residuals of the orbital fits, is of the order of 3 cm, for a 15-day period; this corresponds 
to an uncertainty of the order of 0.5 milliarcsec in the nodal longitude, and of the order 
of 0 . 5 / e -  35 milliarcsec in the argument of perigee of LAGEOS II. Then, we may 
estimate the uncertainty due to observational errors in the combination (15) to be: 
5# obs <~ 10 %#, over about 3 years. 

Finally, one has to evaluate another type of error that we call here the ,imprint- of 
the Lense-Thirring effect. The Earth's gravity field solution JGM-3 has been obtained 
by using the observations of several Earth's satellites and by using a set of models and 
parameters to describe the orbital perturbations, including the a priori, theoretical, 
general relativistic value of the Lense-Thirring effect. Thus, the gravitational field 
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solution JGM-3, that we use to measure/~, contains some kind of ,imprint, of the a 
priori hypothesized, theoretical value of the Lense-Thirring effect. In other words, 
even in the case that there is no Lense-Thirring effect in nature, the Earth's gravity 
field solution JGM-3 would contain in the even zonal harmonic coefficients an 
~,imprint, of the hypothesized, theoretical value of the Lense-Thirring effect. This 
conceivable error source has been evaluated by performing several simulations testing 
the influence of the Lense-Thirring effect on the estimation of the Earth's gravity field. 
The result of these simulations has shown that, in the event of no Lense-Thirring drag 
in nature, with regard to the effects on the orbits of LAGEOS and LAGEOS II, most of 
the a priori value of the Lense-Thirring effect is absorbed in the first 3 even zonal 
harmonic coefficients, and mainly in C~0 and C40, a minor part is absorbed in the higher 
harmonic coefficients, and part of it is absorbed in the other parameters usually 
estimated and adjusted (initial conditions, polar motion, ...). Thus, using the new 
method described in this paper, by eliminating every error contained in the first two 
even zonal harmonics, C20 and C40, there is a small influence on the combination (15), of 
nodes of LAGEOS and LAGEOS II and perigee of LAGEOS II, due to the 
Lense-Thirring ,imprint, in the harmonics with 2n/> 6. Indeed, even in the worst 
possible, unrealistic, case, when nothing is allowed to be estimated and adjusted, there 
is an error induced by this ,imprint, effect, contained in the C2,~o with 2n/> 6, of only 
10% of the total effect (15). However, this ,<imprint, effect is generally very small in the 
other performed tests, not exceeding a few percent of the Lense-Whirring combination 
(15). Then ~ L T i m p r i n t ~  1 0 c ~ / .  

In conclusion, by the use of the new method to measure the Lense-Whirring effect 
described in this paper, by these preliminary analyses, we have estimated the total 
error in the determination of the parameter/~ to be 

(17) 5/~ ~< 25 %/~. 

A comprehensive error analysis and error budget will be the subject of a following 
paper. 
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