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ABSTRACT 

For a (finite) group G and some prime power p", the Hp,-subgroup He, (G) is 
defined by He, (G) = /x  E G IxP"~ 1). A group H ~  1 is called a Hp.-group, if 
there is a finite group G such that H is isomorphic to He, (G) and Ha, (G) # G. 
It is known that the Fitting length of a solvable H,.-group cannot be arbitrarily 
large: Hartley and Rae proved in 1973 that i! is bounded by some quadratic 
function of n. In the following paper, we show that it is even bounded by some 
linear function of n. In view of known examples of solvable Hp.-groups having 
Fitting length n, this result is "almost" best possible. 

1. Introduction 

The concept of the generalized Hughes He--subgroup Hp.(G)= 
(x E G IxP"~ 1) of a finite group G(p a prime, n -> 1) is a direct generalization 
of the (Hughes-) He-subgrou p He(G) defined by Hughes in [11], He(G) being 
just He,(G). To have a picture, consider a nonabelian dihedral group G, then 
H2(G) is the cyclic subgroup of index 2 in G. The subgroup He- (G) was first 
introduced and investigated by Kurzweil ([15]) and by Gallian ([2]), and it seems 

natural to look for theorems about He.-subgroups generalizing the known 

theorems about He-subgroups. 
In the beginning Hughes and others were concerned with the possible index of 

He(G) in G, if it is a proper subgroup of G, see [2]. But soon afterwards the 

subgroups themselves were investigated, and Hughes and Thompson ([12]) and 

Kegel ([14]) showed that groups occurring as the proper He-grou p of some finite 

group are nilpotent. This fact, of course, is related to the nilpotency of a finite 

group admitting a fixed-point-free automorphism of prime order. As for the 

generalized Hp.-subgroups: the problem of "determining" their structure should 
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be related to the problem of describing groups admitting a fixed-point-free 

automorphism of order p". 
Now it is known that finite solvable groups admitting a fixed-point-free 

automorphism of order p" have Fitting length bounded by a linear function of n 

(in fact, this function is n itself, see [1]). 

In the following we shall determine a function f(n) ,  such that the Fitting 

length of a finite solvable Hp.-group (i.e. a group isomorphic to the proper 

H,.-subgroup of a finite solvable group) is bounded by f(n). And while in [10] 

Hartley and Rae gave a quadratic function, this one is linear. 

Our proof uses induction on n, and the induction step is based on an 

investigation of the representation of the semidirect product (F~+t(G)/F~(G))A 
on F~(G)/F,_~(G), where F,(G) denotes the j-th term of the upper Fitting series 

of G and A is some cyclic subgroup of G not contained in H,.(G). Thus the 

proof parallels the proofs of the corresponding theorems about fixed-point-free 

action of cyclic p-groups - -  but some care is needed, since in our case the action 

of the p-elements is not really fixed-point-free, and G is not necessarily a 

semidirect product. As a consequence of the somehow more complicated 

representation theory for p = 2, we get a worse result for p = 2 than for odd 

primes. To make it precise: the function is f(n) = 2n for odd primes p, while it is 

f(n) = 4n for p = 2 (Theorem 2.7, Theorem 2.9). 

Nonsolvable groups are not considered in this paper. There is no hope to 

prove the solvability of Hp,-groups in general: there is a group H with 

Am N H ~  < Aut(A~), such that Am = H~(H). Note that H is neither isomorphic to 

Z6-nor to PGL2(9). 
Notation is taken from [13]; the Fitting length of a solvable group G, i.e. the 

length of its upper Fitting series {F~(G)}, is denoted by h(G). A critical subgroup 

of a finite p-group P is a characteristic subgroup C of P such that every 

p'-automorphism of P acts nontrivially on C and C has the properties described 

in ([3], 5.3.11 and 5.3.13). An element x of order m is said to act exceptionally on 

the module V, if the degree of the minimal polynomial of x on V is smaller than 

m. 

