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ABSTRACT 

For subshifts of finite type, conformal repellers, and conformal horse- 
shoes, we prove that the set of points where the pointwise dimensions, 
local entropies, Lyapunov exponents, and Birkhoff averages do not exist 
simultaneously, carries full topological entropy and full Hausdorff dimen- 
sion. This follows from a much stronger statement formulated for a class 
of symbolic dynamical systems which includes subshifts with the specifi- 
cation property. Our proofs strongly rely on the multifractal analysis of 
dynamical systems and constitute a non-trivial mathematical application 
of this theory. 
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1. I n t r o d u c t i o n  

In the numerical study of a dynamical system one is often interested in the 

asymptotic behavior of "typical" points, with respect to some invariant measure. 

This study gives important information about the observable properties of the 

dynamical system, and "typical" points with respect to different measures give 

complementary information. 

The set of "non-typical" points, i.e., the set of points that is "typical" with 

respect to no measure, has rarely been considered in the literature. In this paper, 

we show that,  surprisingly, in several situations central in the theory of dynamical 

systems this set contains complete information about some observable properties. 

Namely, the set of "non-typical" points carries full topological entropy and full  

Hausdorff dimension. 

In order to prove this statement, we combine "typical" points with respect 

to different invariant measures to produce sets of "non-typical" points which 

still carry information about the measures. The proof strongly relies on the 

multifractal analysis of dynamical systems. An important element of unification 

in our approach is the use of Carath~odory dimension characteristics, introduced 

by Pesin. 

2. Subsh i f t s  o f  f ini te  t y p e  

2.1. PRELIMINARIES. Let a: {1,.. . ,p}r~ __+ {1, . . . ,p}N be the shift map gi- 

ven by a ( i o i l . . . )  = ( i l i2 . . . ) .  We fix a number/~ > 1 and define a metric on 

by 
OO 

(1) d ( ( i o i l "  "), (j0jl"" ")) = ~ / ~ - k l i k  -- Jkl. 
k=0 

The space {1, . . .  ,p}N is compact with respect to this metric. 

For every compact subset E C {1, . . .  ,p}N such that aE  C E we consider the 

subsh i f t  a l e  , and denote its topological entropy by h(a) = h(alE ). Let A be a 

p x p matrix all of whose entries aij are either 0 or 1. We consider the compact 

subset E = ~A C ( 1 , . . . , p } N  composed of the sequences ( i0i1"")  such that  

aini,~+l = 1 for every n :> 0. The map ffl~]A is called the subsh i f t  o f  f in i te  

t y p e  with t r a n s f e r  m a t r i x  A. We recall that aI~A is topologically mixing if 

and only if there is a positive integer k such that all entries of A k are positive. 

We recall that  h(alEA ) = logp(A), where p(A) denotes the spectral radius of A. 

2.2. IRREGULAR SETS FOR BIRKHOFF AVERAGES. Let C(E) be the space of 

continuous functions on E. For each function g E C(E),  we define the i r r e g u l a r  
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set  for  t h e  B i r k h o f f  ave rages  of  g by 

~B(g) = {x e E: limn-~oo 1Sng(x )  does not exist},  

where 
n 

(21 = 
k=0 

for each x E E and n E N. By the Birkhoff Ergodic Theorem, # (~(g) )  = 0 for 

every a-invariant measure #. 

We say that gl and g2 are c o h o m o l o g o u s  if gl - g2 --- ~b - ~b o a q- c, for some 

~b C C(E) and c E ~. If gl and g2 are cohomotogous, then ~(g l )  = ~(g2) and 

c = P(g l )  - P(g2), where P denotes the topological pressure with respect to a 

(see, for example, [13] for the definition). 

We say that  a set A C E is a - inva r i an t  if E M a - l A  = A. The set ~ (g)  is 

a-invariant but is in general not compact. The notion of topological entropy for 

non-compact sets was introduced by Bowen in [7]. Later it was considered by 

Pesin and Pitskel' in [14] with an approach closer to the one we use. The following 

statement shows that the zero measure set ~(g)  is "observable"; namely, fl3(g) 

carries full topological entropy for a large class of functions g. 

THEOREM 2.1: Let  a l e  be a topologically mix ing  subshif t  of finite type, and 

gl , . .  �9 gk H61der continuous functions on E. Then the following propert ies  are 

equivalent: 

1. the funct ions g l , . - . ,  gk are non-cohomologous to O; 

2. ~(gx) n - - .  M ~B(gk) is non-empty;  

3. ~B(gx) A---  M ~(gk)  is a proper dense subset; 

4. h(o-[~(gx) N . . .  N ~ ( g k ) )  > O; 

5. h(a[fS(gl)  M . . .  N fS(gk)) --- h(a) .  

If g is cohomologous to 0, then ~(g)  = 0. Thus, Property 1 in Theorem 2.1 

follows immediately from each of the Properties 2, 3, 4, and 5. Since any non- 

empty invariant set of a topologically mixing one - s ided  shift is dense, Property 3 

is an immediate consequence of Property 2. In particular, given an arbitrary point 

x E E, the set U,~__I a - n x  composed by all the preimages of x is a-invariant and 

thus is dense in E. Theorem 2.1 follows from a much more general statement in 

Theorem 7.1 below. An announcement of Theorem 2.1 appeared in [6] for the 

case k = 1. 

Let C0(E) be the space of H51der continuous functions on E with HSlder ex- 

ponent 0. For a function r E C0(E) we define its norm by 

(3) 1[r = sup{Ir x 6 E} + inf{K > 0: r 6 cK (E)} ,  
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where C K (E) is the family of functions 

{r c c0(E): It(x) - r Kd(x,Y) ~ for every x, y C E}. 

The following statement shows that plenty Hhlder continuous functions are 

non-cohomologous to 0. 

PROPOSITION 2.2: / f a [ E  is a topologicMly mixing subshift of t~nite type, then 

the following properties hold: 

1. The family of H61der continuous functions on E which are non-cohomol- 

ogous to 0 contains a dense subset of C(E) (with respect to the supremum 

norm). 

2. For each 0 E (0, 1) the family of functions in Co(E) which are non-cohomol- 

ogous to 0 contains an open dense subset of Co(E). 

By Theorem 2.1 and Proposition 2.2, if a l e  is a topologically mixing subshift 

of finite type, then h(aIfB(g)) = h(a) for g out of a dense family in C(E). 

For each integer k > 0 and tuple (io. . . ik) E {1 , . . . , p}  k+l, we define a 

c y l i n d e r  of l e n g t h  k + 1 by { ( j o j l " " )  E E: ( j 0 " " j k )  = (io---ik)}.  Let L 

be the family of non-constant linear combinations of characteristic functions of 

cylinders (of arbitrary length). It is clear that L is a dense family composed by 

Hhlder continuous functions. Proposition 2.2 is a consequence of the following. 

PROPOSITION 2.3: zfal  is a topologically mixing subshift of finite type, then 

the following properties hold: 

1. The family L contains a subset of functions non-cohomologous to 0 which 

is dense in C(E) (with respect to the supremum norm). 

2. For each 0 C (0, 1), the family L n Co(E) contains a subset of functions 

non-cohomologous to 0 which is dense in Co(E). 

We also consider the set 

{ 1 } 
(4) f13 = x C E: lim -S,~g(x) does not exist for some g E C(E) . 

n--@ oo ?2 

Note that  

U 
gec(:c) 

For a topologically mixing subshift of finite type, it follows from Theorem 2.1 

that  

h(al!l~) = h(cr). 
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This formula was first established by Pesin and Pitskel' in [14] in the case of the 

Bernoulli shift on two symbols. Their methods of proof are different from ours; 

moreover, it is not clear if their proof can be generalized to arbitrary subshifts 

of finite type. 

2.3. GENERIC POINTS. Let 9)l be the family of a-invariant Borel probability 

measures on E. Given # E 9J~, the point x E E is called a gene r i c  p o i n t  for  # 

if 

lim 1Sng(X ) = ~ 9d# 
n--+oo n 

for every g E C(N). We denote the set of generic points for # by ~(#).  Clearly, 

C N \ U , e ~  ~5(#). If x E N \ ~3, then the map 

g ~ lim 1Shy(x) 
n--+ o~ ?~ 

defines a a-invariant bounded linear functional on C(E), and, by the Riesz 

Representation Theorem, x E ~(#)  for some a*invariant measure #. Hence, 

= U 

Remarks: 1. If tt is a-invariant, then #(~B) = 0 (by the Birkhoff Ergodic 

Theorem and the separability of C(N)). 

2. If a l e  is uniquely ergodic, then the set ~ is empty. 

2.4. IRREGULAR SETS FOR LOCAL ENTROPIES. For each probability measure 

# on E, we define the i r r egu l a r  set  for  t h e  local  e n t r o p i e s  o f  p by 

~'x E E: lim log#(Cn(x)) does not e x i s t ; ,  s)(t~) 
t n--+oo  n J 

where Cn(x) denotes the cylinder of length n which contains the point x E ~. 

The set .~(#) is a-invariant but may not be compact. 

Remarks: 1. If ~t is cr-invariant, then p(.~(tt)) = 0 (using the Shannon-McMillan 

-Breiman theorem). 

2. If # is a Gibbs measure, then there is a cohomology class of functions in 

C(E) such that f)(#) = ~(g)  if and only if g belongs to this cohomology 

class. 

3. Let/~ be a (r-invariant measure of maximal entropy. If # is a Gibbs measure, 

then .~(/~) is empty. For example, if a l e  is a topologically mixing subshift 

with the specification property (in particular, if a l e  is a subshift of finite 
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type or a sofic subshift), then any a-invariant measure of maximal entropy 

is a Gibbs measure. 

We denote by G(alE ) the family of Gibbs measures on E (with respect to a) 

having a H51der continuous potential. For a topologically mixing subshift of 

finite type, it follows from Theorem 2.1 that if # E G(aIE) is not the measure of 

maximal entropy, then 

(5) h(alYj(#)) = h(a). 

We describe the relationship between ~3 and the irregular sets Y)(#). 

PROPOSITION 2.4: For a topologically mixing subshift of finite type, we have 

(6) ~ = U Y)(#)" 
it: tt is a Gibbs  measure  

Remarks: 1. All the statements in this section remain true when we substi- 

tute the one-sided shift a: {1, . . . ,p}N ~ {1, . . . ,p}N by the two-sided shift 

a: {1 , . . . , p}Z _4 {1, . . . ,p}Z.  

2. With the special type of metric defined in (1), we have h(alZ ) = d i m u  Z .  

log/~ for any subset Z C E, where dimH Z denotes the Hausdorff dimension of Z. 

Thus, by (5), for a topologically mixing subshift of finite type a l e  , and a measure 

# ~ G(aIE ) which is not the measure of maximal entropy, we have 

dimH &(#) = dimH E. 

3. R e p e l l e r s  

Let f :  M -+ M be a C 1 map of a smooth manifold, and J an f-invariant compact 

subset of M. We say that  f is e x p a n d i n g  on J and that J is a r e p e l l e r  of f if 

there are constants C :> 0 and ~ > 1 such that ]ldxfnuiI > C~nilui] for all x E J ,  

u E TxM, and n >_ 1. 

