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ABSTRACT 

This paper constructs an inner function with infinite entropy. 

1. The boundary values of an inner function f determine a measurable 

transformation from the torus T into itself and if f (0)=  0 then f preserves 

Lebesgue measure on T. Moreover, under this assumption Aaronson showed in 
[2] that f must be exact and so, in particular, ergodic, unless f is a rotation or the 

identity. See also, [1], [8], [9]. 
Exact endomorphisms always have positive entropy, and in our case we do 

have h(f)>= c ( 1 -  ]f'(0)l) where h(f) denotes the entropy of f with respect to 
normalized Lebesgue measure on T and c is an absolute constant (see [11]). 

On the other hand, it was shown in [7] that if B is a finite Blaschke product 

and B(0)= 0 then 

(1) h(B ) = jo(Z"l°g l B'(e '°"lt ~--~ 

In particular, h(B) < ~. 
Pommerenke asked in [I1] whether or not inner functions must have finite 

entropy. The purpose of this note is to answer this question by explicitly 

constructing a Blaschke product with infinite entropy. 

For background on entropy we refer the reader to [13] or [4]. If E C R (or 

E C T) is a measurable set then )E I denotes its Lebesgue measure. Also, c, 

C(M) denote various constants which depend only on the parameter displayed. 

Section 2 contains an extension, probably known, of a theorem of Rohlin 

providing the key ingredient of our construction which is carried out in Section 3. 
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The author is indebted to M. Thaler and the referee for suggestions which 

shorten the proof and generalize the statement of the original Lemma 2. 

2. A lemma on the entropy of F-expansions 

Let 4p be a C'-mapping from (0, 1) to ( -  ~ ,~ )  which is strictly increasing and 

satisfies dP(0 +) = - ~  and dp(1 ) =  + ~. 
Define F(x) = {qb(x)} where { } denotes fractional part. Thus F is a transfor- 

mation from (0, 1) into (0, 1). (Strictly speaking a set of measure zero has to be 

removed.) 

For each n E Z define x, by d~(x,) = n and set I, = (x,, xn+~). Then we have 

the following 

LEMMA 1. If F preserves Lebesgue measure then 

h(F)>= f~ log[F'(x)]dx. 

In particular, i[ [F'(x)[ => 6[ / , [  ~ on I,,, with 6 independent of n, then 

1 
h(F)>= ,~z I I" I l°g [~-[ + l°g 6" 

This lemma should be compared with [12], [3] and [4, Chapters 7 and 10]. 

Lemma 1 is a corollary of the following more general result. 

LEMMA 2. Let (X, ~, m) be a Lebesgue probability space and let T : X --~ X be 
a measure preserving, countable to one (in the sense of [10, pp. 106-107]) 

transformation, then 

f,~ log \{d(m°T))dm<:h(T)dm 

(d(m o T)/dm is defined in [10, p. 1(18]). 

PROOF. Let a = {A~} be a countable partition of X so that T is 1-1 on each 

Ak and let Vk : T(Ak)---~Ak be the inverse of T on T(Ak). 
Then for every k: 

m(Ak I T-I(~)) 

and hence we have that 

= (XT,A,)o T) d(mo Vk)o T 
dm 

{ d ( m o T ) ) "  
= X'r'(a~) ° T \ dm 
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Clearly, 

I(~ [r  '(~)) = - 5 ;  x~k log m(A~ I r '(~)) 
k 

d(m oT) 
= - 5; Xak log XT~AO o T + log dm 

k 

= log d(mo  T) 
dm 

!i~ I(o~ ]T '(~3))= I(~ ]T '(~)), a.e. 

and so, by Fatou's lemma, 

I l ° g d ( m ° T - - - ) d m = f  
\, dm \, 

<= lira fx 

Moreover, for every n, 

and thus 

I (a  ]T  '(Q~))dm 

I (a .  } r  '(~3))dm. 

x(~o ] r '(~))dm = H(~ IT '(~)) 

~ H(~olkV ' r k(~o)) 

= h(T, ao)<= h ( r )  

l o g \  dm ] dm ~_ h(T).  

3. A Blaschke product of infinite entropy 

We need the following result of Frostman [5, Th. 6]. 

LEMMA A. Let B be a Balschke product with zeros {a,,}~=, I f  

1-1anl 2 

then B'  has radial limit at e'° and 

'e l J2f lim IB'(re~°)] = ~o 3. 
r ~ l  = [ n 
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To start  the const ruct ion we select a decreasing sequence  of posit ive numbers  

{s. }2=, satisfying 
_ _  I 

(ii) Y~;=, so log(Us,,) = 2 

(iii) if p <_ q <- rq, r_> 1 then sp/Sq <= c(r) .  

We also define s , = s, for n -< - 1. 

For  j _-> 1, let Lt = {e" • 0 E (tt, t, + 27rs,)} where  t, = 27r Z'kJ, sk, if j > 1, and 

t , = 0 .  Also i f j - < - I  we define L t = L  ,. 

For j E Z ,  let a t be the point  in the unit disk A sat.isfying l a t12=1 s t and 

a t l ajJ ~ = center  of Lj. Note  that  the a t accumula te  only at - 1. 

Our  Blaschke product  is 

j=~ t a - d~z 1 -  atz J " 

Since B ( 0 ) = 0  we know that  B preserves  Lebesgue  measure  on T and is 

ergodic  with respect  to it (see [11]). 

It is easy to see that  B extends  analytically to a s imply connected  region U 

containing ( ? 2 ~ - { - 1 }  where  B does not vanish (see, e.g., [6]). Let l o g B  = 

+ iqb be the analytic branch of the logari thm of B in U satisfying qb(l) = 0. 

Then  on c~2~/{- 1} we have B ( e  ~°) = e ''''~''''~ and using L e m m a  B we see that  

'e'%+ (1) (D' (e ' " )= .~z ~" I ,o I. 
n/0 

Also, l i m o ~  ~ ( e ' ) =  0% limo~ =+ ~ ( e ' " ) =  -co ,  and qb is strictly increasing. 

From L e m m a  A it now follows that  if e ~° E L.  then 

1}an}f2 I B ' ( e ' ° ) l > ] e ' ° - a ,  

but also l e ' " - a . l < = C ( 1 - ] a ,  12), and so 

I B ' ( e ' ~ ) l ~  C S,, 
and so f rom L e m m a  1 we get that  

h ( B )  = oo. 

(e '~ E L,,), 

4. It is natural  to conjec ture  that  if f is an inner function then f has finite 

en t ropy  if and only if f '  is in the Nevanl inna  class and that  if this is the case then 

f0 l log I f ' ( e ' ) l  dO = h i f ) .  
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