2. The results 

The following obvious facts are frequently used in the reduction of minimal 

counterexamples. 

(2.1) LEMMA. Let G be a finite group with Hp.(G)~ G, x E G\He.(G). 

Then : 
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(i) H p , ( U ) C  Hp°(G)f'l U for every subgroup U of G. 

(ii) lip, (G/N)C_ He. ( G ) N / N  for every normal subgroup N of G. 

(iii) C~(xu) is a p-group for every u E Hp,(G).  

(iv) (xu) p° = 1 for every u E Hpo(G). 

(v) I f  U<=G, U x = U then H p , ( ( U , x ) ) ~ ( U , x ) .  

PROOF. (i) to (iv) follow directly from the definition, while (v) is a conse- 

quence of (i). 

(2.2) LEMMA. Let G be a .finite group with Hp° (G)~  G, and x E G\Hp°(G)  

an element of order p°. Let V = M / N  be an elementary abelian (x)-invariant 

section of Hp,(G).  Then: 

(i) x acts exceptionally on V, 

(ii) if K is some normal subgroup of G such that V is K-invariant and 

V = V~ + V2 + • • " + Vk is the direct sum of its homogeneous K-components, then 

z : = x p .... fixes every V,. 

PROOF. (i) Assume there is an element v E M  such that 

w = v x"" ' v  ~ " - ~  • • • v ~ v ~ v ~ :  N ,  

then (xv) P" = x~°w = w f~ N, contradicting (2.i)(iv). 

(ii) Assume by way of contradiction that x""-' does not fix the submodule V~. 
Then the sum Of the submodules V ~j , ] = 1 . . . . .  p , is a direct sum and (x) is 
represented regularly on it contradicting (i). 

(2.3) LEMMA. Let G = QP be a finite group with 1 ~ O = Oq (G)  and P = (x) 

cyclic of order p", q # p primes, p odd or p = 2, p" = 4. Let G act faithfully and 

irreducibly o n  the GF(r)-module V, r a prime, and let [O, xP"- ' ]#  1. Then 

Co (x) ~ 1 provided one of the following conditions holds: 

(i) r = p, and x acts exceptionally on V, 

(ii) r #  p, and x acts fixed-point-freely on V. 

PROOF. Consider the case p #  2. Assume condition (ii) holds, then x cannot 

be fixed-point-free on O by [5] Theorem 2, so C o ( x ) #  1. But if condition (i) 
pn-I 

holds, then by a Hall-Higman-reduction we may assume that O = [Q, x ], 

Q / Q '  is irreducible under the action of (x), c(O)=<2, p a Fermat prime and 

q = 2. Now the arguments of [5], pp. 1442-1445 go through to show C o ( x ) #  1. 

So let p" = 4; then (after the usual reductions), if V is a Q-homogeneous 

module, Q = [O, x 2] is extraspecial, Z ( Q )  c_ Z ( G )  and so Co (x) # 1. 

If, however, V is decomposed into the sum of four Q-homogeneous compo- 

nents permuted by (x), then (x) is represented regularly on V. And if the 
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number of components is two, then x 2 does not induce a central automorphism 

on both components since O = [O,x 2] and therefore again (x) is represented 

regularly on V. In both cases neither (i) or (ii) can be satisfied. 

REMARK. Gross's example ([5], p. 1441) shows that (2.3) does not hold for 
powers of 2 greater than 4. 

The following fundamental property of the upper Fitting series of a finite 

solvable group will be used in (2.6) and (2.8). To have an easy reference we put it 

as a lemma; of course, it is well-known, see for instance [7], Lemma 2.2. 

(2.4) LEMMA. Let G be a group, p a prime and i>= 1. Then Op(G/F~(G)) 

operates faithfully on Op,( F~( G )/ F~ .( G ) ). 