It is well known that  repellers admit Markov partitions of arbitrarily small 

diameter. Each Markov partition has associated a one-sided subshift of finite type 

alE, and 'a  c od ing  m a p  X: E -+ J for the repeller, which is H51der continuous, 

onto, and satisfies f o X = X o a and sup{card(x- ix) :  x E J} < oc (see, for 

example, [13] for details). 

A differentiable map f :  M --4 M is called c o n f o r m a l  on a set J if dx f  is a 

multiple of an isometry at every point x E J. Welt-known examples of conformal 

expanding maps include one-dimensional Markov maps and holomorphic maps. 

We write a(x) = [IdxflI for each x E M. For a repeller J of a conformal C 1+~ 

expanding map f ,  the equilibrium measure mD of -- dimg J .  log a on J is called 
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the m e a s u r e  of  m a x i m a l  d imens ion  (rod is the unique f-invariant measure # 

such that  dimH/z = dimH Y; see, for example, [13] for details). We denote by 

m s  the m e a s u r e  of  m a x i m a l  en t ropy ,  i.e., the equilibrium measure of 0. 

Recall that  dimH Z denotes the Hausdorff dimension of the set Z. We denote 

by Pz (g) the topological pressure of the continuous function g on the set Z (which 

is not necessarily compact or f-invariant); see Section 6.1 and [13] for details. 

The following statement is a consequence of the proof of Theorem 2.1 in [1]. 

THEOREM 3.1: Let J be a repeller of a topologically mixing C 1 expanding map f 
such that f is conformal on J. For every subset Z C J (not necessarily compact 
or f-invariant), we have dimH Z = s, where s is the unique root of the equation 
Pz ( -s  log a) = 0. 

Set ~Bf = X(~) and .~l(#) = X(.~(/~)). We observe that 

~3ID { x C  J: n-.oolim 1Sng(X)n doesnotexis t forsomegEC(J)} ,  

where Sng is defined by (2). Let J be a subset of M. We define the i r regu la r  

set  for t h e  L y a p u n o v  e x p o n e n t s  of  ] by 

s  = {x E J: n-~oolim l l~ d~ n~ exist } 

and for each probability measure/z on J ,  the i r regula r  set  for t h e  po in twise  

d imens ions  o f  # by 

{ log#(B(x,r)) } 
~(#)  = x E J: lira does not exist 

r-~0 log r 

where B(x,r) C J is the ball of radius r centered at x. It is easy to see that  

(7) lim logl~(B(x,r)) _ lim l~ 
~-~o log r n-~o~ n ' 

whenever any of the limits exist. In a similar way to that in Section 2.2, for a 

repeller J of a topologically mixing expanding map, if any of the invariant sets 

~ l ,  ~f(/z), s and ~(/z) is non-empty, then it is dense in J. 

By Kingman's ~ubadditive Ergodic Theorem, we have #(~i)  = 0 for any f-  

invariant probability measure # on J.  In [18], Schmeling and Troubetzkoy proved 

that  if # is a measure invariant under an expanding map (not necessarily con- 

formal), then/~(~(/~)) = {3 (they also consider the case of expanding maps with 

singularities, and invariant measures concentrated "outside the singularities"; 

see [181). 
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We now describe several irregular sets which carry full topological entropy 

and full Hausdorff dimension. Recall that G(f]J)  denotes the family of Gibbs 

measures on J (with respect to f )  having a HSlder continuous potential. 

THEOREM 3.2: I f  J is a repeller of a topologically mixing C 1 expanding map f ,  

then the following properties hold: 

1. h ( f l fS f )  -- h( f[J);  

2. i f #  E G( f [J )  and # ~ mE, then ~ f ( # )  C fDf and h( f[Df(#))  = h(f[J) .  

The statement of Theorem 3.2 can also be formulated for repellers of continuous 

expanding maps (see [13] for the definition). 

We can formulate much stronger statements for c o n f o r m a l  expanding maps. 

THEOREM 3.3: I f  J is a repeller of a topologically mixing C l+e expanding map 

f ,  for some e > O, and f is conformal on J, then the following properties hold: 

1. h( f[ fS f )  -= h( f[J)  and dimH ~ f  = dim~ J; 

2. mD ~ mE if and only if h ( f [~ f  ) =- h( f[J)  and dimg ~f  ---- dimH J.  

I f  in addition # E G(f[J)  then 

3. # ~ mD if and only if h ( f ]~(#) )  = h(f[J)  and dimH ~(# )  ---- dimH J; 

4. # ~ mE if and only if h ( f [~ f (# ) )  = h( f[J)  and dimH ~)f(/z) = dimH J; 

5. the three measures #, roD, and mE are distinct if and only if 

h(f[~(/z) N g)f( t t )n  ~y) = h( f l J )  

and 

dimH(~(#)  N g)f (#) A ~f)  ----- dimH J. 

We note that  all the identities concerning the topological entropy are immediate 

consequences of Theorem 2.1. Theorem 3.3 follows from a much more general 

statement in Theorem 7.1. 

4. H o r s e s h o e s  

4.1.  DESCRIPTION OF THE RESULTS. Let f:  M --+ M be a C 1 diffeomorphism 

of a smooth manifold, and A C M a compact locally maximal hyperbolic set of f .  

Then, there is a continuous splitting of the tangent bundle TAM = E s @ E ~', and 

constants C > 0 and A E (0, 1) such that for each x C A: 

1. d~f  E~ = E}~ and d~f E~ = E ~ ;  

2. [[d~f"vll <_ CAm[Iv[[ for all v 6 E~ and n _> 0; 

3. [Id~f-nvl[ <__ CAn[Iv[[ for all v E E~ and n _> O. 
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For each point x E A there exist local  s t ab l e  and u n s t a b l e  m a n i f o l d s  WS(x) 
and W~(x), with TxWS(x) = E~ and T~WU(x) -- E~. Moreover, there exists 

5 > 0 such that  for all x, y E A with p(x, y) < 5, the set WS(x) n W~(y) consists 

of a single point, which we denote by [x, y], and the map 

[.,.]: {(x ,y)  h • h: p(x, y) < M 

is continuous. For each x E M, we write 

a~(x) = [IdxflEU(x)lI and aS(x) = [Id~:f[ES(x)II. 

The functions a s and a ~ satisfy a~(x) > 1 and aS(x) < 1 for every x E A, and 

they are Hhlder continuous if f is of class C 1+c. 

Locally maximal hyperbolic sets have Markov partitions of arbitrarily small 

diameter. Each Markov partition has associated a two-sided subshift of finite 

type alE, and a c o d i n g  m a p  X: E -+ A for the hyperbolic set, which is H61der 

continuous, onto, and satisfies f o X = ;~ o a and sup{card(x- Ix) :  x E A} < oc 

(see, for example, [13] for details). For each point w = ( - - - i - l iO i l . "  ") E E, and 

each non-negative integers n, m, we define the cylinder 

C~ = C~(w) = { ( - . . j _ l j 0 j l - - - )  E E: jk = ik for i = - r n , . . . , n } .  

We now describe several irregular sets which carry full topological entropy and 

full Hausdorff dimension. 

THEOaEM 4.1: I rA is a compact locally maxima/hyperbol ic  set of a topologically 

mixing C 1 diffeomorphism f ,  then the foUowing properties hold: 

1. h(fl~3f) = h(flA); 
2. i f p  E a ( f l A )  and p r mE, then )5S(#) C ff~f and h(fL~s(~)) = h ( f lA) .  

The statement  in Theorem 4.1 can also be formulated for basic sets of Axiom A ~ 

homeomorphisms (see [la] for the definition). 

We can formulate much stronger statements for su r f ace  diffeomorphisms, and, 

more generally, for diffeomorphisms on manifolds of arbitrary dimension such that  

f is c o n f o r m a l  on A, i.e., such that  dxflE~(x) and d~flES(x) are multiples of 

isometrics for each x E A. 

Let ffJtD be the set of f-invariant measures p such that  dimH p = dimH A. 

Note that  ffJtD may be empty. Let A be a locally maximal hyperbolic set of the 

C 1 diffeomorphism f on a compact surface. We denote by d ~ and d s the unique 

roots of the equations 

PA(-d ~' log a") = 0 and PA(d ~ loga s) = 0, 
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where PA(g) denotes the topological pressure of g with respect to f on the set 

A. In [12], McCluskey and Manning proved that 

dimH(W"(x)  n A) = d ~ and dimH(WS(x) N A) = d s 

for every x E A; moreover dimH A = d u + d s. They also showed that ~r'J~ D ~ 0 

if and only if the functions - d  u log a u and d s log a s are cohomologous; in this 

case the equilibrium measure of - d  ~ log a ~ and d s log a s is the unique probability 

measure belonging to ff)ID. We have 9~D = 0 for diffeomorphisms in a C 2 open 

dense set, with the dimension of any invariant measure uniformly bounded away 

from the Hausdorff dimension of the horseshoe: sup~ dimH # < dimH A, where 

the supremum is taken over all f-invariant Borel probability measures in A. 

THEOREM 4.2: If  f is a topologically mixing C l+e diffeomorphism, for some 

e > O, and f is conformal on a compact locally maximal saddle-type hyperbolic 

set A of f ,  then the following properties hold: 

1. h ( f l ~ f )  = h(flA ) and dimH ~ f  = dimH A; 

2. loga ~ is non-eohomologous to 0 if and only if h ( f l s  ) = h(flA) and 

dimH s  = dimH A, 

3. loga s is non-cohomologous to 0 if and only if h(f ls  ) = h(flA ) and 

dimH s = dimH A. 

If  in addition It C G(flA) then 

4. It ~ ff)~D if and only i fh(f[~(It))  = h(flA ) and dimH ~(# )  = dimH A; 

5. # ~ mE if and only if h ( f l~ f (#)  ) = h(flA ) and dimH Y)I(#) = dimH A; 

6. It ~ mE and It ~ 9YtD if and only if h ( f l ~ ( #  ) A Y)f(#)) = h(f lA ) and 

dimH(~(i t )  N Y)f(it)) ---- dimH A. 

In [10], Eckmann and Ruelle discussed the pointwise dimension of hyperbolic 

measures tt (that is, measures with non-zero Lyapunov exponents almost every- 

where), invariant under diffeomorphisms. They conjectured that # (~(#) )  = 0. 

This claim has been known as the Eckmann-Ruelle conjecture and has become 

a celebrated problem in the dimension theory of dynamical systems. In [3], Bar- 

reira, Pesin, and Schmeling establish the affirmative solution of this conjecture 

for C 1+~ diffeomorphisms (an announcement appeared in [2]). 

It was established by Shereshevsky in [19] that dimH ~(i t)  > 0, and ~(i t)  D A 

for a generic C 2 surface diffeomorphism possessing a locally maximal hyperbolic 

set A, and a generic HSlder continuous potential, with respect to the C O topology, 

with Gibbs measure #. By Theorem 2 of McCluskey and Manning in [12], this 

is an immediate consequence of Theorem 2.1, and Statement 4 in Theorem 4.2. 
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Let O(v) be the set of generic points for the measure v (see Section 2.3). The 

following is a simple consequence of Theorem 4.2, and Proposition 6.5 below. 

