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ABSTRACT 

Let [,(n, k) denote the maximum number of k-subsets of an n-set satisfying the 
condition in the title. It is proved that 

f , ( n , r ( t - 1 ) + l + d ) < = ( n t d ) / ( k t d  ) for n sufficiently large 

whenever d = 0, 1 or d <= r/2t 2 with equality holding iff there exists a Steiner 
system S(t, r ( t -  1)+ 1, n - d ) .  The determination of [,(n,2r) led us to a new 
generalization of BIBD (Definition 2.4). Exponential lower and upper bounds 
are obtained for the case if we do not put size restrictions on the members of the 
family. 

I. Preliminaries 

Let X be an n-element set. For an integer k, 0-<_ k -<_ n we denote by (x) the 
collection of all the k-subsets of X, while 2" denotes the power set of X. A 

family of subsets of X is just a subset of 2 X. It is called k-uni[orm if it is a subset 

of (x). A Steiner system 0 ° = S(t, k, n) is an 5e C(~) such that for every T E (x) 

there is exactly one B E O ° with T C B. Obviously, ] 5e I = (~,)/(k) holds. A ~ C (~') 

is called a (t, k, n)-packing if I P A P ' I <  t holds for every pair P, P'  E ~. V. R6dl 

[10] proved that 

(1) max{[~[  "~isa(t'k'n)-packing}=(1-°(1))(7)/(k)t 

holds for all fixed k, t whenever n ~ oo. 
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Let [a] ( [b])  denote the smallest (greatest) integer (not) exceeding a (b), 

respectively. We will use the Stirling formula, i.e., n!- (n /e )n2V~-~n.  

2. Uniform r-cover-free families 

We call the family of sets ~ r-cover-free if Fo~-FI U . . .  U F, holds for all 

Fo, F1 . . . . .  F r E ~ .  ( E # F /  if i # j . )  Let us denote by f , ( n , k )  the maximum 

cardinality of an r-cover-free family ,~ C(X), I xI -- n. Let us set t = [k/r].  Then 

PROPOSITION 2.1. (~,)/(k)2 __< fi(n, k)<= (7)l(~,q'). 

To prove the lower bound we show that there exists a (t, k, n)-packing of this 

size. A (t, r(t - 1)+ 1, n)-packing ~ is r-cover-free because ]P n P'I _-< t - 1 

holds for all P, P ' E  ~. Generally 

EXAMPLE 2.2. Let X = Y U D, ]D 1= d, I Y I = n -  d and ~ a 

(t, r(t - 1) + 1, n - d)-packing over Y. Define ~: = {D U P : P E ~}. 

This example and (1) gives the lower bound in the following theorem. 

THEOREM 2.3. Let k = r(t - 1)+ 1 + d where 0 < _ d < r. Then for n > no(k) 

(2) ( l - o ( a ) ) ( n t d ) / ( k T d ) < = f i ( n , k ) < = ( n T d ) / ( k T d )  

holds in the following cases: 

(a) d =0 ,1 ,  

(b) d < r/(2t2), 

(c) t = 2 and d < [2r/3]. 

Moreover, equality holds in (2) iff a Steiner-system S(t, k -  d, n -  d)  exists. 

This theorem determines asymptotically fi(n, k)  for several values of r and k. 

The first uncovered case is r = 3, k = 6. The obvious conjecture that the 

maximum ~: has the structure given by Example 2.2 is not true (cf. Theorem 

2.6). A subset A C F E ,~ is called an own subset of F if A ~  F '  holds for all 

F ~ F ' E ~ .  

Let us suppose X = {1,2 . . . . .  n} and define m a x F  = max{i : i E F}. 

DEFINITON 2.4. A family ,~ C(,X), t, r => 2, is called a near t-packing if 

I F n F '  I =< t holds for all distinct F, F '  E ~:, moreover, I F n F'l = t implies 

max Fli~ F '  (in words: the t-subsets of F containing max F are own subsets). 