PROOF. By induction we may assume i = 1. Then if L denotes the subgroup 

of G such that L / F ( G ) =  Cop~/v~6~Op,(F(G)), then L is a normal nilpotent 
subgroup of G, thus contained in F(G).  

The next lemma is more or less implicit in the proofs of [6] Theorem 2.2 and 

Theorem 2.4. For the second statement an induction proof similar to ours was 

given by Hartley in [9] Lemma 1. 

(2.5) LEMMA. Let V be a nondegenerate symplectic space over GF(r), r -- 

2 ~" - 1 a Mersenne prime, and let g be a symplectic transformation of Voforder 2 m 

such that the dimension of the subspace [ V, g] is at most 2. Let Q be a q-group of 

symplectic transformations of V normalized by g, q a prime different from r, and let 
~ m  - 2  ~ m  I 

h = g -  , z : = g -  . Then the following holds: 
(i) [ O , z ] = l  i f q i s o d d ,  
(ii) [Q ,h ,h ]=  l if q =2.  

PROOF. Since z inverts elementwise the subspace [V, z], the whole space V 

splits into the orthogonal sum of [V, z] and Cv(z).  Therefore [V, z] is itself a 

nondegenerate symplectic space with the restriction of the symplectic form, and 
so [V, z] = [V, g] is two-dimensional. 

We use induction on dim~vt,~ V + ] O I. 

Since by hypothesis q is different from r, under the action of (Q, g) the module 

V splits into a direct sum of irreducible submodules V~. And since IV, g] is 

irreducible for (g), we may assume that [V, g] is contained in V1. But now if V1 is 

properly contained in V, by induction we get [O, z] C_ Co(V~) if q is odd and 

[Q,h,h]C_Co(V~) if q =2 ,  since the irreducible module V~ is not totally 

isotropic and so is nondegenerate. Thus the result follows if V~ is properly 

contained in V, since h centralizes the V~, i J l ,  and therefore [Q,z]C_ 
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N..,  co(v,) n co(v,)= 1 for q odd and [O,h,h]C n,,, co(v , )n  Co(V,)= 1 
for q =2 .  

Thus we may assume V to be irreducible for (O, g). 

Assume q is an odd prime. 

Then we may also assume that O is a q-group of exponent q and class at most 

two and O = [O,z], by taking a critical subgroup C of O and applying the 

induction hypothesis to [C, z] if it is a proper subgroup of O. Let Vo = U~ + 
• "" + Uk be the decomposition of the irreducible (O,g)-module V into its 

O-homogeneous components. Then k <2 ,  since the U~ are permuted transi- 

tively by (g) and dim[V, g] = 2; and if k = 2, then z fixes U~ and U2, and so 

[V,g]~[V,z], contradicting the hypothesis. Thus V is the direct sum of 

isomorphic O-modules, and therefore O is either cyclic or extraspecial. Next we 

tensor the GF(r)-module V with an extension ~ of GF(r) which is a splitting 

field for all the subgroups of (O, g), then the module V * =  V @  ~ is a direct 

sum of irreducible Y{ (O,  g)-modules W~, and since C v ( O ) @  5~ r = C v * ( O )  = 0 
and dim6v, r)[ V, g] = dim~[ V*, g] = 2, there are at most two of these. As above, 

one easily finds that each W~ is Q-homogeneous and therefore Q-irreducible by 

[17] Theorem A. But since the dimension of an irreducible ~'{O-module is a 

power of q, and dimension V* is even, we get V* = W~ + W2. Now z does not 

centralize W1 or W2, so the commutator modules [W,,g] = [W~,z] are one- 

dimensional for i = 1,2. 

If Q is extraspecial, this is impossible by [13], Theorem 17.13. If Q is abelian, 

the modules W~ themselves are one-dimensional and V* is inverted elementwise 

by z. This gives Q = [Q, z] c Co(V)= 1, a final contradiction. This contradic- 

tion finishes the case q odd. 

Assume q = 2. 