THEOREM 4.3: For a surface diffeomorphism f in a C 2 open dense set, possessing 

a compact locally maximal hyperbolic set A, i f#  C G(f[A) and # ~ mE, then 

dimH(~(#)  n -~I(#) ~ s  N ~i-1)  > dimH U qS(v). 
V 

In [11], Katok proved that for an ergodic hyperbolic measure tt (i.e., an ergodic 

measure with non-zero Lyapunov exponents), invariant under a C l+e diffeomor- 

phism f :  M --4 M, given 5 > 0 there exists a closed f-invariant hyperbolic set 

F C M such that  the restriction of f to F is topologically conjugate to a subshift 

of finite type with topological entropy h(flF) >_ h~(f) -5 .  In other words, the en- 

tropy of a hyperbolic measure can be approximated by the topological entropies 

of invariant hyperbolic sets. If # is a hyperbolic measure we denote by #~ and #~ 

the conditional measures on the families of local stable and unstable manifolds. 

Using this approximation result we obtain the following. 

THEOREM 4.4: Let f be a topologically mixing C 1+6 diffeomorphism of a com- 

pact manifold M, for some e > O, and # an f -invariant hyperbolic measure whose 

support is the whole manifold. If  ~q ~ @, then the following properties hold: 

1. h ( f ] s  > ht,(f); 
2. if M is a surface, then dimH ~f  > dimu #s + dimH #~. 

4.2. ENTROPY FOR INVERTIBLE TRANSFORMATIONS. When we change from a 

one-sided to a two-sided shift (coding a hyperbolic set), there is an asymmetry 

which apparently was never mentioned in the literature. This problem occurs 

only for non-compact or non-invariant subsets of E. We note that  the irregular 

sets in which we are interested are always invariant but are never compact; in 

fact they are everywhere dense sets of zero measure. 

Let X be a compact metric space, and f :  X -4 X a homeomorphism. The 

problem alluded to above is that,  with the definition of topological entropy intro- 

duced in [7] (see also [14]), h( f  IZ) and h ( f  -1 ] Z) may not coincide for an arbitrary 

set Z C X; however if Z is compact and f-invariant, then h(f[Z) = h ( f - l [Z) .  

We introduce a new notion of topological entropy which takes into account the 

"complexity" both in the "future" and in the "past". We assume that  f :  X -~ X 

is continuous but not necessarily invertible. For each finite cover i t  of X, we 

denote by ~ n ( i t )  the collection of strings U = U0""  Un of sets U0, . . . ,  U~ C it. 

For each U E ~U,~(it), we call the integer re(U) = n the l en g th  of U, and define 
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the open set 

X(U)  = {x �9 X: fkx �9 Uk for k = 0 , . . . , n } .  

For every set Z C X and every real number (~, we set 

(8) N(Z,a, il)= lim inf Z exp[-am(U)-am(V)], 
n-+oo F 

(u ,v)er  

where the infimum is taken over all finite or countable collections 

such that  

r c ]_[ x 
k+g>n 

[.J x ( u )  n f (V)x(v) z z. 
(u,v)~r 

By a simple modification of the construction of Carath~odory dimension charac- 

teristics (see [13]), when (~ goes from - o c  to +oc, the quantity in (8) jumps from 

+oc to 0 at a unique critical value. Hence, we can define the number 

h*(flZ, ta ) = inf{m N(Z, oqg) = 0} = sup{m N(Z,a, II) = +oo}. 

the following limit exists (compare with the proof of One can show that  

Theorem 6.1 below): 

h*(flZ)= lira h*(flZ,.~l ). 
diam 11--+0 

We call h*(fJZ) the t w o - s i d e d  t o p o l o g i c a l  e n t r o p y  of f on the set Z. We have 

h*(fIZ ) <_ h(fIZ ) and this inequality may be strict. For example, if Z is a local 

unstable manifold for an Anosov diffeomorphism f ,  then 0 = h*(f]Z) < h(f[Z). 
When f is a homeomorphism, one can show that  for every subset Z C E, we 

have 

(9) h*(flZ ) <_ min{h(f]Z), h(f-1]Z)}, 

the minimum of the contributions from the "future" and from the "past", respec- 

tively; moreover, h*(fIZ ) = h*(f-llZ). For example, if Z is the u~ion of a local 

stable manifold and a local unstable manifold for an Anosov diffeomorphism f ,  

then h*(flZ ) = 0 and (9) is a strict inequality. 

Let A be a locally maximal hyperbolic set of a diffeomorphism f .  Clearly, 

h*(flA) = h( f lA ). In Theorems 4.1 and 4.2 we described f-invariant non- 

compact  sets of zero measure that  carry full topological entropy and full Hausdorff 

dimension. One can replace h by h* in every statement of Theorems 4.1 and 4.2. 

In particular, one can prove the following. 
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THEOREM 4.5: Let f be a topologically mixing C 1+~ diffeomorphism, for some 

c > O, such that f is conformal on a compact locally maximal saddle-type hyper- 

bolic set A o f f .  I ~  E G(/IA), ~ r mE, and p r n o ,  then h * ( f l ~ ( p ) n ~ f ( , )  ) -- 

h*(/lA). 

5. I r r e g u l a r  p a r t s  o f  m u l t i f r a c t a l  s p e c t r a  

The irregular sets defined in Sections 2, 3, and 4 are "closely" related to the 

irregular parts of multifractal spectra (see [4, 5]). Let X be a complete separable 

metric space, and g: Y -+ [-oo,  +c~] a function defined on a subset Y C X. The 

level sets of g, 

K~ = {x E X: g(x) = ~}, 

for -cx~ < c~ <__ +oe, are disjoint and produce a m u l t i f r a c t a l  d e c o m p o s i t i o n  

of X, that is, 

x =  U x(X u ( x  \ Y). 
-oo<c~<+oo 

Let now G be a real function defined on the collection of subsets of X. Assume 

that G(Z1) <_ G(Z2) if Z1 C Z2. We define the function jr: [-00, +00] -+ ]I{ by 

jr(a) = 

We call j r  the m u l t i f r a c t a l  s p e c t r u m  specified by the pair of functions (9, G). 

The set Y is called the i r r egu l a r  p a r t  of j r  (or simply of 9), and is denoted by 

I ~  = zg .  

Let f :  X -+ X be a continuous map, and # a Borel probability measure on X. 

We consider two set functions on X. Namely, given a subset Z C X, let 

GD(Z) = dimH Z and GE(Z) = h(f lZ).  

Consider the subset YD C X consisting of all points x E X for which there exists 

the limit 
d,(x) = lim log#(B(x,  r)) 

r-~0 log r 

The number d~(x) is catled the po in twi se  d i m e n s i o n  of/~ at x. We obtain 

the multifractal spectra specified by the pairs (du, Go) and (d~, GE). We have 

S~. = X ". Yo .  

Assume, in addition, that f preserves #. Consider a finite measurable partition 

of X, and the set YE,~ C X consisting of all points x E X for which there exists 

the limit 

hu(x ) = hu(f ,~ ,x  ) = lim _ 1  log#(~,(x)).  
n--*oo n 
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We call ht,( f  , ~, x) the y- local  e n t r o p y  of f at the point x (with respect to ~). 

Clearly, YE.~ is f-invariant and h~,( f ,~, fx)  = h , ( f , ~ , x )  for every x e YE.r 

By the Shannon-McMillan-Breiman theorem, P(YE.r ---- 1. If ~ is a generating 

partition and p is ergodic, then h , ( f )  = h~( f ,~ ,x)  for p-almost all x 6 X. We 

obtain the multifractal spectra specified by the pairs (h~, GD) and (h~, GE). In 

some situations these spectra do not depend on ~ for a broad class of partitions 

(see [4, 5]). We have Zh, = X \ YE,~. 

Let now X be a differentiable manifold and f:  X --+ X a C 1 map. Consider 

the subset YL C X of all points x 6 X for which there exists the limit 

X(X)= lim -l log [ld~f'~]l. 
n-+%oo n 

By the Kingman's subadditive ergodic theorem, if p is an f-invariant Borel prob- 

ability measure then P(YL) = 1. We obtain two multifractal spectra specified re- 

spectively by the pairs of functions (X, Go)  and (X, GE). We have Z x = X \ YL. 
Using the same definitions and notations of Sections 2, 3, and 4, we now 

reformulate the statements in those sections for irregular parts of multifractal 

spectra. 

THEOREM 5.1: Let a l e  be a topologically mixing subshift of finite type. The 

H51der continuous functions g l , . . . ,  gk on 53 are non-cohomologous to 0 if  and 

only i f  Zg~ n . . .  nZg~ is a proper dense subset and h(alZg, ;3. . .  AZg~) = h(a). 

THEOREM 5.2: Let J be a repeller of a topologically mixing C l+~ expanding 

map f ,  for some ~ > O, such that f is conformal on J, and # 6 G( f IJ ) .  The 

three measures p, m y ,  and mE are distinct if and only if Zd, ;3 Zh, N Z• is a 

proper dense subset, and 

and 

h( f[ Id ,  n Z h ,  n i x )  = h( f[J)  

dimH(Id~ NZh. nZx)  = dimH J. 

THEORE~ 5.3: Let f be a topologically mixing C I+E surface diffeomorphism, 

for some r > 0, h a compact locally maxima] saddle-type hyperbolic set of f ,  

and # E G(flA).  We have # # mE and # q~ 9Jlm if  and only i fZd ,  n I h ,  is a 

proper dense subset, and 

h ( f l Id  . n Z h , )  = h ( f lh )  and dimH(Zd, n Z h , )  = dimg A. 

The irregular parts of multifractal spectra can naturally be viewed as irregular 

sets. Our approach to prove that irregular sets carry full topological entropy and 
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full Hausdorff dimension exploits this relationship, and, to some extent, it shows 

that it is enough to deal with irregular parts of multifractal spectra. 

6. A n e w  C a r a t h @ o d o r y  d i m e n s i o n  c h a r a c t e r i s t i c  

6 . 1 .  D E S C R I P T I O N  AND MAIN PROPERTIES  OF A NEW CARATHI~ODORY 

DIMENSION CHARACTERISTIC. Let X be a compact metric space, and f :  X --+ 

X a continuous map (it need not be invertible). We use the notation of Sec- 

tion 4.2, and say that  the collection of strings F C Un>l ~n(~l)  covers  the set 

Z C X if U v e r X ( U )  D Z. 

Let u: X --+ R be a strictly positive continuous function. For each string 

U E ~ (it), we write 

fV"'~(u) u(fkx):  x E X(U)}  if X(U) :~ O, u(U) = sup i.z_..,k=O 
-oo if X(U) = O. 

For each set Z c X and each real number a, we define 

(10) M(Z,a ,u ,  it) = lim inf Z e x p ( - a u ( U ) ) ,  
n--+oo [' 

UEF 

where the infimum is taken over all finite or countable collections 

r c U  k(it) 
k>_n 

that  cover Z. Likewise, we define 

(Ii) M(Z, a, u, it) = lim inf inf E e x p ( - a u ( U ) ) ,  
n--+oo [' 

UEF 

(12) M(Z,  a, u, it) = l imsupinf  E e x p ( - a u ( U ) ) ,  
n-~c~ F 

UEF 

where the infimum is now taken over all finite or countable collections F C ~,~ (it) 

that  cover Z. 

