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ABSTRACT 

For the classical Banach spaces X = gp, C(K) we identify all n such that 

every polynomial of degree n + 1 on X is uniformly approximable on the 

unit ball by elements of the algebra generated by all polynomials of degree 

up to n on X. 

The classical Stone-Weierstrass theorem claims that  the algebra of all real poly- 

nomials on a finite-dimensional real Banach space X is dense, in the topology 

of uniform convergence on bounded sets (we will always consider this topology, 

unless otherwise stated), in the space of continuous real functions on X.  

On the other hand ([12]), on every infinite-dimensional Banach space X there 

exists a uniformly continuous real function not approximable by continuous poly- 

nomials. Moreover, on some spaces (e.g. #?p - -  see [12], [5]) a new phenomenon 

occurs; the closure of the algebra generated by polynomials of degree at most n 

(A~) does not contain all polynomials of higher degree. 

In our paper  we completely clarify this situation for the classical Banach spaces. 

We also present some partial answers in the general case. With exception of C(K)  

Asplund spaces, our results are new. 

Our strategy rests on the same basic idea, used to obtain the previous partial  

results in [12], [5], that  the polynomial P((xi ) )  = ~i~=1 x~ on g2 is not approx- 

imable by polynomials from Am(g2) for many values n, m ~ N. However, in order 

to obtain a precise characterization, we develop a new finite-dimensional method 

to handle polynomial approximations. 

Roughly speaking, we pass from approximation to precise equality by proving 

that  if ~i~=1 x~' C An-1 (~2), then for some k E N and a certain finitely generated 
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algebra A of polynomials on ]R k , Y~ik=l x~ E A. We show that this leads to a con- 
k tradiction, due to the algebraic independence of A and {~/=1 x~}. The method 

is based on a generalization of the well-known algebraic theory of symmetric 

polynomials on R k . 

ACKNOWLEDGEMENT: Before we pass to the mathematical part of our note, we 

would like to take the opportunity to thank R. Aron for bringing this problem 

to our attention, as well as for his exciting lectures at the Paseky Spring School 

1996. It was he who had the right intuition that  ~ i~1  x~ does not belong to 

An-l(~2) for any n c {2, 3 , . . .  }, pointing towards the general solution. 

By a subsymmetric polynomial on ]R n we mean a real polynomial P satisfying 

P(x) -= P(y) for every pair x : (Xl , . . . ,  x,~), y = (Yl , . . . ,  Yn) of elements of ~'~ 

such that  the sequences formed by all nonzero coordinates of x and y coincide (e.g. 

x : (2,0,0, 1.5, re,0), y : (0,2, 1.5,0,0, rr)). By Hk(R~), 1 < k < n, we denote 

the finite-dimensional vector space consisting of all subsymmetric homogeneous 

polynomials on ]R ~ of degree k. Hk(R '~) has a basis consisting of subelementary 

polynomials, denoted by ( a l , . . . ,  am) where ai E N, Y~-/~I a/--- k. We define 

E • 

i l < ' " < i m  

Note that  every subsymmetric polynomial on IR n can be written uniquely as 

a linear combination of subelementary polynomials (a standard form of a sub- 

symmetric polynomial). The set of polynomials U~=I H~(Rn) generates (using 

pointwise addition and multiplication, as well as scalar multiplication) an alge- 

bra Sk(]Rn), which is a subalgebra of the algebra of all polynomials on R '~. 

Analogously, we say that  a polynomial P is symmetric on R n if P(x) = P(y) 
for every pair x = (x l , . . . ,  Xr~), y = (Yl , . . . ,  Yn) such that  for some permutation 

lr of {1, . . .  ,n}, (x,~¢1),... ,X,r(,~))= (Yl, . . .  ,yn). 

By Symk(lR n) we denote the algebra generated by symmetric polynomials of 

degree less than or equal to k. Important examples of homogeneous symmetric 

polynomials on R'* are ak, 1 < k < n. By definition, 

ak(Xl , . . . ,xn)  : E xil "xi2 " . . . 'x ik .  
il  <i2<.. .<ik 

By classical results, for every ¢ E Symk(I~'~), k _< n, there exists a unique 

polynomial P(Yl , . . . ,  Yk) in k variables, such that  

¢ ( x 1 , . . . ,  Xn) = P(al (x , , . . . ,  x,~), a2(xl , . . . ,  x,~),..., ak(x , , . . . ,  x,~)). 