Let x G Q be an element such that [x, h, hi ~ 1. Then by minimality of I Q I we 

can assume that (Q, g) = (x, g). 

Let A be a maximal elementary abelian normal subgroup of G : =  (x, g) and 

take N a normal subgroup of G containing A minimal such that V viewed as a 

N-module is the sum of two-dimensional irreducible N-modules. Clearly such N 

exists. Let VN = W~ + • • • + Wk be the decomposition of the irreducible G- 

module V into the N-homogeneous components. Then as above g has to fix all 

of them, so (x) permutes the W~ transitively, and since without loss of generality 

[V,g]CW~ and g centralizes the W, for i ~ l ,  we must have k = l ,  since 

otherwise [h,x] would commute with h in the action on V. So V is a 

homogeneous N-module and we may decompose V into a direct sum of 

isomorphic irreducible N-modules Uj, which are two-dimensional. And since N 
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is faithful on V and the submodules Uj are isomorphic N-modules, N operates 

faithfully on each U~. Thus N is isomorphic to a subgroup of a Sylow 2-subgroup 

of GL2(r). We want to show that A is cyclic. 

So assume that A is not cyclic, then A is a proper, elementary abelian normal 

subgroup of N and by the structure of GL2(r), N must be a dihedral group of 

order 8, and A one of the two Klein fours groups contained in N. Since both N 

and A are normal in G, h normalizes both fours groups in N and so z = h 2 

centralizes N. But now N operates on [V, z] and we may assume [V, z ] =  Ut. 

Thus U~ is a nondegenerate symplectic space and N is isomorphic to a subgroup 

of Sp(2, r) = SL:(r) and A has order two, contradicting the assumption. So we 

know that every maximal elementary abelian normal subgroup G is cyclic and 

therefore by [3], 5.4.10 G is either cyclic, dihedral, semidihedral or generalized 

quaternion and by the structure of these groups there is only one involution in G 

which is also a square. Clearly this involution is z, and so z E Z ( G )  and [V, z] is 

G-invariant. This implies V = [V, z] and G is isomorphic to a subgroup of a 

Sylow 2 subgroup of Sp(2, r) = SL2(r) which is of order 2(r + 1) = 2 "+~. Thus the 

index of (g} in G is at most two and (g) is normal in G. Clearly this contradicts 

the assumption Ix, h, h I ~ 1. 

(2.6) THZOREM. Let G be a finite solvable group; p an odd prime, n >= 1; or 

p" =4.  Then z : = x  p" ' EF2(G) for every x E G\Hp,(G).  

PROOF. Assume false and choose G a minimal counterexample, x E 

GIH, o(G) with z :=x  p" '~_F2(G). We may assume that G is not a p-group. 

First we prove the following property of F(G):  

(*) F(G)  = F(Hp.(G)) is the unique minimal normal subgroup of G. 

Let N be a minimal normal subgroup of G. Then if N ~ H p , ( G )  we get 

IN, Hp- (G)] C N f3 H , . (G)  = 1, 

whence there are elements y ~ N\Hro(G ) such that Co(y)D Hpo(G) is not a 

p-group, contradicting (2.1) (iii). Thus every minimal normal subgroup of G is 

contained in Hp,(G). Let N, ¢ N~ be two minimal normal subgroups of G. Then 

G/N,I<IG I for i = 1,2 and since by (2.1)(ii) 

H,.(G/N,)C_ Hp.(G)N,/N, = H,.(G)/N, ,  

induction gives zNi E F2(G/N,.). Let Ei/N~ = F2(G/N~), then z E E, for i = 1,2; 

and since E~ f3 E: = F._(G ) by N~ f3 N: = 1 we have z E F2(G) contradicting the 

choice of x. Thus G has exactly one minimal normal subgroup. Assume 
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~b(F(G) ) /1  then we can again use induction to F/cb(F(G)). But 

F(G/4~(F(F))) = F(G)/~b(F(G)) and so the induction gives z C F,_(G), con- 

tradicting the hypothesis. Thus (o(F(G)) = 1, and F(G) is a product of minimal 

normal subgroups of G, and hence is the unique minimal normal subgroup of G. 