By a slight modification of the construction of Carath@odory dimension char- 

acteristics (see [13]), when a goes from - c ~  to +c~, each of the quantities in (10), 

(11), and (12) jumps from +c~ to 0 at a unique critical value. Hence, we can 
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define the numbers 

dim~,t~ Z = inf{a: M(Z,  a, u,12) = 0} 

= suPIa: M(Z,  a, u, t2) = +oc}, 

dim~,itZ = inf{a: M ( Z , a , u ,  il) : O} 

= sup{a: M(Z, ct, u, Ll) = +oc}, 

dim~,aZ = inf{a: M ( Z , a , u , l l )  = 0} 

= sup{a: M(Z,a,u,L[)  = +oo). 

THEOREM 6.1: The following limits exist: 

dim~ Z d~f lim dim~,~t Z, 
d / a m  11--+ 0 

d i m . Z  doJ lim dimu,uZ, d im.Z  doJ lim dim. ~Z. 
" d/am/A---+ 0 d / a m  IA-~0 ' 

We call d im.  Z the u -d imens ion  of Z, and d im.Z  and d im.Z  the lower and 

u p p e r  u-capaci t ies  of Z (specified by the map f) .  We note that Z need not 

be compact nor f-invariant. The following is an immediate consequence of the 

general theory of Carath~odory dimension characteristics (see [13]). 

THEOREM 6.2: The following properties hold: 

1. 0 < dimu Z _< dim,,Z < d im.Z;  

2. d im.  {~ = dim~0 = dim.0 = 0; 

3. if Zt C Z2, then dimu Z1 < dimu Z2, dimuZ~ <: dimuZu, and dimuZ1 <: 

dim.Z2; 
4. i f  Z = [-Jiei Z~ is a union of sets Z~ C X ,  with I at most countable, then: 

(a) dim. Z = supie /d im.  Zi; 

(b) dimuZ >_ sup/e/dimuZ/,  with equality if I is finite, and dimuZ i = 

d i m . Z / f o r  each i C I; 

(c) d i m . Z  > sup/e/dimuZi,  with equality if  I is finite; 

5. if  h: X --+ X is a homeomorphism such that f o h = h o f ,  then dim. Z = 

dim.oh-1 h(Z), d im.Z  = dim.oh_lh(Z), and d im.Z  = ~lm~,oh-~h(Z); 

6. if  u, v: X ~ ]~ are strictly positive continuous functions, then 

[dim. Z -  dim. Z] _< [ l u -  v[[, [ d i m . Z -  dim.Z[ < [[u - v[[, and 

Idim.Z - d im.Z  I _< [[u - vii. 

Examples: 1. If u - 1, then for each set Z C X, the number dim~ Z coincides 

with the topological entropy of f on Z, and the numbers dim~Z and dim~Z 

coincide, respectively, with the lower and upper capacity topological entropies 
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of f on Z (note that the set Z need not be compact or f-invariant; see [13] for 

the definitions). 

2. If u = log a where a is the norm of the derivative of a conformal ex- 

panding map with repeller Z (see Section 3), then the number dim~ Z coin- 

cides with dimH Z, and the numbers dim~Z and dim~Z coincide, respectively, 

with the lower and upper box dimensions of Z. This follows immediately from 

the existence of universal constants cl, c2 > 0 such that cl(diamX(U)) a ~ 
exp( -~u(U))  _< c2 (diam X(U))% 

We now follow the approach of Pesin in [13] to define Carath~odory character- 

istics of measures. For every Borel probability measure # on X (it need not be 

f-iuvariant), we set 

dim~,u # = inf{dim~,~ Z: #(Z) = 1}, 

dim~,~# = lim inf{dim~,uZ: #(Z) _> 1 - 5}, 
&-~0 

dim~,u# = lim inf{dimu,uZ: #(Z) _> 1 - 5}. 
5--+0 

It follows from Theorem 6.1 that there exist the limits 

dimu#a~J lim dim~,u#, 
d i a m  11-+0 

dimu# do~ lim dim~,u#, dim~# de=f lim dim~,u#. 
" d i a m  11--~ 0 d i a m  ~--+0 

We call dim~ # the u -d imens ion  of #, and dimu# and dim~# the lower and 

u p p e r  u-capaci t ies  of # (specified by the map f) .  

Example: If u - 1, then the number dimu # coincides with the #-metric entropy 

of f ,  and the numbers dimu# and dimu# coincide, respectively, with the lower 

and upper #-metric capacity entropies of f (see [13] for the definition). 

We define the lower and u p p e r  u-pointwise  d imens ions  of tt at the point 

x C X b y  
log~(X(U)) 

du,~(x, ll) = lim inf inf 
~ - . ~  u(U) 

and 
log#(X(U)) 

du,u(x,~t) = limsupsupn_~or u(U) ' 

where the infimum and supremum are taken over all strings U E Eg~(~l) such 

that  x E X(U).  

Let ~ be a partition of X. For each n E N, we define a new partition of X 

by ~n = ~ V f - l ~  V . . .  V f - ' ~ ,  and denote by ~n(x) the atom of ~ containing 
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the point x E X.  We denote by h~(f) the /z-measure-theoretic entropy of f .  

For each function u on X,  we write Snu(x) = ~-~=0 u( f  kx) for each x E X and 

each n E N. The following is an immediate consequence of the Birkhoff Ergodic 

Theorem, the Shannon-McMillan-Breiman Theorem, and Theorem 4.1 in [13]. 

THEOREM 6.3: If # is an ergodic f-invariant Borel probability measure on X,  
then: 

1. if ~ is a generating partition of X,  then, for #-almost every x E X,  

lim d,u(X, t l )= lim 3,,~(x,11) 
diam 12--+0 --"' diam s 0 

= lira l o g # ( ~ ( x ) )  _ h~(f) de_f d; 
n-+oo S~u(x) f x  u d# 

2. dim~ # = dimu# = dimu# = d. 

The following result expresses a relation between the u-dimension and the 

topological pressure. Let g: X --+ X be a continuous function. For each real 

number/~,  we set 

p(Z, j3,L[) -- lira inf ~ e x p ( - f l m ( U ) - b g ( U ) ) ,  
n--~oc F 

UEF 

where the infimum is taken over all finite or countable collections 

k_>n 

that  cover Z. As/~ runs from - o o  to +oo, the number p(Z, fl, tl) jumps from -boo 

to 0 at a unique critical value denoted Pz(g,~{). Moreover, the limit Pz(g) ---- 

limdi~m~-,0 Pz(g,g) exists and is called the t o p o l o g i c a l  e n t r o p y  o f  g (on  

t h e  se t  Z).  Set g = - a u .  Then p(Z,O,~2) = M(Z,a,u,~2) and we obtain the 

following result. 

PROPOSITION 6.4 (Bowen pressure formula): We have dimu Z = a,  where a is 

the unique root of the equation Pz ( -au)  = O. 

The Bowen pressure formula was introduced by Bowen in [9] in the context of 

quasi-circles. See [1] for additional references. 

One can easily obtain similar statements to that  of Proposition 6.4 associating 

the lower and upper  u-dimension, respectively, and the lower and upper capacity 

topological pressures (see [13] for the definition). 

We now present a variational principle for the u-dimension. 
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PROPOSITION 6.5: We have 

(13) dim.  U qS(/~ ) = sup{dim. #: # e KII is ergodic}. 
/z 

We note that  the union in (13) is in general not countable; otherwise, 

Proposition 6.5 would follow immediately from Statement 4a in Theorem 6.2. 

6.1. COMPLETE MULTIFRACTAL ANALYSIS FOR THE NEW CARATEODORY 

DIMENSION. We will present a complete multifractal analysis for the 

u-dimension, specified by a subshift of finite type alE. Let # be a Borel proba- 

bility measure on E. For every x E E, we write 

_d~,u(x ) = liminf log/z(Cn(x)) 
Snu(z) 

and 
log (Cn( )) 

d~,~ (x) = lira sup 

One can easily show that if u is HSlder continuous, then 

du,u(x) = d. ,~(x,g) and 3.,~(x) = d . , ~ ( x , g )  

for every x E E and open cover il  of E by cylinders (not necessarily all with the 

same length). 

For every real number a, set 

Whenever Ks  r 0 and x e Ks,  we denote the common value c~ of _d.,~(x) and 

3.,~(x) by d.,~(x), and call it the u-pointwise  d i m e n s i o n  of  # a t  x. We set 

The function a ~-4 ~ ( ~ )  is called the u -d imens ion  s p e c t r u m  for u-poin twise  

d imens ions  (with respect to the measure i~). Let r be a continuous function 

on E. For every real number q, we define the function 

Cq = -T~(q)u + qr 

where the number T~,(q) is chosen such that  P(r = 0. We denote by uq and 

m~, respectively, the equilibrium measures of Cq and - d i m ~  E �9 u with respect 

to a. 

The following is a complete multifractal analysis of the spectrum ~ for sub- 

shifts of finite type. 
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THEOREM 6.6: Let a[Z be a one-sided or two-sided topologically mixing subshift 

of finite type, u and r H61der continuous functions on N, such that u is positive 

and P(r  = 0, and # the equilibrium measure of r with respect to a. Then, the 

following properties hold: 

1. For #-almost every x C ~, the u-pointwise dimension o f#  at x exists and 

du,~(x) - fr, r  _ hu(a) 

2. The function q ~ T~ (q) is reM analytic on R, and satisfies T~ (q) < 0 and 

T'~'(q) >_ 0 for every q e R. Moreover, T~(0) = dim~ E and T~(1) = 0. 

3. The domain of the function a ~ ~ , ( a )  is a closed interval in [ 0 , + ~ )  and 

coincides with the range of the function a~(q) = - T "  (q). For every q e R, 

we have 

~u(a~,(q)) = Tu(q) + qau(q), 

and 
a~(q) -- f~ r 

ft. uduq" 

4. For every q C •, uq(K~(q)) = 1, and 

d~q,u(X) = Tu(q) + qau(q) 

for uq-almost a11 x e K~(q) .  Moreover, -d~q,u(x) < T~(q) -t-qau(q) for every 

x E K~(q) ,  and ~,~(a~(q)) = dim~ uq for every q E R. 

5. I f #  r rn~,, then ~ and T~ are real analytic strictly convex functions, and 

(~u, T~) is a Legendre pair with respect to the variables a, q. 

6. I f #  = rn~, then d,,~(x) = dim~ E for every x E Z. 

Statements 1 through 5, with the expression "is a closed interval" replaced by 

"contains a closed interval" in Statement 3, are immediate consequences of results 

of Pesin and Weiss in [151. In [16] Schmeling completed the proof of Statement 3. 