Vol .  1 0 6 ,  1 9 9 8  P O L Y N O M I A L  A L G E B R A S  O N  B A N A C H  S P A C E S  2 1 1  

In order to generalize this result for the case Sk(R~), k < n, let us define the 

notion of an algebraic basis of a given algebra .A over R. The set B C A forms an 

algebraic basis of .4 if for every a E .4 there exists a unique finite subset bl, . . . ,  bk 
of B and a unique polynomial P (Y l , . . . ,  Yk) such that 

P(bl,.. . ,bk) =a. 

The set B C .A is called algebraically independent if for no finite subset b l , . . . ,  bk 

of B and no nontrivial polynomial P(Yl,- . . ,Yk) we have P(bl, . . . ,  bk) = O. In 

what follows, we will also use the fact that Hk(~ k) and Hk(IR~), n > k, are 

canonically isomorphic (via the standard form, or equivalently by restriction of 

elements of Hk (~n) onto the first k coordinates). Thus, the elements Hk (R k) C 
Sk (]~k) will be assumed to be considered (via the canonical extension using the 

standard form) elements of Hk (ll~ ~) C Sk (~n), n > k, and vice versa. 

For every Banach space X, we denote by "Pn(X), n > 1 the space of all n- 

homogeneous real polynomials on X. Let us point out that polynomials from 

Pn(X)  in general involve an infinite number of indeterminates, as is usual in 

Banach space theory. More precisely, p(x) E 7),~(X) if there exists an n-linear 

bounded functional r e (x1 , . . . ,  xn) on X ~ such that p(x) = re(x,. . . ,  x) on X. By 

P ( X )  we denote the space of all polynomials f on X (i.e. functions of the form 

f = f l  + " "  + f~ where fi C Pi) and by An(X) we denote the algebra generated 

by elements from [.J~=l Pi(X).  

For classical results on symmetric polynomials we refer to [15]. Results on 

real analytic functions (or its holomorphic counterparts) are contained in [8], [9]. 

Facts about subsymmetric polynomials can be found in [6], [12], [5]. 

LEMMA 1: Sn(~  n) has an algebraic basis Bn = {bx,.. .  ,bk(n)} consisting of 
standard polynomials. Moreover, a l , . . . ,  a,~ E B~. 

Proof: By induction. For n -- 1, we put bl = al .  

INDUCTION STEP FROM n TO (n + 1). We will assume that bi E {b l , . . . ,  bk(n)} 

__ = (C~I,  Or2, , 0"1,  , E Bn. are homogeneous, deg(bi) < n, bi i i • ""  ~ k i ) '  " ' '  O 'n  

For every f E S~(]~ ")  there exists a unique polynomial P(Yl, . . .  ,Yk(n)) such 

that f ( x l , . . . ,  xn) = P(bl (x l , . . . ,  xn),.. ,  bk(,~) (xl , . . . ,  x,~)). In particular, there 

exists no nontrivial polynomial P (Yl , . . . ,  Yk(n)) such that 

(1) P(bl(Xl,.. . ,Xn),b2(Xl,.. . ,Xn),.. . ,bk(n)(Xl,.. . ,Xn)) -- 0 

on R" . 
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Therefore, bi are algebraically independent as elements of Sn+l(l t~+l) ,  since 

for any nontrivial polynomial P ( Y l , . . . ,  Yk(n)) there exists some (Xl , . . . ,  x~, O) 

such that  

P ( b l ( X l , . . .  , x n , O ) , . . . )  7 £ O. 

We will extend the set Bn C S~+I(R ~+1) into an algebraic basis Bn+I of 

Sn+l (R '~+1) as follows: Put  

M~+I = {b~ 1 -b~ ~ . . . . .  b ~¢~' k(~) , ai E N are such that  ~ ai • deg(bi) = n ÷ 1}. 

Clearly, M~+I is a finite set of homogeneous polynomials of degree (n + 1) 

from S~+I(R'~+I). Elements of M,~+I are linearly independent as vectors from 

Hn+l(~n+l). 
/ k(n)-t-1 

Choose subelementary polynomials bk(n)+l = i a l  , . . . ) , . . . , b k ( n + l )  = 

( ak (n+ l ) , . . . )  such that  Mn+l U {bk(~)+l,. . . ,bk(~+l)} is a vector space basis 

of Hn+l(Ii(n+l). (Later we will show that  we may choose bk(,~)+l := a~+l, so, in 

particular, Mn+l is not a basis of Hn+I(R~+I).)  