Of course, F(G)=F(H¢(G)) .  Put 0 : =  G/F(G). Then 0 acts as a group of 

linear transformations on the irreducible module F(G). 
Induction to G/F(G) gives z ~ G(G),  and by (2.4) there is some (x)-invariant 

q-subgroup Q = [O, z] ~ 1 of F ( G )  = FdG)/F(G ). 
Let V be an irreducible (£  O)-submodule of F(G) not centralized by O, then 

(2.3) gives Co(£,)~ 1, since the hypotheses for (2.3) are given by (2.2)(i) and 

(2.1)(iii). But now q divides the order of Co(x). contradicting (2.1)(iii). 

(2.7) THEOREM. Let G be a .finite solvable group with G~  Hpo(G) for some 
odd prime p,n >= 1. Then h(G)~2n.  

PROOF. Use induction on n, the case n = 1 being clear by the 

Hughes-Kegel-Thompson Theorem. 

We may assume F2(G)CHp.(G), since if y E~(G)\H, . (G) ,  then [G,y]C_ 
F2(G) and G/G(G) is a p-group by (2.1(iii)). Let x C G\Hvo(G)be an element 

of order pL Then x "°-' E F2(G) by (2.6) and therefore if G = G/F2(G), every 
element £ in G\Hpn(G) has order at most pn-~. Thus Hpn-,(G)C_Hvo(G)~ 
and induction gives h ( G ) N  2(n - 1). So h(G)<= 2 + 2(n - 1) = 2n and the result 

follows. 

(2.8) THEOREM. Let G be a finite solvable group, n >= 1. Then x 2~-~ ~ F4(G) 

for every x E G\H2.(G). 

PROOF. Assume false and take a counterexample G of minimal order. Let 

x E G\H2.(G) such that z: = x 2°-' ~ G(G). Since the case n = 1 is well known 

(we have h(G)_-<2 if G~H2(G)), we may assume n >_-2. 

Then as in (2.6)(*) we can show that F ( G )  = F(H2o (G)) is the unique minimal 

normal subgroup of G, and therefore by (2.1)(ii) we have H2o(G/F(G))C_ 
H2.(G)/F(G); by minimality of G we get z E Fs(G). Thus z acts nontrivially on 

02,(F4(G)/F~(G)) by (2.4) and so z~:F4((G(G),x)). Since by (2.1)(i) 

H2o((G(G),x))C_ H2,(G) we know that (F4(G),x) is a counterexample to the 

theorem, and so G = (F4(G), x) by minimality of G. 

But also x ~ H2.(([F4(G), z], x)) by (2.1) and so if ([F4(G), z], x) < G we have 

z E G(([G(G),  z], x)) by minimality of G. So there is a positive integer i such 

that 
[F4( G ), z . . . . .  z ] c [G(G ), z ] N F3(([F4(G ), z l, x )) C_ Fs([F,, z 1) c_ Fs(G ) 
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since [F~(G), z] is a normal subgroup of G = (F4(G), x). But now z centralizes 

02,(F4(G)/F~(G)) and by (2.4) we get z E F4(G), contradicting the choice of x. 

Thus we have G = ([F~(G), z], x). 

Next we show that z centralizes the Frattini factor group of 

02(F,(G)/F2(G)) = : S. 

So assume there is y E S  such that [y, z] ff &(S). Then [ y , h , h ] ~  1 for h :=  x 2" ~, 

since otherwise [y, z] = [y, h 2] = [y, hi 2 is a square in S, and so an element of 

Since S operates faithfully on O2,, (~(G)/F(G)) by (2.4), there is an odd 

prime r such that [y,h,h] does not centralize a critical subgroup R of 

O,(~(G)/F(G)). Put (~ = G/F(G), then (7 acts irreducibly on V = F(G), and 

since R <~ (3, the module V splits into the direct sum of its homogeneous 

R-components  VR=V~+.. .  + V~. Now z fixes every V~ by (2.2)(ii) and 

therefore [F~(G), z] = F~(G) does as well. 