For Statement 6 observe that Pr~(-dim~ N.  u) = 0 by Proposition 6.4, and 

since rn~ is a Gibbs measure with potential - dim~ IE �9 u there are constants Cl, 

c2 > 0 such that 

c l exp ( -  dim~ Z .  Snu(x)) <_ m,,(C,~(x)) <_ c2exp(-  dim~ 2 .  S,~u(x)) 

for every n E N and x C P~. Since u is continuous and positive on the compact 

set N, if # = my then 

d~,,~(x) = lim = dim~ Y], 
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for every x E E, and thus 

and 

E i f a = d i m u E  
Ks = 0 if a r dim~ E 

~u(a)  = { dim~ E if a = dim~ E, 
0 if a ~ dim~ E. 

In the particular case of the Hausdorff dimension this formula was obtained 

in [20]. 
Furthermore, one can prove that K~(q)  is a-invariant and everywhere dense 

for every q E I~. For one-sided subshifts the denseness follows immediately from 

the a-invariance of K~(q) .  For two-sided subshifts, note that a - l i E  is a subshift 

of finite type with transfer matrix equal to the transpose of that of alE, and thus 

a - l i E  is also topologically mixing. Since Ka,,(q) = E f3 7r-l(TrK~(q)), where 

7r: {1, . . .  ,p}Z __+ {1, . . .  ,p}N is the canonical projection, we conclude that K~=(q) 

is everywhere dense. 

We call m~ the m e a s u r e  o f  m a x i m a l  u -d imens ion  (in fact, m= is the unique 

a-invariant measure such that  dim= m~ = dim= E), and Vq the full m e a s u r e  for 

the spectrum ~ u  at the point a=(q), for each q. 

Examples: 1. If u = 1, the spectrum ~= coincides with the entropy spectrum 

for local entropies introduced in [4], and m= is the measure of maximal entropy. 

2. If u = log a for some HSlder continuous function a, the spectrum ~ 

coincides with the dimension spectrum for pointwise dimensions on a repeller of 

a C 1+~ conformal expanding map f such that a(x) = ]td~fll (expressed in terms 

of its underlying symbolic representation by a subshift of finite type), and m= is 

the measure of maximal dimension. See [4] for details. 

By Statement 2 in Theorem 6.6, one can set 

O~ 1 : l i m  a.(q) and a2 = lim a ~ ( q ) .  q--+-t-oo q--+--oo 

For each interval [al,  a2] C [~1, Ol2], set 

Kal,a2 : {x C Z: d#,u(X ) = al and -d~,.(x) = a2}. 

The remaining statements in this section are immediate consequences of results 

of Schmeling in [16]. We always assume that a l e  is a one-sided or two-sided 

topologically mixing subshift of finite type. 
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THEOREM 6.7: The following properties hold: 

1. We have al  = infxez d,,u(X) and a2 = supxe n d,,~(x). 

2. For every real number a, we have K~ = 0 if and only i ra  r [al,a2]. 

3. Ifdim~ E �9 [al,a2] C [al,a2], then 

dim~ Ka,,a2 = min{~u(al) ,  ~ ( a 2 ) } .  

Observe that  Property 2 is an immediate consequence of Property 1. We note 

that (al,  f ( a l ) ,  a2, f(a2)) G B, where B is the set 

{ (x l , y l , x2 ,y2)  G R4: yl _< xl _< dimuE and Y2 _< dimuE < x2}. 

THEOREM 6.8: For each (x l ,y l ,x2 ,y2)  in the interior of B there is a H61der 

continuous function r such that the spectrum ~u with respect to the equilibrium 

measure o f r  satisfies ai = xi and ~u(Ol i )  = Yi for i = 1, 2. 

Recall that  Co(E) is the space of Hhlder continuous functions on g with Hhlder 

exponent 0, and for each r E C0(P,) one defines its norm by (3). The space Co(E) 

is a Baire space with the induced topology. 

THEOREM 6.9: There is a residual set 7~ C C0(E) such that al  < a2 and 

Q~(al)  = Qu(a2) = 0 for the spectrum ~ of every equilibrium measure of a 

potential in 7~. 

7. M a i n  resu l t s  

7.1. IRREGULAR SETS AND SUBSHIFTS OF FINITE TYPE. Consider the se- 

quences F / -- {f~: E --+ R},~cN of strictly positive functions for i = 1, . . . ,  

m. We define the set ~ (F1 , . . .  , F  m) by 

~x C E: lim f~(x) does not exist for k = 1 , . . . ,  m } ,  
n - - ~ ( x )  

and can it the i r regu la r  set  specified by the sequences of functions F 1, . . . ,  Fm. 

Our concept of irregular set extends in a natural way the families of sets of "non- 

typical" points occurring naturally in the theory of dynamical systems. Namely, 

the sets ~(g) ,  ~(#),  ~(#) ,  and s  are examples of irregular sets (see Sections 2, 3, 

and 4); for ~(#)  this follows from (7). We will show, under mild assumptions, that 

any irregular set carries full topological entropy and full Hausdorff dimension. 

The following is our main result for subshifts of finite type. 
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THEOREM 7.1: Let a IE be a one-sided or two-sided topologically mixing subshift 

of finite type, r  ,era H61der continuous functions on E, and g, u strictly 

positive H61der continuous functions on E. The function r is non-cohomologoils 

to aig for every i = 1 , . . . ,  m, where ai is the unique root of P(aig)  = P(r  if 

and only if  

dimu ~( { S n r  Sng}neN, . . , ,  { Snr Sng},~eN) --- dimu E. 

The statement of Theorem 7.1 follows from the much more general statements 

formulated below. By using Markov partitions the proofs of the statements in 

Sections 3 and 4 can be reduced to Theorem 7.1; see Section 7.3 below. 

7.9 . .  I R R E G U L A R  S E T S  AND D I S T I N G U I S H I N G  M E A S U R E S .  We now propose a 

general approach to estimate from below the u-dimension of irregular sets. This 

approach is based on the following concept. A collection of measures # b . . . ,  #k is 

called d i s t i ngu i sh ing  for F 1 , . . . ,  F m if for every 1 < i < m, there exist distinct 

integers j l  = j l ( i ) ,  j2 = j2(i) E [1, k] and numbers a i. ~ a ~ such that 31 32 

lim f~(x) = a i. for #jl-almost all x E E, 

lim f~(x) = at for #j2-almost all x E E. 
n --+r ,72 

We can always assume that  k ~ 2m in the definition. For example, let #1 and 

#2 be two distinct ergodic a-invariant probability measures on E. Then, there is 

a function g E C(E) such that  f~ g d#l r fr, g 4#2, and, by the Birkhoff Ergodic 

Theorem, the measures #l ,  tt2 form a distinguishing collection for the sequence 

{Sng/n}neN. 
Let Z~ be the family of cylinders in ~. We denote by CC' the cylinder corre- 

sponding to the juxtaposition of the tuples specifying C, C ~ E Z~, in this order. 

Recall that  Cn(x) E Zz  denotes the cylinder of length n which contains the point 

x E ~. We denote by [C I the length of the cylinder C. 

With the help of distinguishing collections of measures we can obtain lower 

bounds for the u-dimension of irregular sets. We recall that  a subshift a l e  has 

the spec i f i ca t i on  p r o p e r t y  if there exists a positive integer m such that  for 

every C1, C2 E Z~ there exists C E Z~ of length m such that C1CC2 E Z~. 

THEOREM 7.2: I f  a IZ is a one-sided or two-sided subshift with the specit~cation 

property, #1,. . . , #k is a distinguishing collection of ergodic a-invariant measures 

for F 1 , . . .  , F m, and u is a strictly positive H61der continuous function on ~, then 

dim~ ~ ( F 1 , . . . ,  F m) >_ min{dim~ # 1 , . . . ,  dim~ #k}. 
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One can prove an analogous statement for arbitrary subshifts (see Theorem 7.2 

below). 

In order to effectively use the full power of Theorem 7.2, one needs to know 

when there exist distinguishing collections of measures. The following statement 

solves this problem for subshifts of finite type. Recall the notion of full measure 

introduced in Section 6.2. 

THEOREM 7.3: Let a]~, be a one-sided or two-sided topologically mixing su bshift 

of finite type, r  Cm Hflder continuous functions on F,, and g, u strictly 

positive H61der continuous functions on ~. If for each i -- 1 , . . . ,  m the function 

r is non-cohomologous to aig, where ai is the unique root of P(aig) = P(r  

then, for every e > O, there exist ergodie a-invariant measures #1, - - - ,  ~.~ such 

that: 

1. 

2. 

. 

# 1 , . . - ,  #m are full measures for the spectrum ~u; 

J~l , . -- ,  Js mu i8 a distinguishing collection of measures for the sequences 

of functions {Snr  {sncm/Sng}neN; 

min{dim~ # 1 , . . . ,  dim~ #m} > dim~ ~ - e. 

7.3. IRREGULAR SETS AND MAR.KOV PARTITIONS. Let M be a smooth mani- 

fold, and f :  M -+ M a topologically mixing C 1 map. We consider a subset 

X C M and assume either that  f i X  is a conformal expanding map or that  f i x  

is a conformal hyperbolic diffeomorphism (see Sections 3 and 4). We fix a Markov 

parti t ion and its corresponding coding map X: E -+ X. 

The following notion is crucial in our approach. A measure # on X is called 

d i a m e t r i c a l l y  r e g u l a r  if there exist constants ~- > 1 and c > 0 such that  

#(B(y,  ~-r)) ~ c#(B(y, r)) for any point y E X and any r > 0. 

Examples: 1. If f i X  is a topologically mixing subshift of finite type, then any 

Gibbs measure # having a HSlder continuous potential is diametrically regular; 

furthermore one can easily show that  for each T > 1 there exists c > 0 such that  

#(B(x, 'rr))  <_ c#(B(x,  r)) for any point x �9 X and any r > 0. 

2. In [13], Pesin showed that  for repellers of conformal maps any equilibrium 

measure having a HSlder continuous potential is diametrically regular. Similarly, 

for locally maximal hyperbolic sets of conformal diffeomorphisms he showed that  

any equilibrium measure having a H51der continuous potential, as well as their 

conditionals on stable and unstable manifolds, are diametrically regular. 

Recall that  vq denotes the full measure for the spectrum ~ o x  (note that  the 

function u o X is HSlder continuous) supported on K~ox(q) (see Section 6.2). We 

define an f- invariant  measure on X by Aq = uq o X -1. 
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THEOREM 7.4: I f  u is a strictly positive H6lder continuous function on X ,  and # 

is a diametrically regular equilibrium measure on X having a H61der continuous 

potential, then: 

1. for every q E N, Aq(X(K~o~(q))) = 1, and 

dim,  x(K~o~(q)) = dim, Aq = d i m ,  ox yq = ~,ox(auox(q)); 

2. for every q E I~, dxq,u(y) = dim~ Aq for Aq-almost all y E x(Ka=o• and 

dx~,~(Y) -< dim~ Aq for every y E x(K~o• 

3. for every a E [a~,a2] the set x(K~) coincides with the set of points y e X 

such that 

lim _d,~(y,11)-- lira d,,u(y,11) -- a; 
diam ~A--~0 ~' diem 9.-+0 

4. the set x ( { x  e < = 

coincides with the set of points y E X such that 

lim d, u(Y, tl) < lim 3~,~(y, 11). 
diam t.1-+0 '-' diam l.t-+0 

This shows that for diametrically regular measures the multifractal properties 

of f i X  are inherited from those of the associated symbolic dynamics ~IE. 