I t  is clear that  Bn is an algebraic basis of S~(R ~+1 ). Therefore, B~+I generates 

Sn+l (IRn+l). We want to prove that  Bn+l is an algebraic basis of Sn+l (R n+l).  

Assume the contrary, i.e. there is a nontrivial P ( Y l , . . . ,  Yk(n+l)) s u c h  that  

P(bl  ( x l , . . . ,  xn+l) ,  • • •, bk(,~+l) (xl,  • • •, xn+l)) -- 0 

o n  ] ~ n + l .  

We may assume that  for some 1 <_ j < k(n  + 1), 

O P .  o 
- yj(yl, . ¢ o, 

= ", n) for some where 9 ° b j ( x ° , . ,  x ° ( x ° , . . . , x  °) e N ~+1. 

Indeed, otherwise we would choose OP/Oyj  in place of P. By repeated choices 

we would get that  OP/Oyi ,  O y j , . . .  - 0 on R ~+1 for all choices of Yi, Y j , . . .  and 

so P ( y l , . . .  ,Yk(n+l)) = 0 on R k('~+l). 

By the real analytic implicit function theorem, in some neighbourhood of the 

point y/0 = bi (xO, . . . ,  xO), we have 

yj ---- (I)(yl,. . .  , Ys-  I , Yj+ I , . . . ) 

where 4) is real analytic. 
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Therefore, in some neighbonrhood of (X°l,..., x°),  using the Taylor expansion 

of ~, we have 

b j ( x l , . . . , x n )  = , x n ) , . . .  ) 

almO an+l=O 

Note that  due to the form of ~, b j ( X l , . . . ,  Xn) is excluded from the right hand 

side of the above equality. On both sides, we have real analytic functions in 

variables x l , . . . ,  x~. Thus the corresponding coefficients must be equal• So 

• b a ~ + l  

~,-deg(bd=deg(bj) 

This is a contradiction. Indeed, if deg(bj) < n + 1, we would have that  Bn is not 

algebraically independent, and if deg(bj) = n + 1, M~+I U {bk(n)+l,... } would 

not be linearly independent. 

We have established the existence of the algebraic basis for Sn+l fIR ~+1 ). 

Before we proceed further, let us make the following easy observation. Suppose 

that,  for 1 < i < l, there are p~ E N such that ~l i=  1 Pi = P < n.  Consider the 

differential operator 
OP 

D =  
Ox m ~ p 2  . . . cgxPZ n ~ ' ~ n - - 1  n - - l + 1  

acting from S~(R n) into 7)(Rn). 

By putting xn = 0, . .  X~-p+l = 0 we may consider an opera tor / ) :  Sn(N n) --+ 

J[7)(p)(Xl ,  • . ,  Xn--p)  = D ( p ) ( x l , . . . ,  x ~ -  o, O, 0 , . . . ,  0). 

OBSERVATION: /~) sends p o l y n o m i a l s  of degree d to p o l y n o m i a l s  o f  degree at m o s t  

d - p .  

c_ 
b(Sym~(R~))  C S y m n _ p ( R n - P ) .  

Proof :  The first part is well known. To show that  / ) (P)  is a subsymmetrie 

polynomial for every p C Sn (R ~), it is enough to show this for any subelementary 

polynomial p = ( a l , . . . ,  a,~), ~ ai _< n. However, for such p 

P l ! ' P 2 !  . . . .  p l ! ' ( C t l , . . . , a m - l )  i f fam = p l , a m - 1  = P 2 , . - . ,  

D ( p )  = a m - l + 1  = Pl, 

0 otherwise. 
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T h e  s y m m e t r i c  case is similar. II 

We proceed by showing tha t  bk(n)+l can be chosen to be  a~+l .  This  is 

equivalent  to an+l  being linearly independent  of the set Mn+l .  Assume,  by 

contradict ion,  t ha t  this is not the case, i.e. 

a~+l  = E t3s~ ...... k(~)b~ 1" '"  b sk(~) k(n) " 
si.deg(b,)=n-I-1 

By classical results,  a l ,  • • •, an+l  form an algebraic basis of the space of symmet r i c  

po lynomia ls  on R~+I .  Thus,  there exists some bj 6 Bn, which is not  symmet r ic ,  

0 > 1 and ~ O. and al° , . .  ~o such tha t  ~ a0 deg(bi) n + 1, aj _ o o 
• k ( n )  ---- ~Sl,...,Sk(n) 

