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A B S T R A C T  

Many crucial results of the asymptotic theory of symmetric convex bodies 

were extended to the non-symmetric case in recent years. Tha t  led to the 

conjecture that  for every n-dimensionM convex body K there exists a pro- 

jection P of rank k, proportional to n, such that  P K  is ahnost symmetric. 

We prove that  the conjecture does not hold. More precisely, we construct 

an n-dimensional convex body K such that  for every k > C ~  and 

every projection P of rank k, the body P K  is very far from being sym- 

metric. In particular, our example shows that  one cannot expect a formal 

argument extending the "symmetric" theory to the general ease. 
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0. Introduction 

The asymptotic theory of finite dimensional normed spaces studies the behav- 

ior of various functionals on the set of all finite dimensional normed spaces, or 

equivalently, the behavior of centrally-symmetric convex bodies in R n , when the 

dimension grows to infinity. The development of the theory in the last years 

required one to abandon the condition of central symmetry. It turns out that 

many results of the theory remain valid in the non-symmetric case, although their 

proofs require new and different arguments (see, e.g., [GGM], [LMP], [MP], [R], 

JR2], [LT] and references cited therein). Unexpected similarity of results con- 

cerning general convex bodies and their counterparts in the centrally symmetric 

case lead a number of authors to the following conjecture which we state a bit 

vaguely. 

CONJECTURE: For every convex body K in ]R '~ there exists an orthogonal 

projection P of rank k, proportional to n, such that P K  is almost symmetric. 

If this conjecture were true, an extension of a large class of problems in the 

asymptotic theory of finite dimensional normed spaces to the non-symmetric 

case would be automatic. However, it is not so, and in this note we construct 

a counterexample. Our ideas and intuitions have two sources. The first are 

constructions of random symmetric convex bodies that have been initiated in 

[G1] (an exhaustive survey of this direction can be found in [MT]). In particular, 

the main line of the present argument is close to [G2]. The second source is 

a recent paper [LT] where it was shown, among other results, that  a random 

projection of a simplex is very far from being symmetric. More precisely, if P 

is a random orthogonal projection of rank k > Inn and S C R " is the regular 

simplex, then the distance from PS to any centrally symmetric body is, with high 

probability, larger than cv/k / lnn ,  where c is an absolute constant. This shows 

that the conjecture fails for random projections. It should be noted, however, 

that there exist projections of the simplex of proportional dimension which are 

close to symmetric ([GGM]). We will show in the present note that there exists 

a convex body K C ~:~ such that its image under any rank k projection, with 

k > x/-n-~n, has the distance from any centrally symmetric body larger than 

ck/vq  . 

1. Definitions, notations, known results 

We will use the standard notation from the local theory of Banach spaces (see, 

e.g., [MS]). Given a finite set A/', its cardinality is denoted by ]AYl. Denote the 
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canonical Euclidean norm on R '~ by I" I, the Euclidean unit  ball by B~ ~, and the 

Euclidean unit  sphere by S n-1.  The  distance between a point  a E N '~ and a set 

K C R n is 

d i s t ( a , K )  = min{I  a -  x l i x  e K}. 

By a convex body  K C R n we shall always mean  a compac t  convex set with the 

non-empty  interior, and wi thout  loss of generali ty we shall assume tha t  0 C Int  K .  

The  gauge o f g  is denoted by II" IlK, i.e., Ilxllg = inf{A > 0 i x  e AK}. 

Given convex bodies K ,  L in ]R n, we define the geometr ic  distance by 

~t(g, L) = inf{af l  I a > O, [3 > O, (1/ f l )L C g C aL}. 

The  Banach  Mazur  dis tance is defined by 

d(K, L) = in f{d (u (K - z), L - x)}, 

where inf inmm is taken over all z, x C N n and all linear opera tors  u: N n -+ N '~. 

Clearly, if K and L are central ly symmetr ic ,  then the inf imum is a t ta ined  at  

z = x = 0. Thus,  in the centrally symmet r ic  case the definition coincides with 

the s tandard  definition of the Banach -Mazur  distance between balls of normed 

spaces. Moreover,  if L is centrally symmet r i c  then 

d(K, L) _< 2 inf{et(u(K - z), L)}. 