THEOREM 7.5: Assume that f i X  is a conformal expanding map. Let r  Cm 

be H61der continuous functions on X ,  and g a strictly positive H61der contin- 

uous function on X .  The function r is non-cohomologous to aig for every 

i -- 1 , . . . ,  m, where ai is the unique root ofP(a ig)  = P(r if and only if 

h( f[q~( { S n r  Sng}ncN, . . . , { Snqb,~/ Sng}naN) = h( f ]X)  

and 

dimH ~((S ,~r  {SnCm/S,zg}ne~) -- dimH X. 

This result indicates that the boundaries of Markov partitions have no influence 

in the study of the entropy and Hausdorff dimension of irregular sets of repellers. 

The case of hyperbolic sets is considered in the proof of Theorem 4.2. 

7 . 4 .  I I : tREGULAR SETS AND ARBITRARY SUBSHIFTS. In order to extend the 

above results to arbitrary subshifts we need to introduce additional assumptions. 

Consider a non-decreasing sequence ffJ = {Ca}new of positive integers such 

that 

(14) ~bn/n --+ 0 as n --+ o~. 
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Define the subset E~, C E of points x E E such that for each n E N and C C Z~ 

with ]C I < Cn and CCn(x)  �9 Z~, if C �9 Z~ then there exists __C �9 ZE such that  

(15) CC,~(x)CC �9 Z~ and ICI < ICCn(x)I + ~blCC~(~)l. 

We note that  E~, C aE~,, but presumably Ev need not be a-invariant in gen- 

eral. The conditions in (15) indicate that one can construct a cylinder with any 

prescribed initial and final symbols; moreover, this can be done in such a way 

that the connecting symbols between the initial symbols C and final symbols 

is approximately of order ICI, i.e., the order of the length of the initial symbols. 

For each measure # on E we consider the following property: 

(16) There exists a sequence k~ such that #(E~,) > 0. 

This holds, for example, for a-invariant measures on subshifts of finite type, sofic 

subshifts, and, more generally, subshifts with the specification property; in each 

of these cases E ,  = E for some constant sequence @. 

THEOREM 7.6: Let a l e  be a one-sided or two-sided subshift, and u a strictly 

positive HSlder continuous function on E. I f  # 1 , . . . ,  #k is a distinguishing collec- 

tion of ergodic (r-invariant measures for F 1, . . . ,  F m such that the condition (16) 

holds for each measure #i with respect to some sequence ~i  satisfying (14), then 

dim~ ~ ( F 1 , . . . ,  F m) > min{dim~ # 1 , . . . ,  dimu #k}. 

Furthermore, given r > 0 there exist a set A C ~ ( F 1 , . . .  ,Fm) ,  and a measure # 

on E with It(A) > O, such that i f  x �9 A then 

d,,~(x) _> min{dim~ It1, . - . ,  dim~ Itk} - r 

It is an open question to describe the class of subshifts which possess distin- 

guishing collections of measures. 

The following is a subproduct of the proof of Theorem 7.2. 

THEOREM 7.7: Let I t l , . . .  ,Itk be ergodic a-invariant measures such that the 

condition (16) holds for each measure Iti with respect to some sequence k~ i satis- 

fying (14). I f  not all the numbers dimu #1, . . . ,  dimu Itk are equal, then, for any 

strictly positive H6Ider continuous function u on ~, we have 

(17) dim~ N 5 ( { -  log #i(C~(.))/Snu}~eN) >_ min{dim~ I tx , . . . ,  dim~ Itk}, 

where the intersection is taken over all i such that 

dim~ #i < max{dim~ #1 , . - . ,  dimu #k}. 
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An immediate consequence is the following. 

THEOREM 7.8: Let a l e  be a one-sided or two-sided subshi[ft with the specil~ca- 

tion property, ]zl,.. �9 #k ergodic a-inyariant measures, and u a strictly positive 

H51der continuous [function on P~. / / 'not  all the numbers dimu #1, - . . ,  dim~ ~k 

are equal, then the inequality (17) holds. 

8. P r o o f s  

8.1. PROOFS OF THE RESULTS IN SECTION 7. We first formulate some auxiliary 

results. 

PROPOSITION 8.1: I[f # l  and #2 are probability measures on P,, and u is a strictly 

positive H61der continuous [function on P~, then, [for every 5 > 0, 

(18) #l({X E ~: d,2,~(x ) > dim~ pl - 5}) > 0. 

Proo[fo[fProposition 8.1: If (18) does not hold, then the set 

(19) F~ = {x E N: _d;,~,,,(x) < dim,~ Ftl - -  5 }  

has full #l-measure. For each x E F~, let {nk(x)}keN be an increasing sequence 

of positive integers such that  

l~ <_ dim,, #1 - 5/2 
Snk(x) (X) 

for each k. Observe that two cylinders are either disjoint, or one is contained in 

the other. Hence, for each L > 0 there is a finite or countable cover 

{Cm~(Xi): i E N} of F~ formed by disjoint cylinders, for some points xi E ['~ 

and integers mi E {nk(xi): k E N} such that mi > L for each i E N. We obtain 

= Z'2(c'm (xd) 
i = l  

(2<3 

> ~ exp[-(dim~ #1 - 5/2)S,mu(xi)] 
i = 1  

>__ c~-'~ sup exp[-(dimu #1 -(~/2)Sm, u(x)], 
xec~ i (xd 

where c is a constant depending only on the Hhlder exponent of u. Hence, 

dim~ #1 - 5/2 >_ dim~ F~ _> dim~ #1, because ~1(1-'5) -- 1. This contradiction 

implies the desired result. I 
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COROLLARY 8.2: Let #1 and #2 be two probability measures on E, and u a 
strictly positive H61der continuous function on E. I[ #1 is an ergodic a-invariant 

measure, then 

ftl({X E ~: d#~,u(X ) > d i m u # l } )  = 1. 

Proof of Corollary 8.2: For each 5 > 0, the set Pa defined by (19) is a-invariant.  

By Proposi t ion 8.1, # l ( E  \ Fs) = 1 for every 5 > 0, and hence the set 

N (E \ Ps) = {x C E: d_~2,u(X ) >_ dimu #1} 
5>0 

has also full #l-measure.  | 

Proof of Theorem 7.3: For each i, we have 

lira S, ,r  _ f~ r dmu for mu-almost  every x e r,. 
~ s~g(x) f~ g d ~  

Fix r > 0. Since r is not  cohomologous to aig, one can show tha t  for each 

a > 0 the set of points q E [ - a ,  a] such that  fE Ti dvq = ai f~ g dyq is finite. 

Otherwise, by the analytic dependence of f~ ~i dvq and f~ g d~q on q, we would 

have f• ~i d# = ai f~. g dp for every equilibrium measure # with potential  in 

a Co(E) open neighborhood of some ~q, and hence f ~ i d #  = a i f ~ g d #  for 

every Gibbs measure. But  this is impossible because Ti is non-cohomologous 

to a~g. Thus,  by Theorem 6.6, there is an equilibrium measure vi such tha t  

dim~ ~i > dimu E - r and 

fEr lira Snr ~ for ui-almost every x E E. 

The collection of m + 1 measures Lq, . . . ,  urn, and mu gives rise to a collection of 

distinguishing measures with the desired properties. | 

P r o o f  o f  Theorem 7.6: For the sake of clarity we first present the proof  in the 

case m -- 1. The  general case will be discussed at the end. 

W h e n  m = 1, we write fn -- f~ for each n C N, and, wi thout  loss of generality, 

we may assume tha t  #1, #2 is a distinguishing collection of measures for F -- 

{f,~}neN with d i m ~ # l  >_ dim~#2; we write a} = aj for j = 1, 2. We may also 

assume tha t  aj ~ 0 for j -- 1, 2. Otherwise we can consider the sequence of 

functions F + a = {f,~ + a}nEN, where a is a non-zero constant,  since ~ ( F  + a) -- 

~ (F) .  Choose a positive number  5 such tha t  

(20) ]al -- a21 > 45. 
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We consider the sequence ko {max{lbl ,  2 ~i  i : ~/)n}}nCN, where ----- {lbn}neN for 
i = 1, 2. For each integer s > 1, we set 

1 i f s  is odd, 
p s =  2 i f s i s e v e n .  

For each integer ~? >__ 1, let ]~ C E~, be the set of points x E Eq, such tha t  for all 

n > ~ and i = 1, 2, we have 

log#i(Cn(x)) 
(21) I f n ( x ) -a l ]<5  and Snu(x) > d i m u # l - 5 .  

For each e > 1, let F~2 C E~, be the set of points x E E~, such tha t  for all n >_ ~, 

(22) Ifn(x)-a2i < 5  and Snu(x) > d imu#2 - 5. 

A t 
Clearly ~[+1 D F i for each g > 1, and i = 1, 2. 

Let  vl and v2 be the normalized measures  obta ined fl'om the restrict ions of #1 

and #2 to the  set E~,. Fix  ~ E (0, 1), and for each integer s > 1 set 

gs = min  ( { ~ E  N: v p , ( F ~ ) > 1 -  r  U {~s-1}) , 

where g0 -- co. We note tha t  ~s _> ~s-1. By Corollary 8.2 and Theorem 6.3, we 

have ~s < co for every s _> 1. 

For j = 1, 2, since #i  is a- invariant ,  the set of points x E E such tha t  

lirn fn(x) :- l im fn(amx) 

for every m E N has full h i -measure .  We define the number  

D~,m(x) = max{lf~+m(y)/f,~(x)], y ,  z e 

By Lusin 's  Theorem,  for each j = 1, 2, and 5 > 0 there is an integer ri(n, 5) > n 
such tha t  D~,m(x) < 1 + 5 for all m > rj(n, 5) and all x outside a set y/n(~) of 

/~i-measure at  least 1 - 5. 

For each s > 1, we define inductively the  increasing sequences of posi t ive 

integers {ns}seN and {ms}~es  by m l  = nl  = ~1, and, for every s > 2, by 

-- -[- Cn,_, ,  ~/2 ) "~ ~s+l  ! ms rp~ (ns-1 s+l 
(23) 

ns = n ~ - i  + r + m~ + 1. 

We set 
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Then 

(24) vp. (F) . )  > 1 - E/2 s. 

For each s >__ 1, we define a family of cylinders by 

(251 cs = { c ~ ,  (x): x �9 r ~ ~. psJ~ 

moreover, we set 91  = r and 

(26) 9 s  = {C__CC E Zs: C E 9s -~ ,  C E Cs, and C E Zs is minimal}. 

Here, minimality refers to the order < in Z~ defined by: if C, C' E Z~ are 

distinct, we write C < C' if ]C] < IC'[, or if ICI = ]C'] but C is smaller than C' 

in the lexicographical order. We note that if alZ has the specification property, 

then the length of C in (26) may be taken constant. 