We m a y  assume W L O G  tha t  there is no nonsymmet r i c  bl having the  same  

o is the  max ima l  p rope r ty  and such tha t  deg(bz) > deg(bj).  Also, suppose t ha t  aj  

possible.  Let  us rewri te  the  right hand side as follows: 

Crn+l = E ]~a~ ..... sk(,~)b? 1" ' "  bkgn(') , -t~ b~ '° 

a i . d e g ( b l  )=n- f -1  

aj < s ° 

hSk(,~)  
E ~Sl ..... Sk(n) b? 1 " ' ' ~ k ( r ~ )  

s~.dcg(bd= 
n-Fl-deg(bj)-s ° 

• h S k ( . )  s ° = E /3at ..... sk(.)bC~ ~'" "k(n) +b j  . Q ( b l , . . . , b k ( n ) ) ,  

s~-deg(bl)=n+l 
sj < s ° 

where O(b~(~,..., ~),..., b~(~)(~,..., ~)) is a homogeneous polynomial of 
0 Suppose degree n + 1 - deg(bj) • ~j. 

e ( b ~ ( ~ , . . , ~ ) , . .  ) = Z ~,  ..... ~,  ( ~ , ' " , ~ )  
ni>0 

Z: n, =~+i-dCg(b, ).s ° 

is the s t anda rd  form for Q ( b l ( X l , . . .  , X n ) , . . . ) .  Let  ^/no ..... no ¢ 0. Consider the  

differential opera to r  

D = 

We have 

/)c~n+i =/)  ( Z 
si .deg(bl)----n+l 

c~j<s ° 

o n +  l - d e g ( b j  ) . s  ° 

O n  ° ~x n°-~ ~ n ° . 
• ~,n L,, n - - 1  " " " OXn- - l - I -1  

~sl  ...... ~,~)b~ 1 • • • b~(~ , -F b~ -° • Q ( b l , . . .  , bk(n) ) ) ,  
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E 
c~i.deg(bi)=n+l 

l 

( ~  ~>0)  o r ( a j < ~ )  

( 

~ O t l  , . . , ,O~k(n  ) " 

l 

Z o,=1 (by) 
C~Z~ Xn . oztl- l Xn_ l . . . . .  c~l Xn_l_F1 

E ~=nH-l-deg(bj)-c~ ° 
l_<p<k(n) 

1_<q_<l 
~ > 0  

215 

o,~, (b~ ~) 
0 ~ xn • 0 zL`  xn_ 1 . . . . .  0 ~  x,~_l+ 1 

l 

0~=1 Ihak(~) ) ~vk(~) ) 

Oz~ (~) x n .  0 ~-('~) xn-1  . . . . .  0 ~(~) x n - l + l  

+b;° b(Q) 
Note t ha t  D was chosen in order tha t  D(Q)  -- 7~ lo ..... ~,o -/3°! . .  . . .  ~o! = c # 0 

~ 

is constant .  On the left hand side we have a symmet r ic  polynomial  Dan+l 

expressible in t e rms  of a l , . . . , a d e g ( b j ) . a o  as P l ( C r l , . . .  ,adeg(b~).ao ). I t  follows 

f rom our cons t ruc t ion  tha t  if we express D(right hand side) in te rms  of the  

elements  of  Bdeg(bj).ao aS P2(bl , . . . ,  bdeg(b3).ao), i t  will contain the t e rm c .  b S .  

In par t icular ,  

t°1 ( o h , . . . ,  adeg(bj).~o) -- P2(bl , . . . ,  bdeg(bj).a0) ---- 0 

which is a contradic t ion to the algebraic independence of Bdeg(bj)ao. This  ends 

the  proof. | 

F rom wha t  we proved, it easily follows tha t  Bn forms an algebraic basis for 

every Sn(Rm),  m > n. In part icular ,  there exists no element f E Sn(IR "~) such 

tha t  

f ( x l , . . .  ,xm) = a,~+l(xl, . . .  ,xm).  

We will now s t rengthen  this s ta tement  in the sense of approximat ion .  
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LEMMA 2: For every n, m C N, m > k(n) + 1, there exists e > 0 such that 

sup I f ( x l , . . . , x m )  - ~ + l ( X l , . . . , ~ m ) l  > 
El"  I~d<_l 

for every f e ~n(Rm). 