For simplici ty we will use d(K, L) for inf{cl(u(K - z), L)} in the case L = - L .  

Denote  by C n the set of all centrally symmet r i c  bodies in R '~. Let  K be a 

convex b o d y  in R n . The  quant i ty  

d(K,C') = inf {d(K,B) l B C C n} 

measures,  in a sense, the " n o m s y m m e t r y "  of K .  (See [Gr], where the prob lem of 

the measure  of "non-symmet ry"  is discussed.) By compactness ,  there exist a E K 

and a central ly symmet r i c  convex body  B C N n such tha t  d(K, C n) = d(K-a,  B). 
Observe tha t  we also have 

d(g,c  n) = d ( g -  a , ( K -  a ) M - ( K -  a)) 

- - d ( K  - a, conv{(K - a) U - ( K  - a)}).  

T h a t  is, ( K  - a) A - ( K  - a) and conv{(K - a) t2 - ( K  - a)} are two central ly 

symmet r i c  bodies closest to K .  Also note tha t  for any a E K we have 

1 
~ ( g -  K )  c c o n v { ( g -  a) U - ( K -  a)} C K -  K.  
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Given a convex body K C R '~ and A > 1, we say that  K is A-symmetric if 

d(K, C "~) <_ A, and that  K is A-symmetric with respect to a center a C ]R n if 

d (K - a, B) _< A for some centrally symmetric body B. We also denote K - a by 

Ka. By the above remark, the body K is A-symmetric with respect to a center 

a C R ~ if and only if [] - XllKa ~_ AIIXlIK a for every x • R ~. 

For a linear operator u: R n -+ ~n,  by Ilull we denote its operator norm 

II u: g~ -+ g~ll. Finally, the letters C, c, Co, cl, ... denote absolute constants 

whose values may be different from line to line. 

We shall now describe our probabilistic setting and the background results. Let 

us note at the beginning that  we shall work with random vectors uniformly dis- 

tr ibuted on the sphere; however, similar calculations could be done with random 

Gaussian vectors, similarly as, e.g., in [MT]. 

As usual, E denotes the expectation and P r  denotes the probability. Let w be a 

random vector uniformly distributed on S n-1 and P be an orthogonal projection 

of rank 1 _< k < n. The following well-known inequalities easily follow from 

the concentration of measure phenomena (see, e.g., [MS]). There is an absolute 

constant c such that  

(1) P r ( {  v/~ 2 v / k ~  ~ <- IPwl <- v ~ J I >- 1 - e - c k ,  

and for every t > 0, 

(2) Pr({IPw]> (l + t ) v / ~ } )  <e -~kt2. 

The direct computations show that  for every p > 1 and for every x • B~ 

(El<w, x)F) ~/~ _< cv/-p~,  

where c is an absolute constant. It  follows then that  for every integer m and 

every {xi}i<_m C B~" we have 

E m a x  < E  p 
i < m  - -  ~ / = 1  

<_ E ](w, xi}l p <_ cml/Pv/p/n. 

Choosing p = in m we obtain that  there is an absolute constant Co such that  

(3) Enlaxll ,x ll cov/!  
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for every every {xi}i<_m C B~ ~. Of course the same es t imate  holds for any r andom 

vector  w taking values in B~, whose dis t r ibut ion is invariant  under  rotat ions.  

Let ( f ~ , ~ , P r )  be a probabi l i ty  space. Let 0 c 9rl C F2 C " "  C ~" be 

a-fields. Let  f0, f l ,  f2, ... be a sequence of r a n d o m  variables such tha t  fi 

is measurable  with respect  to ~i  for every i, and the condit ional  expec ta t ion  

E ( f i  I 9ri-1) = f i -1 .  Then  the sequence {fi} is called a mar t ingale  with respect  

to {:~d. 
We shall use the following well-known es t imate  for large deviat ion of mar t in-  

gales with bounded  mar t inga le  differences. (As usual IId[l~ denotes the essential 

sup remum of the absolute value of a r andom variable d.) 