We now prove that for each CCC E 9 s  with C E 9 s -1  and C E Es, we have 

ICI <_ ns-1 and ]C I < ~bns_l for each s > 2. For s = 2 this is clear because 

nl = ml.  Using (23) and induction on s > 2, we obtain 

I c c c I  < us -1  + r  + ms  < ns,  

and hence ]C'I < ~b,~ for each C 'C 'C '  E 9s+1 with C'  E 9 s  and C '  E r 

because �9 is non-decreasing. 

Set 

(27) " = N U c. 
s_>l CE!Ds 

We define a measure # on A by #(C) -- Vl(C) if C E 91,  by 

(2s) M c c c )  = ~(c)~.  (c) 

if C C C  E 9 s  for some s > 1, and arbitrarily for backward cylinders, i.e., cylinders 

with coordinates fixed in the past. We extend # to ~ by #(A) = #(A A A) for 

each measurable set A C ~,,. For each s ___ 1 and every C E 9 s - l ,  it follows 

from (24) that  

Cn~  >#(_C) 1 - ~  , 
8 

and hence 

for all sufficiently small E. 

oo 
E 

s----1 
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Let n o w x  E C E ~8. T h e n m s  _< ICI < n~, andalCl -msx E r~pl for each 

s _> 1. By (21) and (22), we obtain 

IflcI (x) - ap, I <--Ifm~ (a lc l -m'x)  -- ap, [ X flcl ( x ) / fm,  (alCi-m'x)  

+ I1 - f l c l (x ) / fm, (a lCl -m'x) I  x lap, I 

<Dlcl_m,,~,(x ) x I/~,(~'c'-~,x)- %,1 

+ ( D , c l _ . , . , , , , . ( x )  - 1) • lap. I ,  

Hence, for all sufficiently large s and every x E C E ~ ,  we have 

(29) Iflcl(x) - ap, I < 25. 

It follows from (20) and (29) that  

(30) ~(F) D h. 

LEMMA 8.3: f i x  E A, then 

log#(Cn(x)) > dim~/*2 - 3& limi2f s.~(~) - 

Proof of the/emma:  Let z E A. For each q E N, choose an integer Sq such that  

IC~I <_ q < IC~.+* I, where 

~ s q + l  ~ Csq+l C Cq(T~) C C sq E ~sq. 

Assume that  

(31) ICSql <_ q <_ ICSq[ + r + ~8q+1. 

We have (r + g~+l)/ICSql --+ 0 as q --+ oc, and hence 

SqU(X) < 81CSqlAi-l/3*cSq,~-~Sq-blU(X) 
SlC,~lu(x) - S l c , ~ l u ( . )  

< 1 + r + ~q+l • max~ez u(x) 
- IC~,I min~ez u(z) 

as q ~ c~. Therefore there exists ql E N such that 

log/z(Cq(x)) > log#(C ~.) 

s~(x) - S~u(~) 
(32) > log#(CSq) x Sics'lU(X) 

- Slc,~lu(z) Squ(z) 

_> dim~ #2 - 25 
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for every q > ql. In particular, 

log #(C ~ ) 
> dim~, #2 - 25 

(33) Sic~lU(X) _ 

for every q > q]. When (31) does not hold, we have 

,.(G(x)) = , ( c~ )~% (6') _< ,~(c'~),,,.~+, (~), 

where Cq(x) = CsqC6' and the cylinder 6' contains an element of ~ + ~ ;  

moreover, ICI < ~pic~ 1 and ICI > ~ + ] .  Thus 

Ic~"l + 16~i <_ q _< lc~l + ~tc~o~ + 16'1, 

and 
slC,~lu(x) + Si&u(aq-lClx) 

--+1 Squ(x) 
r~Sq+l as q -+ oc. Therefore, by the definition of-p~q+~, and (33), there exists q: > ql 

such that  

log#(Cq(x))  > 1 ~, ][--logla(CS~)--lOg#p'q+l(6')" ~ 
s q u ( x )  - S q u ( x )  

(34) 

SIc~q lu(x)(dimu #2 - 25) + Si•lu(aq-lClx)(dimu #2 - 5) 

- S q u ( x )  

> Sqc~lu(x) + SISlu(aq-lClx)(dim~#2 - 25) 
- S q u ( x )  

Z dim~ ~t 2 - -  35 

for every q > q2. The desired statement follows now immediately from (32) and 

(34). i 

By Theorem 3.1 in [13], and Lemma 8.3, we obtain 

(35) dimu A _> dimu(#[A) _> dim~/z2 - 3& 

By (30) and since 5 is arbitrary, 

dim~ ~(F) > dim~ #2. 

Since dim,, #1 _> dimu it2, this completes the proof of the theorem in the case 

m = l .  
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We now briefly discuss how to deal with the case m > 1. We consider the 

sequence k~ {max{r 1, k qli i �9 . = {r for i = 1, = ., r where . . . ,  k. For 

each i n t e g e r s >  1, w e s e t p , = s  ( m o d k ) + l .  

Without loss of generality, we may assume that 

dim~#j,(i) >_ dim~#j2(i ) for all 1 < i < m, 

and 

dimu #j k dimu #k for all 1 _< j _< k. 

For each i n t e g e r g >  1, a n d i =  1, . . .  m, let Fe - , i,jl(i) C E~ be the set of points 

x E Er such that for all n _> g and t = k, j l ( i ) ,  we have 

If~(x) ~ log #t(Cn(z)) 
-- ajl(i) l < 6 and Snu(x)  > dim~ ]~jl(i) - -  8. 

For each g > 1, let F~ - i,j2(i) C Er be the set of points x E Er  such that for all 

n >_ g and t = k, j2(i), 

l f � 8 8  i l~ 
aj2(i)[ < ~ and Snu(x)  > dimu#j2(i) - & 

We then define a set A C E in a similar way to that for m = 1, selecting alterna- 

tively cylinders from FI,jl(1), FI,j2 (1), F2,j~ (2), F2,j2 (2), . . . ,  Fm,j~ (rn), and Fm,j2 (m) 
(not necessarily in this order; compare with (25) and (26)). The remaining 

arguments are similar. | 

We remark that in the case of two-sided subshifts the cylinders used to con- 

struct the set A in (27) are forward cylinders, i.e., they are completely determined 

by a finite number of symbols in the future. Moreover the non-invariant measure 

# constructed in (28) can be, for the purposes of the proof of Theorem 7.6, arbi- 

trarily defined for backward cylinders, primarily since we only require Lemma 8.3 

when n --+ +cx~. 

One can also consider "two-sided" irregular sets of points, that is, irregular 

sets for which there exist no limits both when n --+ co and when n -+ -c~ .  In 

this new situation one can obtain a similar statement to that in Theorem 7.6, 

with some slight modifications in the proof. Namely, the set A defined by (27) 

must be replaced by A N A- ,  where A- is constructed in a similar way to that  of 

A replacing forward cylinders in (25) by backward cylinders, and inverting the 

order of the cylinders in (26). Furthermore, the measure # is defined in (28) for 

forward cylinders, but instead of choosing it arbitrarily for backward cylinders 

in A N A-  we must also define the #-measure of a backward cylinder by taking 
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an alternated product of the measures vl and v2 (note that these are invariant 

measures, and hence backward and forward typical points coincide in sets of full 

measure) as in (28). Using these modified versions one can prove a stronger 

version of Lemma 8.3: if x E A N A- ,  then 

lim inf log #(C~(x)) k > dim~ #2 - 35. 
Ek=oU(  x) - 

Using this property one can show (for two-sided shifts) that the set of points 

where both the backward and forward averages do not converge has also full 

u-dimension. 

Proof of Theorems 7.1 and 7.2: These are immediate consequences of 

Theorems 7.3 and 7.6. | 

Proof of Theorem 7.4: One can easily obtain Statements 1, 2, and 3 by repeating 

with slight changes the proof of Theorem 21.1 in [13] (and in particular that of 

Lemmas 2 and 3 in Theorem 21.1). More precisely, Statements 1 and 2 are 

obtained as in Lemma 2, while Statement 3 is obtained as in Lemma 3. 

Statement 4 is not a consequence of Statement 3 because we did not discard 

the hypothesis that there exists x E E such that d~,~ox(X ) < 3,,~ox(X ) and 

(36) lim d , u ( X ( X ) , ~ ) =  lim 3u,u(X(X),~l ). 
d i a m  ~_-~0 --r-, diana kl--+O 

However, it is an immediate consequence of the arguments in the proof of the 

above mentioned Lemma 3 in [13] that  _dt,,~ox(X ) = du,~ox(X) (i.e., there exists 

the limit corresponding to the pointwise dimension of x in E) if and only if the 

identity (36) holds (i.e., if and only if there exists the limit corresponding to the 

pointwise dimension of X(X) in X). That  is, either both limits exist or both limits 

do not exist. This completes the proof of the theorem. | 

Proof of Theorem 7.5: It follows from Statements 3 and 4 in Theorem 7.4 that 

the irregular set 

coincides with the image by X of the corresponding irregular set ~' C E for the 

associated symbolic dynamics a le ;  furthermore X-I~  = ~'. For the topological 

entropy the identity can be obtained as in the proof of Theorem 3.2 (see below), 

and so we will not reproduce the proof here. 

We now consider Hausdorff dimension. The Hausdorff dimension of sets in 

X coincides with the loga-dimension, where a(x) = Ildxfll (see Section 6.1). 
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Proceeding as in [13, p. 200], for each r > 0 sufficiently small we obtain a Moran 

cover g~ of X. This is a special cover composed of images under X of cylinders, 

such that  given x E X and a sufficiently small r > 0 the number of sets in the 

cover that have non-empty intersection with B(x, r) is bounded from above by a 

number n, which is independent of x and r. 

We now equip E with the unique metric da such that a cylinder C of length n 
n--1 k -1  has diameter supxec l-[k=o(a(x(a x)) ). The Hausdorff dimension associated 

to this metric coincides with the (log a o x)-dimension in E. Let ~1 be a finite 

cover of ~ by open balls. Then for each B 6 H of radius r there are at most 

cylinders (not necessarily all with the same length) such that their image by X 

are the elements of the Moran cover ~/~ intersecting B. Doing the same for every 

B 6 H, we obtain a family ~ of cylinders in E which form a cover of ~:', and 

(diamU)8 -< ~ (diamC)8 - nsupa~ E (diamU)~" 
UEU CC~ UCI/ 

Therefore dimlog aox ~:t = dimH ~. By repeating this argument with ~: replaced 

by X we conclude that dimLog~oxF~ = d imHX.  By Theorem 7.1 we have 

dimlog aox ~:' = dimlog aox ~, and hence dimH :~ = dimH X. II 

Proof of Theorem 7.7: For simplicity we consider only the case k = 2 and 

assume that  dim~ #1 > dim~ #2. Let h be the set constructed in the proof of 

Theorem 7.6. It follows from (21), (22), (23), and the construction of the set A 

that if x E A, and x E C s C ~s  for each s _> 1, then 

l iminf l~ >_ d imu#l  - 26 
q-.o~ Sfc~q+,lu(z) 

and 

lim sup log #2(C 2q) _< dim~ #2 + 26, 
q-,oo SEc~.lu(x) 

with the notation in the proof of Theorem 7.6. This implies that 

~({-logl~2(C,( .)) /S~u}~eN) D A. 