Proo~ W L O G  we m a y  assume tha t  m = k(n) + 1. Consider the  m a p p i n g  

M: ]~m __} ]l~rn defined as 

M ( x l , . . . , z m )  = 

(bl ( X l , . . . ,  X m ) ,  b 2 ( x l ,  . . . , x m ) , . . . ,  b k ( n )  ( X l ,  . - . , X m ) ,  bm ( X l , . . . ,  X m )  ) .  

(Remember ,  b,~ = a~+l ,  { a l , . . . ,  an} C { b l , . . . ,  b,~}). By a s tandard  a rgument ,  

there  exists an open subset  0 C_ { ( x l , . . .  ,xm);  ~ [xi[ <_ 1} such tha t  the  rank 

r of the  Jacobi  ma t r ix  JM (Obi/Oxj) is constant  on O. In case r = m, using 

the  inverse function theorem we obtain  tha t  there exists an open set  U C 0 

such t ha t  M(U) is an open set in IR m. Choose a pair  of points  pl,p2 E M(U),  
pl (p~,. 1 1 p2 

- - - -  , P m - l , P m ) ,  ( p ~ ,  . . 1 2 . . . .  ,P ,~-a ,P , , ) ,  [Plm- P~I = 2~ ~ 0. P u t  
x 1 = M - a  (pl),  x 2 = M - 1  (p2). Then,  for every polynomial  P ( Y l , . . . ,  Yk(~)) we 

have 

P(bl (xl) ,  b e ( x 1 ) , . . . ,  bk(n)(xl)) = P(bl(x2), b2(x2) , . . . ,  bk(n)(x2)). 

However ,  Ib~(x  1) - b.~(x2)l = 2e. Thus ,  for every f C Sn(]Rm), 

we have either 

or 

( f  = P ( b l , . . . ,  bin-l)) 

If(x I) - O'n+l (.TI)I ~__ E 

]f(x 2) - a,~+l(X2)] > E. 

In case r < m,  by the real-analyt ic  rank theorem,  we have t ha t  for some 

l < _ j < m ,  
bj = q}(bl, . . . ,  bj-1, b j + l , . . . ,  bin) 

where • is real-analytic.  Using the fact tha t  bi are actual ly polynomials  in 

X l , . . .  ,x,~ (as in the proof  of L e m m a  1), we conclude tha t  • may  be chosen 

to be  polynomial .  This  is a contradict ion with the algebraic independence of 

B n + l  (~n+l ) .  | 

Denote  s n ( x l , . . .  , xm)  = ~ = 1  xn e Symn(lRm). For future  use in an infinite 

dimensional  set t ing we will need the following Corollary. 
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COROLLARY 3: For every n, m E N, m > k(n)  + 1, there exists  e > 0 such that  

sup I f ( x l , . . .  ,Xm) -- Sn+l(Xl,... ,Xm) I ~_ E 

for every f C Sn (R'~). 

Proof: This follows immediately from the previous theorem and Newton's  

formulas: 

s~ - s n - l ~ l  + sn-2cr2 . . . .  ( - 1 )  n - n . a n  = 0 

valid on N m. 

Indeed, arbi trary close approximations of Sn+l would produce via the Newton's 

formula arbi trary close approximations of O'n+ 1. II 

We remark that  it follows from Newton's formulas that  { s l , - . . , s n }  forms 

another algebraic basis of Sym n (Rm), m _> n. 

THEOREM 4: Given an ~p space, 1 <_ p < oo, we have the following: 

Al(~p) . . . . .  .An-1 (~p) ~ fl~n(~p) ~ fl~n4-1 (~p) C " "  

where n -  l < p <_ n. 

Proof'. It  was shown in [3] that  every polynomial of degree m < p is weakly 

sequentially continuous on gp. By results of [1, 2] this implies its presence in 

.41(ep). 
In case m > p, consider the polynomial P ( x )  = ~ i=1  xm" It  is well-known 

([6, 12]) that ,  if this polynomial is approximable by elements from Am-l(t~p), it 

is approximable by subsymmetric polynomials from A m - l ( g p ) .  This leads to a 

contradiction with Corollary 3. | 

COROLLARY 5: Given X = Lp[0 ,  1], 1 < p < (x~, we have the following: 

A (x) c 
# # 

Proof." By classical results, i fp  > 1, ~2 is isomorphic to a complemented subspace 

of Lp[O, 1]. If p = 1, ~ is isomorphic to a complemented subspace of L~[O, 1]. 