LEMMA 1.1 ([A]): Let 0 = fo, f l , . . . ,  fm be a martingale and let di = fi - f i -1 
be bounded for every i <_ m. Then for every positive A one has 

Pr({ 

where M = ~ im I lld ll . 

m }) 
E d i  > A <_ e -)~2/(2M), 
i=1 

Let h i , . . . ,  hm be independent  identically dis t r ibuted r andom variables with 
i Ehi  = a (where a > 0) and llh~ll~ _< b. Applying L e m m a  1.1 to fi  = ~ j = l ( a - h i )  

and A = ma/2  we get 

}) (4) P r  E hi < ma/2  <_ e -ma2 /(32b2). 
i=1 

Finally, we need the es t imates  for cardinal i ty of  nets in Banach  spaces. Recall 

t ha t  a set A; is called an e-net  for the set K with respect  to given norm II. II if 

for every x E K there is a C N such tha t  IIx - a l l  _< e. The  following fact gives a 

s t andard  es t imate  for cardinali ty of nets (see, e.g., [MT], L e m m a  6). 

FACT: Let II" II be a norm on R '~ and B be its unit  ball. Then  for every 

0 < e < 1 there is At, an e-net for the B with respect  to the norm II  II, such tha t  
INI <_ (3/e)  n. 

Remark: I t  is well known and easy to check tha t  if N" is an e-net  in B in 

the norm II" II, then for any subset  K C B there exists a (2e)-net N0 C K with 

cardinal i ty INI = IH01. Consider the case when B is the set of all linear opera tors  

u : R n -+ R n satisfying Ilu : ~ ~ e~ll _< 1, and K is the set of all or thogonal  

project ions on R ~ of rank k (for a fixed 1 < k < n). Thus there exists an e-net  N" 

consisting of or thogonal  project ions of rank k and such tha t  IN'[ _< (6/e) ~ .  This  

is a very rough est imate ,  however it is sufficient for our purposes  in this paper .  
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We refer the interested reader to [Sz], where the investigation of ~-nets for the 

set of all rank k orthogonal projections on R n was done in detail. 

2. An example 

THEOREM 2.1 : Let n be a positive integer. There exists a convex body K C ]R '~ 
such that for every projection P the distance of P K  from the set of centrally 
symmetric convex bodies is bounded from below by 

k 
d ( P g ,  C k) 7_ c---~nnn , 

where k = rank P and c > 0 is an absolute constant. 

Remark: Since clearly d(PK,  C k) > 1, the theorem is of interest for 

k >_ v ' ~ / c  only. 

LEMMA 2.2: Let k <_ m be positive integers. Let v l , . . . ,Vm be independent 
identically distributed random vectors in R k with rotation invariant distribu- 
tion. Let Wl , . . . ,Wm be random vectors in R k such that v~ is independent of 
{Wl, . . . ,  wi-1} for every i <_ m. Assume that vi 's are distributed in RBk2 and 

wi's are distributed in r Bk2 for some R, r > 0. Then 

}) P r  ~-'m. axl(vi,wj} I >_ Rr()~+ eomv/( lnm)/k)  <_ e -~ / ( sm) ,  

where co is the constant from (3). 

Proof'. Denote f~ = maxj<~ I(v~,wj)l. By conditions of the lemma we have 

I(vi, wj) I <_ Rr. Let 3c~ be the a-algebra generated by v l , . . . ,  vi, w l , . . . ,  wi. Let 

]i be the conditional expectation E(fitJr~_l) and di = f i - ~ .  Then ui -- ~ = 1  dj, 
i _< m, is a martingale with respect to {gri}. Since Ildill~ < 2Rr, i <_ m, by 

Lemma 1.1 we obtain that  

Pr({Um _> RrA}) _< e -~2/(sm). 

By (3), we have ]~ <_ c o R r v / - ~ m ) / k ,  for i _< m. Thus 

}) P r  ~ . m a x l ( v i ,  wj) I >_ R r ( c o m ~  + A) 

({ )}) =pr um+ >_ Rr(co. v/- m)/k + A 
i----1 
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< P r ( { U m  _> RrA}) + P r  E f ~  > Rrcom 
i=l 

<e--)~2 /(Sm). 