PROPOSmOtO 2.5. I f  ~ C (x) is a near t-packing then ~: is r-cover-free. 
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PROOF. Suppose F C F, U • • • U F,, F~ E ft. Since [ F n F~ [ _-<_ t, the sets F n F~ 

form a partition into t-subsets of F. Choose F~ containing max F. Then F n F~ is 

a t-subset of F containing max F and F n F~ c F. However,  F n F~ was supposed 

to be an own subset of F, a contradiction. [] 

THEOREM 2.6. There exists a near 2-packing ffC(X~) with (n2/(4r-2)) - 
o(n 2) edges. 

This theorem and Proposition 2.1 give that fi(n,2r)= (1 + o(1))n2/(4r- 2). It 

is easy to see that 

PROPOSITION 2.7. For fixed k and r, 

limf,(n,k) / ( t ) = l i m s u p f , ( n , k ) / ( 7 ) = c r ( k )  

exists whenever n --> oo. 

By Proposition 2.1 and (2) we have 

In Chapter 5 we get the slightly better  

q(k )<(k= - dO/t( kt_ l-1 ) 

but we have no general conjecture for the value of c,(k) not covered by 

Theorems 2.3 and 2.6. 

3. r-Cover-free families without size restriction 

Denote  by f,(n) the maximum cardinality of an r-cover-free family ~ C2 x, 

IXl=n. 
THEOREM 3.1. (1 + 1/4r2)" < fr(n) < e °+°°)~''. 

REMARK. In the case r = l  the constraints reduce to FogG, i.e., the 

well-known Sperner-property.  Hence (see [ l l  D 

f ' ( n ) =  [n/2] " 

Suppose now that n is not too large compared to r. 
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EXAMPLE 3.2. Let q be the greatest prime power with q < XFn. Let Y = 

GF(q) x GF(q) be the underlying set and consider the graphs of the polynomials 

of degree at most d over the finite field GF(q). Set 

~q,d = {{(x, g(x)) : x E GF(q)} : g(x) = ao + a ,x  + . . .  + aax ~, ai E GF(q)}. 

Then IF  fq F'I_-  < d holds for F , F '  E ffq.a, thus it is a [(q - 1)/dJ-cover-free 

family. 

This yields the lower bound for 2r2< n in the following: 

THEOREM 3.3. For r = e X/-n we have 

(1 - o O)) n -< f , ( n )  =-< n 

For n < (,~2) we have the following easy 

PROPOSmON 3.4. I f  n < (q-2) then f , ( n )  = n. 

12/eZl 

4. Proof of Proposition 2.1 

If ,~ is a maximal (t, k, n)-packing then for every G E (x) there is an F E 

such that I G f3 F I => t holds. Hence we have 

n - t )  

Using 

this yields the lower bound. 
For the proof of the upper bound let us define the family W ( F )  the non own 

parts of F with respect to o~, i.e., 

X ( F ) = { T C F :  IT]  = t, 3 F ' /  F, F ' E ~ ,  T CF'}. 

LEMMA 4.1. I f  ,~ is an r-cover-free family ,  F E ~ and Tl, T2 . . . . .  T, E W ( F )  

then IUT~l<k. 
PROOF. Trivial, choose F / F ~  E ~ with T~ C F~ and note Ff~ F, U. • • U F,. 

[] 

LEMMA 4.2. IX(F)  l-<(k-'). 
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PROOF. In view of Lemma 4.1 ?¢'(F) fulfills the following conditions: 

(i) N ( F )  C(D, rt >= IF[ and (ii) A~ U . . .  U A , ~  F for A 1 , . . . , A ,  E N ( F ) .  
Thus by Lemma 1 (FrankI [8]), I~-[ =< (k-f) holds. []  

Now Lemma 4.2 implies that each F E ~ has at least 

( ~ ) _ ( k - 1 ) = ( k - l t  t 1 )  

own subsets. Consequently, 

I~I( k-1 

holds, yielding the desired upper bound. 