But even h fixes every V~, since if h does not fix ~ for some j, then the 

minimal polynomial of x on V has degree at least 2" ' times the degree of the 

minimal polynomial of z on Vj, whence z has to induce a scalar multiplication on 

by (2.2)(i). But now F4(G) = [F4(G), z] centralizes Vj and so Cv(F~(G)) = V 
by the irreducible action of (~. This is clearly impossible and so h fixes every V~. 

Let g be an element of (x) of maximal order, say 2", fixing Va. Then g fixes every 

V~ and acts exceptionally on every V~ since these are permuted transitively by 

(x). 
But now if the (isomorphic) groups R/CR (Vi) are elementary abelian, they are 

cyclic and [S, h] C_ ("1 ~=, Cs(R/CR(Vi))= Cs(R) contradicting [y, h, h] ~ Cs(R). 
Thus R/CR(V 0 is extraspecial for i = 1 . . . . .  k. Now if z centralizes some 

R/CR(Vi), then z centralizes the whole of R and S does as well, since 

F4(G)=[F4(G),z], contradicting [y,h,h] ~Cs(R) .  Thus we can apply [6] 

Theorem 2.2 by restricting (R/CR (V~), g) to some irreducible submodule of V~. 

As is well-known, 2 " - 1  = r" implies d = 1, and so if we view the Frattini 

factor group of R/CR (V~) as a nondegenerate symplectic space over GF(r),  the 

commutator  module of (g) on it has dimension of 2d = 2. Now (2.5)(ii) is 

applicable to show [y, h, h] E Cs(R/CR(V,)) and hence [ y , h , h ] E  

("]~=, Cs(R/CR(V~)) = Cs(R), contradicting the choice of r. Thus we have shown 
(**). 

Now since we know that z operates nontrivially on Oz(F4(G)/F~(G)) we may 

choose an odd prime q, such that z does not centralize O,(F4(G)/F3(G)). Let 

Q = [Oq(F4(G)/F3(G)), z]; then Q / 1  operates faithfully on O,,(F3(G)/F~(G)) 
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and there is a prime r #  q, such that O does not centralize O,(E~(G)/FffG)). But 

as Q = [Q, z] and z centralizes the Frattini factor group of OffF3(G)/F,_(G)), we 

know that Q centralizes OffG(G)/F2(G)) and therefore r #  2. Let R be a critical 

subgroup of O,(E~(G)/F2(G)), then [ O , R ] # I  and we may choose a G- 

composition factor V of F2(G)/F(G) such that [Q, R ] ~  CR(V). 
Then let VR = G + " "  + Vk be the decomposition of the G-irreducible 

module V into its homogeneous R-components,  then z fixes every Vi by (2.2)(ii) 

and therefore Q = [Q,z] acts on every R/CR(V~) and we may assume that 

[Q, R] ~ CR(Vj). Let g be an element of maximal order 2 m in (x) fixing V,, then 

again g is exceptional on V~. Also R/CR (Vj) is not cyclic, since z and Q = [Q, z ] 

act nontrivially on R/CR(V~), and therefore R/CR(V~) is extraspecial. Now as 

above [6] Theorem 2.2 gives that the commutator module of (g) on the Frattini 

factor group of R/CR(V,) viewed as a nondegenerate symplectic module over 

GF(r) has dimension 2. But this obviously contradicts (2.6)(i). 

(2.9) THEOREM. Let G be a finite solvable group with G~ H2-(G) for some 
n >-_1. Then h(G)<=4n. 

PROOF. The proof follows strictly the proof of (2.7). 