Thus the results follows from Theorem 4. | 

In order to obtain similar results for other classical Banach spaces, we state 

the following Lemma.  
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LEMMA 6: Given a Banach space X ,  suppose there exists a noncompact bounded 

linear operator T: X -+ gp, 1 _< p < c~. Then 

.A1 ( X ) ~  .An(X)~ .An+l ( X ) C " "  

where n >_ p. 

Proof: We present the proof in case p > 1, since the necessary adjustments in 

case p = 1 are only minor. 

Let {xi}i~=l C B x  be such that  {Txi}i~=l forms a c-separated set in gp. In what 

follows, we use the standard Schauder basis technique as in [10]. By Rosenthal's 

theorem we may assume that {Txi}i~l  is weakly convergent. By passing to a 

subsequence we may assume that {Tx2i - Tx2i_l}i~=l is weakly null and there 

exists a block sequence {bi}i~=l in gp such that ~ i~1  Ilbi- T(x2i -x2i+1)ll < 00. 
X oo Finally, we may assume without loss of generality that  {T(x2~- 2~+1)}~=1 forms 

a basic sequence in gp which is equivalent to the canonical gp-basis, and which 

spans a complemented subspace of gp. By composing T with the corresponding 

projection P,  we obtain the following: 

= P o T maps X into ~p, and 

Tyi = ei where yi = x2i - x2i+1, and ei are the basic vectors in fp. 

A similar procedure based on Rosenthal's theorem applied to {yi}i~=l yields the 

following. We may assume that eithgr {Yi}i~l is equivalent to the canonical 

basis of ~ ,  or {Y~}i~l is weakly null (by passing to differences if necessary). In 

the former case, using the proof of Theorem 4 we obtain that the polynomial /5 

defined on X by /5(x)  = P(Tx) ,  where P is a polynomial P(x)  = ~..i~1 x'~ on 

£p, n _> p, satisfies /5 ¢ .An-I(X). In the latter case, we adopt the technique 

from [5], which uses the spreading model ideas. We suppose, by contradiction, 

that  the above defined polynomial /5 can be approximated by Q E .A~-I(X) ,  

SUPxEB x [P(x) - Q(x)l < z/4 where e comes from Lemma 2. Adopting the 

spreading model ideas, we obtain a finite sequence {Yil,.--,  Yik¢.)+x } such that  

Qlspan{y~l ..... Y~k(~)+~} can be approximated by ~) E S~_1(~ k(n)+l) within e/4. 

Thus 

[/5- 01 < sup 
x6Bx 

xQspan{Yil "'"Ylk(.)+l } 

a contradiction with Lemma 2. 

For details on the procedure, we refer the reader to [5] and references therein. 
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Lemma 6 provides the following. 

COROLLARY 7: Let 61 ~-+ X (in particular, X = C(K) ,  K non-scattered). Then 

fl~l(X) c ~ 2 ( X ) C - . -  . 

Proof: By classical results [7, 14], 61 ~-+ X implies L~ [0, 1] ~-+ X*, in particular 

62 ~-+ X*. Thus 62 is a quotient of X and Lemma 6 applies. | 

For completeness, we state the following known result. 

PROPOSITION 8: Let X be a Banach space with the Dunford-Pettis property, 

61 ~-~ X (in particular X = C(K) ,  K scattered). Then 

A I ( X )  =- A 2 ( X )  . . . .  . 

Proof: By [13], members of P (X)  are weakly sequentially continuous. For 

spaces not containing a copy of 61, this implies that members of P ( X )  are weakly 

uniformly continuous on bounded sets ([1]). [2] finishes the proof. | 

As a last example, we have the following proposition. 

PROPOSITION 9: Let X be an infinite dimensional Banach space with nontrivial 

type (in particular, every superreflexive space). Then for n > cotype(x) we have 

"AI(X) ~ ' A n ( X ) ~ ' A n + l ( X )  ~ . . .  • 

Proof: In [4], the authors prove that every Banach space with nontrivial type 

is polynomially Schur. In the course of their proof, they produce a normalized 

subspace {Yn} in X* which has upper p-estimate for some 1 < p < oo; i.e. 

[I ~-]anyn[[ <_ ( ~  Jan[P) 1/p for any scalars an. In fact, since X has a type, given 

> 0, p can be chosen to be 

cotype(x) 
cotype(x) 1 

([11]). Thus, T: 6 v --+ X*, T(en) = yn is a noncompact bounded linear operator. 

Since T is weakly compact, T*: X --+ 6p,, l / p+ l ip  t = I is a noncompact operator. 

Now Lemma 6 applies (put n = [pl] + 1). | 
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