5. Proof of Theorem 2.3 

Let ,%) = {F E ,~" 3 S C F, I S I =< t - 1, such that S C F'  E ,~ implies F '  = F}, 

i.e. o%, denotes the family of members of ff  having an own subset of size smaller 

than t. Clearly, we have 

LEMMA 5.1. If  F ~ ~ - ~)  and T,,  T2 . . . .  , rd+ 1 E ?¢'(F) then I U T~ [< 

(d + 1)t. 

PROOF. Suppose for contradiction that I UT~ I = ( d + l ) t  and let N = 

{T,, T2 . . . . .  Td+,, $1, S~, . . . ,  S,-d-~} be a partition of F such that [Si [ = t - 1. Then 
for each P E ~  there exists a F e ~ f f ,  F e ¢ F  with P C F .  Hence F C 
U {Fp : P E ~}, a contradiction. [] 

LEMMA 5.2. 

(4) 

For F E ~ - ~o we have 

= t - 1  ' 

,6> = - 2 i f t = 2 ,  k>-_~d+2. 

Moreover, equality holds in (5) or (6) iff I U {T E (x) : Tff. ,N'(F)} I = k - d. 
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PROOF. Let us define m(k,t,d)=max{IAc I :AcC(,k), A c does not contain 

d + ! pairwise disjoint members} where k > td, k, t, d are positive integers. 

Erd6s, Ko and Rado [6] proved that 

m ( k ' t ' l ) = (  k-1)t-1 

and 

for k _-> 2t 

m(k't'd)<d(k-1)= \ t - 1  

was shown by Frankl (cf. [7] or [9]). For k > ko(t, d) Erd6s [3] proved that 

Later ko(t, d)< 2t3d was established by Bollob~is, Daykin and ErdSs [2]. For 

t=2,  

was proved by Erd6s and Gallai [5] (for k _- (5d/2) + 2). The uniqueness of the 

optimal families was proved both in [2] and [5]. These results and Lemma 5.1 

imply (4)--(6). []  

From now on we suppose that one of the cases (a), (b), or (c) holds, i.e., (5) or 

(6) is fulfilled. We apply the following theorem of Bollob~is [1]. 

LEMMA 5.3. Let A1 . . . . .  Am and B t  . . . . .  Bm be finite sets and suppose that 
A~ n B~ = 0 and A~ n Bj ~ 0 holds for all i ~ j. Then 

1 

IA, I 

Moreover, if [A, I = a, In, l-- b holds for all i then equality holds in (7) only if 
I U a ,  l= lUB,  l=a+b.  

Divide g - go into two parts: g l  = {F E g - go : IX(F) I < (D- (k-.)}, g2 = 
g -  g o - g l .  Then for each F U gz we have a d-subset D(F)CF, such that 

I ( F  - D (F)) n F'[ _-> t implies F = F'.  
Now let T~, T2, . . . ,  T,, be the family of all minimal own subsets of size at most 

t of the members of g,  i.e., T~ C (F  n F ')  and F, F '  E ~: imply F = F' ,  and for all 

x E T~ there exists F'~  F, F'U g such that ( T ~ - { x } ) C F n  F'.  Define 



Vol. 51, 1985 NO SET IS COVERED BY r OTHERS 85 

X , = [  X - T ,  

X - T~ - D(F)  

if T, C F  ~ (~o U ~,),. 

if T~ C F  ~ ~2. 

Clearly Xi fq T~ = O. We claim that X~ Iq Tj~ O holds for all ifi  j. If X~ = X - T~ 

then this follows from the minimality of T~, i.e., Tj~T~. Suppose X~ = 

X - T ~ - D ( F ) .  If T is a t-subset of T, LID(F) ,  then either T = T ~  or 

T N  D ( F ) ~ O  holds. Since ~ is an own subset of some F ' E  ~ and F E  ~2, we 
infer Tjj~(T~ U D(F)) ,  i.e., Tj fq X~fiO. 