The desired result follows from (35) and the arbitrariness of 6. II 

8.2 .  PROOFS OF THE RESULTS IN SECTION 2. 

Proof of Theorem 2.1: The remarks after Theorem 2.1 imply that we only need 

to show that  Property 5 follows from Property 1, which in turn is an immediate 

consequence of Theorem 7.1. | 
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Proof of Proposition 2.3: Let g E L. If there exist n E N and points x, y E 

such that  ~rnx = x, any = y, and Sng(x) ~ Sng(y), then g is non-cohomologous 

to 0. Otherwise Sng(X) = Sng(y) for any x, y E E such that  anx = x and 

any = y. In this case the Livshitz theorem implies that  g is cohomologous to 0. 

Given e > 0 one can find a function h in L which is e-close to g (with respect to 

the supremum norm) simply by changing slightly the value of g in a small cylinder 

that  contains the orbit of only one of the points x and y, so that  Snh(x) ~ Snh(y). 

Therefore h is non-cohomologous to 0. We conclude that  in any neighborhood 

of a function in L there exist functions in L which are non-cohomologous to 0. 

Furthermore, if g E C0(E) is non-cohomologous to 0, then any sufficiently small 

Ce (E)-neighborhood of g is composed by functions which are non-cohomologous 

to 0. This completes the proof of the proposition. I 

Proof of Proposition 2.2: It  is immediate from Proposition 2.3. I 

Proof of Proposition 2.4: Observe that  ~ (#)  C ~B whenever # is a Gibbs measure 

(if # is a Gibbs measure for the continuous potential r one considers the function 

g -- P~I~.(r - r  in (4)). Hence, if 9.1 C E is the set defined by the right-hand side 

of (6), then 92 C ~ .  

Let x E 92. Then the limit limn-+~ Snr exists for every H51der continuous 

function r on E. For a given continuous function g on E let {r be a 

sequence of HSlder continuous functions on E such that  [[g-r --+0 as m -~ cx~, 

where [1" ]1 denotes the supremum norm on E. This implies that  

0 _< lim sup 1Sng(x) - lim inf 1Sng(X) 
n-*oo n n - ~  n 

1S  x < l imsup - nCm( ) -- l iminf -snCm~z) + 2llg - emil --+ 0 
n-+c~ n n---~c~ n 

as m --4 cx~, and hence, x E fl~. This implies that  f13 C 92, and hence 92 -- f13. 
| 

8.3. PROOFS OF THE RESULTS IN SECTIONS 3 AND 4. 

Proof of Theorem 3.2: We start  with an auxiliary result. 

LEMMA 8.4: If J is a repeller of a topologically mixing C 1 expanding map f ,  

and R is a Markov partition, then h(f[OR) < h(f[J).  

Proof of the lemma: The partition R is a generating partition and hence the 

diameter of each cylinder tends (uniformly) to zero. Therefore thero exist n E N 
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and C E V'k=o f - kR  such that C n OR -- O. Since f(OR) C OR, when we look at 

the coding of the boundary in the symbolic dynamics we conclude that it does 

not contain at least the cylinder x-1C.  Therefore h(flOR ) < h(f lJ  ). | 

For the Markov partition R it follows from Lemma 8.4 that  

h(fl ~_J f-nOR) < h(flJ), 
n = l  

since the entropy of a set coincides with the entropy of its invariant hull. Since X 

is a homeomorphism on the set J \ [-J,~=l f -nOR, if d C E and h(alA ) -- h(alE),  

then 

h(flx(A)) = h(flJ) = h(alE). 

The desired statements are thus immediate consequences of Theorem 2.1. I 

We note that a more general statement is proved in [17] for C 1+~ expanding 

maps: the coding map preserves the entropy of any subset (and not only the 

entropy of the irregular and of the full set). 

Proof of Theorem 3.3: Let r be a potential for # with P(r  -- 0. The identi- 

ties follow from Theorem 7.5 taking respectively u = 1 and u = log a (see the 

examples after Theorem 6.2), and for each statement the sequences of functions: 

1. {S~g/n}ner~, where g is some HSlder continuous function non-cohomologous 

to 0, since ?Sf ~ X(~(g)) = X(~({S~g/n}n~N)) (the first statement also follows 

from Theorem 2.1); 

2. {Sn loga/n}ner~; 
3. (snr loga}.cN; 
4. {8,~r 
5. {Snr log a}neN, {Snr and {S,~ log a/n}~e,. | 

Proof of Theorem 4.1: One can easily obtain a version of Lemma 8.4 for 

hyperbolic sets. With similar arguments to those in the proof of Theorem 3.2 

the desired statements are thus immediate consequences of Theorem 2.1. | 

Proof of Theorem 4.2: The case of hyperbolic sets can be reduced to that  of 

repellers in the following way. If g is a HSlder continuous function on the two- 

sided subshift E, then there is a cohomologous function g+ such that  (see [8]): 

g + ( .  . " i - l i o i l  ") = g ( "  �9 "~ "~ " . .  . ? , _ 1 7 ~ 0 ~ 1  ' ' ' )  
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" for every k > 0. Let E + be the one-sided subshift having the same if ik = ~k 
transfer matrix as •. Then the irregular set ~(g+)  with respect to ~+ coincides 

with ~(g) .  

We now address Statement 4. We decompose A into local stable and unstable 

manifolds. For ]z-almost every point x E A one can define conditional measures 

#s and #~ on the local stable and unstable manifolds of x. There is a positive 

constant ~ such that  a - l # ( A )  < (#~ x#~)(A) < ~#(A) for every measurable set A 

in a small rectangle. The measures #~ and #~ are Gibbs measures corresponding 

to some potentials r and r See [5] and [13] for details. Since it ~ gJtD, 

the measures #~ and #~ cannot both be equivalent to the measures of maximal 

dimension on the stable and unstable manifolds of x, respectively. Without loss 

of generality we assume that #~ is not equivalent to the measure of maximal 

dimension on the unstable manifold. 

Let ~ ( # )  be the set of points in WU(x) such that the pointwise dimension of 

#~ does not exist; ~ ( # )  is the image under X of the set of points y E E such that  

(Snr logaU)(y) does not converge. One can define ~ ( t t )  in a similar way. 

Proceeding as in the proof of Theorem 3.3 one can use Theorem 7.5 to obtain 

h( f l~ (# )  ) = h(fl~({S,r loga~},~eN)) = h(flW~'(x) n A) 

and 
d i m ,  ~ ( # )  = dim,og,~ ;~({Snr log an}heN) 

= dimg(WU(x) n A). 

Let rn ~ be the measure of maximal dimension on W~(x), i.e., the Gibbs measure D,x 
o fd  ~ loga ~. One can easily show that ~ ( t t )  C ~ (# )  for y E W~(x) in a set G D of 

full m~),x-measure. Thus, the set Uyea5 ~ ( # )  is contained in ~ (# )  and has full 

stable and unstable dimensions. We obtain the second identity in Statement 4. 

Let m ~ be the measure of maximal entropy on W~(x), and G E a set of full E,x 
rn}, ,-measure such that ~ ( # )  C ~ (# )  for every y e Gx E. The set Uyea~ ~'~(#) 
has full topological entropy with respect to f .  Hence 

h(f l~D('u)) >-- h(fl U ~(#)) = h ( f t A ) "  
yea~ 

This completes the proof of Statement 4. 

The proofs of the remaining statements are similar to the proofs of those in 

Theorem 3.3. | 

P r o o f  of Theorem 4.5: We can consider a straightforward modification of the 

definition of u-dimension similar to the modification used to obtain the two-sided 
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entropy h* from the topological entropy. Namely, for each set Z C X and each 

real number a, we define 

M* (Z, a,  u,11) = lim inf E exp[-au(U)  - au(V)], 
n--+ r F 

(v,v)~r 

where the infimum is taken over all finite or countable collections 

such that  

r c H ~k(H) • ~,(11) 
kq-s 

U x(u) n Im(V)x(v) z z. 
(u,v)~r 

Hence, we can set dim*,a Z = inf{a: M*(Z, a, u,11) = 0} and the following limit 

exists: 
�9 * def �9 * 

dlm~ Z = lim dxm~ a Z. 
diana ~--40 

Using this "modified" u-dimension and its corresponding lower and upper point- 

wise dimensions, one obtains the desired statement by reproducing with minor 

changes the proof of Theorem 7.6; see also the discussion after the proof of 

Theorem 7.6. | 

8.4. PROOFS O F  T H E  R E S U L T S  IN S E C T I O N  6 .  

Proof of Theorem 6.1: This is a slight modification of the proof of Proposition 2.8 

in [8]�9 Let El be a finite open cover of X with diameter smaller than the Lebesgue 

number of the cover 11. Each element V E ~ is contained in some element 

U(V) E 11. We write U(V) -- U(Vo)... U(Vr,) for each V E ~I~(~3) and observe 

that  i f F  C ~Jk~N fllJk(~U) is a cover of Z, then {U(V): V E F} C ~JkeN ~13n(~) is 

also a cover of Z. 
Set "r(11) = sup{lu(x)-u(y)[ :  x, y E V for some V e H} and u -- min~ex u(x). 

We obtain 

~(u(v)) < u(V) + ~(11)m(v) < (~ + 7(11)/_~)~(v), 

and 
M(Z, a, u, tl) >_ M(Z, (1 + 7(11)/u_)a, u, f13) 

for each a _> 0. Therefore, dimu,~ Z _< (1 + 7(~/)/_u) dim~,u Z and 

limsup dimu,~ Z _< (1 + 7(11)/_u) dim~,a Z. 
d i a m  r 
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By the uniform continuity of u on X, we conclude that 

lim sup dim,,~ Z _< lim inf dim,,~ Z, 
diam ~--+0 diam 11-+0 

and dim,  Z is well defined. The proofs of the other statements are similar. 

Proof of Proposition 6.5: Set ~5 = U~ ~(#). By the variational principle for the 

topological pressure [14], and Theorem 6.3, for every a E R, 

sup 
ergodic # E 91l 

ergodic # E ~2~ 

By Proposition 6.4, if a = dim~ ~5, then Pe (-c~u) = 0. Since u is positive, 

this happens if and only if ~ coincides with the right-hand side of (13), because 

f x  ud# > min~ex u(x) > 0 for every ergodic # E 9Jl. I 

Proof of Theorem 6. 7: The first two statements follow easily from results in [16]. 

In [16], Schmeling proved that if q < 0 then 

dim~{x E E:-dt,,~(x) = au(q)} <_ ~u(au(q)), 

and if q > 0 then 

dim~{x E E: dt,,~(x ) = au(q)} <<_ ~u(au(q)). 

This implies that  dim~ Kal,~2 _< m i n { ~ ( a l ) , ~ ( a 2 ) } .  One can obtain the re- 

verse inequality by considering the distinguishing collection of measures ~ql and 

vq2 , where a~(qi) = ai for i = 1, 2, and applying Theorem 7.2. This completes 

the proof of the third statement. I 
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