We use induction over n ; the case n = 1 is well-known, so n => 2. Assume first 

that F4(G) ~ H2.(G). Then for some y E F4(G)\H2.(G) we have [G, y] C_ F4(G), 

and by (2.1)(iii) G/G(G) is a p-group. Thus h(G)~5<=2n and the result 

follows since n => 2. 
So we may assume F4(G)C H2.(G). By (2.8) x2"-'E F4(G) for every x E 

G\H2. (G), and so if (~ = G/F4(G), every element of G\H2.(G) has order at 

most 2"-'. Thus/-/2- ,((3) C_/-/2- (G) ~ (3 and by induction h((3) =< 4(n - 1). This, 

.of course, gives the desired result h(G)<=4+4(n- 1)= 4n. 

As we indicated in the introduction, the Fitting length of solvable Hp.-groups 

"should be" the same as the Fitting length of a solvable group admitting a fixed- 

point-free cyclic automorphism group of order p" which is n. The following 

example shows that the Fitting length of a solvable ltp.-group is at least n. 

EXAMPLE. The semidirect product of a solvable group H of Fitting length n 

admitting a cyclic fixed-point-free automorphism group A of order p" (such 

groups can easily be constructed) with this fixed-point-free automorphism group 

A has the following property: 

Hp.(HA ) = HA P ~ HA and h(H)= n. 

But to our knowledge there are no examples of Hp.-groups known with Fitting 

height bigger than n. So perhaps the bound on the Fitting length of G in 
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T h e o r e m s  (2.7) and (2.9) could be p roven  to be n + 1. As a test for  that  

" c o n j e c t u r e "  we look at the case p"  = 4. 

(2.10) THEOREM. Let G be a finite solvable group with G ~  H4(G) .  Then 

h ( G ) = < 3 .  

PROOF. Assume  false and let G be a minimal  coun te rexample .  As in (2.6)(*) 

we may  assume that  F ( G )  = F ( H 4 ( G ) )  is the unique minimal  normal  subgroup  

of G and by (2.6) x 2 E F2(G) for every  x E G \ H 4 ( G ) .  

If F ( G ) =  0 2 ( G ) ,  then 2 does not divide the o rder  of F 2 ( G ) / F ( G )  and 

x 2 E F ( G )  for  every  x E G \ H z ( G ) .  If we put  (~ :=  G / F ( G ) ,  every e l emen t  in 

G \ H 4 ( G )  is an involution,  and by the n i lpotence  of H_~-groups we get h ( t ~ ) =  < 2 

and h ( G )  =< 3. Thus  we may  assume that  V = F ( G )  = Op for  some  odd pr ime p. 

As  above  F(CJ)C_ H4(G).  Now S = O 2 ( ( ~ ) / 1 ,  and C v ( S )  = 0 by the faithful 

and irreducible action of (~ on V. Let  Vs = VI + • • • + Vs be the decompos i t ion  

of V into its h o m o g e n e o u s  S -componen t s ,  then Z(S /Cs (V~) )  opera tes  fixed- 

point- f reely  on V~, so for  every  i there  is an e lement  d~ in S invert ing V~ 

e lementwise .  The re fo re ,  if for  x E G \ H 4 ( G )  we have  C v ( x 2 ) / O ,  then since 

2 2 E S, there  is an index i such that  e i ther  x or  xd~ has a nontr ivial  fixed point  on 

V~ contradict ing (2.1) (iii). T h e r e f o r e  [(~, 2-'] C_ C c ( V )  = 1 and 2 2 E Z ( G )  for  

every  x E G \ H , ( G ) .  But now if Z /~F(G)  = Z ( (~ ) ,  we have  Z _-< H 4 ( G )  and for  

= G / Z  every  e lement  of G \ H 4 ( G )  is an involution.  The re fo re  ( ~  H2(I~)  

and h ((~) -- 2. But ,  of course,  h ( G )  = h ((~), and so h ( G )  = 1 + h ((~) _-< 3, a final 

contradict ion.  
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