Now Lemma 5.3 yields 

1 l~ol ( k - d )  + l t  k - d )  l~2i" 
t 

n - d )  
[J;' [-~ ( t 

Straightforward calculation shows that if n > 2dt(,k), then the coefficient of I ,~2[ 
is the smallest, hence we have 

, ~o j • j,,, ~, ~,--~ ~ j ~ ( ° ,  ~ / / ( ~ -  ~ t , ,  
as desired. Moreover,  equality can hold only if ,~0 = ~1 = O. Finally, to get the 

extremal family we apply the second part of Lemma 5.3, which yields that each 
D(F)  is the same. 

6. Proof of Theorem 2.6 

We are going to use probabilistic methods. 

LEMMA 6.1. Let Y be an m-element set, m > 2r. Then there exist (2r - 1)- 

uniform families ~ . . . . .  ~ such that P f q P ' = O  for P , P ' E ~ ,  I ~1 >-- 
(m/(2r - 1)) - 12r2~/m, I P N P'I --< 2 for all P E ~,, P' ~ ~j and s > m3/2/r 2. 

PROOF. Let A1, A2 , . . . ,  Au be pairwise disjoint (2r - 1)-element subsets of Y, 

u = [ m / ( 2 r  - 1)]. Consider 3s permutations chosen independently at random of 
Y, Irl, ¢r2,..., 1r3s where s = [m3/2/r2]. Define the family ~,  as {1ri(Aj) : 1 _---j _-< 

u}. To obtain the families ~ we will delete the "bad"  members of ~ .  

For B U (~') we have that 

Prob(B is covered by some members of ~ i ) =  
~'1(2r31) 4r2 

(~ )  ~m-~ 
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Hence we get 

m /4r2\  2 8r 4 
E ( # B ~ ( 3 Y ) w h i c h a r e c ° v e r e d b y ~ a n d ~ ' a s w e l l ) < ( 3 ) ~ m  -5} < 2 m "  

Finally we get 

(8) E( # R E U ~, : there exists R '  ~ U ~,, I R n R '  I => 3) 

(3 ; )  8r 4 
=< • 2 "5-din < 3s 18rh/-mm). 

Now, call a permutation 7ri "bad"  if ~j  contains at least 12r2X/rn members R 

with the property [R O R'I ==-3 for some R ' E  U~gj~.  Then by (8) we have 

E( # bad ~ )  =< 2s. 

Thus there exists a choice of the random permutations ~-, , . . . ,  ~'3, such that at 

most 2s out of ~1 . . . . .  ~3, are bad. Suppose by symmetry ~1 . . . .  , ~s are not 

bad. Each N~ contains less than 12r2Vmm members R such that J R O R '  I --> 3 for 

some R '  E Uj,,~N~. Let N~ be the family obtained from N~ after deleting these 

R. Then ~ . . . . .  ~, satisfy all the requirements. [] 

Now the construction of the desired o ~ C(2~), where X = {1,2 . . . .  , n} is the 

following. Let X = Y1 U Yz U • • • U Ya U Yo w h e r e  

I Y~tl . . . . .  [ Y-  I = m = [r2n2/3], a = [ n t / 3 / r 2 ] ,  ~ N Yj --- 

f o r  all 0 =< i < j =< a. Take a copy of the families defined by Lemma 6.1 for each 

Y~, we get ~ ,  ~ , . . . ,  ~ , .  Finally, set ~ = {P U {j}: P E ~j,  1 <= i < j/m}. We 

have ( m 12r2V~ m _--> O(n,/3). 
[,~[_-> ~ ( j / m - 1 )  2r--1  2 r - 1  I_--<l_--<n 

7. Proof of Proposition 2.7 

Let k and r be fixed. Let g,(n, k) be the maximum size of an r-cover-free 

family o ~ such that for all F ~ ~, T C F, I T [ = t - 1 we have an F '  ~ F, F '  G ~: 

with (F n F')  D T. 
Such a family ~ is called r-cover-free without small own subsets. Deleting 

successively the members of o~ having own (t - 1)-subsets we can always obtain a 

~d C J;, ~d is without small own subsets. Obviously, 
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hence we have 

f r ( n , k ) -  t - 1  

Hence it is sufficient to prove that for all e > 0 and n there exists an No(n, e)  

such that 

(9) g , ( N , k ) / ( N t ) > ( g , ( n , k ) / ( 7 ) ) - e  

holds whenever N > No. 

Let o~ C (~), I X I = n be an r-cover-free family without own parts of cardinal- 

ity at most (t - 1) such that I ~ l  = g,(n, k). By R6dl's theorem (i.e. by (1)) for 

N > No(n, e) there exists a (t, n, N)-packing ~ over the N-element  set Y, with 

Replace each P E ~ by a copy of o ~. We obtain an r-cover-free family on N 

points, yielding (9). 

8. Proof of Theorem 3.1 

The upper bound of 3.1 comes from Proposition 2.1 using the obvious 

fi(n ) <= Y.k f,(n, k) and the Stifling formula. 

The lower bound was obtained from Proposition 2.1, also, with k = n/4r. We 

can get somewhat better lower bounds carrying out the proof given in [4] for the 

case r = 2. 

9. Proof of Theorem 3.3 and Proposition 3.4 

Let ~ C2 x be an r-cover-free family and define 

~, = {F E o~ : F has own subset of size most t}. 

Clearly, I~, t--- (;')- 

LEMMA 9.1. If  F ~ ( ~ - ~, ) and F~, F2, . . . , F~ E ~ then 

IF-,~-,U F j l > t ( r - i  ). 

This lemma implies that: 

(10) FI , . . . ,  F,+, E ( ~  - ~,)  then I _~r+, 1"__-- < f i l>- ( r+l ) ( t r+2) /2 .  

[]  
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For r = ekTn and t = [2/e 2] the right-hand side of (10) is greater than n. Thus 

I ~ -  ~, [_<- r, i.e., 

(n) 
I~ l  =< [2/~1 + ~ n - - < n  r2'"21 fort__>2. 

The case t = 1 follows from Proposition 3.4. 

To prove Proposition 3.4 we apply induction on n. The statement is trivial, 

e.g., for n =< r. Suppose ~ C 2 x, I X ] = n, ~ is r-cover-free. If some F E ~- has a 

1-element own subset, say {x }, then the statement follows by induction, applied 

to ~ - { F } ,  X -  {x}. If ~,  = O, and ]~1 > r, then (10) implies 

[ X l = n > ( r + 2 )  
= 2 ' 

a contradiction. Thus [ ~1 =< r < n holds. 

10. Final remarks 

The paper is a continuation of the earlier work of the authors [4] where they 

dealt with the case r -- 2, i.e., Aoff-A, U A2. The above topic is full of problems 

which are related to designs and error-correcting codes. 

OPEN PROBLEM. Suppose ~ C 2 x, I X ] -- n, ~ is r-cover-free, I ~ I > n. For a 

given r denote by n(r) the minimum of such n. Then by Proposition 3.4 we have 

( r22  ) <= n(r)< r2 + o(r2). 

(The upper bound comes from the example of an attine plane of order at least 

r + 1.) One can prove n (r) > (1 + o(1))~r z. We conjecture that lim n(r)/r 2 = 1, or 

even stronger n(r) >= (r + 1) 2. (We can prove this for r =< 3.) 

Added in proof. Theorem 3.1 was proved independently by Hwang and S6s 

[12]. They apply the estimations of f,(n) for group testing. 
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