This proves the lemma.  II 

Remark :  In  the sequel we shall use the l e m m a  as follows. Let h i , . . . ,  hm be 

independent  identically d is t r ibuted r andom vectors in Rk with ro ta t ion  invariant 

distr ibution.  Let x E R k . Assume tha t  hi's are d is t r ibuted in rB~. Applying the 

l e m m a  for wi = hi - x and vi = ~RB~ " hi, where XK denotes the indicator  of the 

set K ,  we obta in  

(5) P r  m a x  I<XRB~hi, hj - x)] _> 2R( r  + [xl)A ___ e -~2/ (8m)  
j<i 

for every A ___ c o m v / - ~ m ) / k .  

LEMMA 2.3: Let k < n < m be positive integers, y E 2B~. Let h i , . . . ,  hm 

be independent r andom vectors uniformly distributed on S n-1. Let P be an 

orthogonal projection of  r ank  k. Denote vi = Phi,  i < m, and x -- Py. Then 

there are absolute constants c, cl such that for every 1 <_ A <_ c l k / ~  we 

have 

P r ( { v i  E A absconv{vj -x}j#~,  +16~nPB'9 ' ,  forall i } )  <_ 2e -cmk/(nA2). 

Proo~ Denote  vi = ViXB, i < m, where B = 2V/-ff/nPB'~. Clearly, if 

J ~ k  p B ,  
vi E A absconv{vj  - x}j¢i  + 16v/- ~ 2 

then 

~i e A absconv{vj  - x}j¢ i  + I @ ~ P B ~ ,  

which means  tha t  there exist Aj C [ -1 ,  1] with ~ IAj] _< 1 and 

z • ( v ~ / 1 6 v / n ) P B ;  ~ 

such tha t  

'~i = A ~ Aj(vj - x) + z. 
j¢ i  
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Taking the scalar product with ~i we obtain 

(vi, vi) < A ~ I(~/, A s (vj - x)) I + I(~, z) l < A max I(~i, vj - x) l + kl8n. 
- - j~i j#i 

Therefore if 

v ~  p B  ~ vi c A absconv{vj - x}jgi  + ~ 2 for every i 

then I~il 2 - k/8n < Amaxj¢i  I@i, vj - x)l for every i, which implies 

k ~  < A ~ m a x  r(~,, v~ - x) l .  
i = 1  I~1~ - 8--~ - ~ j , i  

The probability of the last event is less than or equal to 

P r  I'~il ~ < 
i=1 

({ }) (6) + P r  ~ -< E max I@i, vj - x)l + E max I(~i, vj - x) l . 
i < m  3<~ i < m  j > i  

Clearly EIv~l ~ = k / n .  Thus, using (2), one can see that El~it 2 _> k/2n. Since 

~)i e 2 V / - ~ B ~ ,  we have also that  II I~)d 2 I1~ -< 4k/n.  Applying (4) we obtain 

P r  IVil2 ~ -~n - e-Cm 
i=1 

for an absolute constant c. The second term in (5) is bounded by e -c~mk/(A~n) 

because of estimate (5) with r = 1, R = 2 vZk-/n, A = v ~ m / 9 6 v ~ A .  That  proves 

the lemma. I 

Proof of Theorem 2.1: Let us note that it is enough to prove the Theorem for 

orthogonal projections only. Indeed, let P be any projection. Denote by Q the 

orthogonal projection with the same kernel. Clearly, Q ha~s the same rank as P,  

QP = Q and thus if P K  is A-symmetric then Q K  is A-symmetric as well. 

Let m E N, m = [con3], and 5 = c / v ~ ,  where co and c are absolute constants, 

which will be chosen later. 

Given k < n let Ak > 1 be a parameter, which will be specified later 

(At: ~ k /x /n  lnn).  
Let Af k be a (i-net of projections of rank k. Let Ad be a (f-net in B~. By 

Fact 1.2 and the remark that follows, we can assume that IAfkl < (6/(f) n2 and 

IMI _< (3/(i) ~. 
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First we show that  there exist vectors hi, h2 , . . . ,  hm in l~ ~* such that for every 

k < n, satisfying Ak > 1, for every Q E Ark and every b • M the following 

condition does not hold at least for one i • {1, 2 , . . . ,  m}, 

(7) -Qhi  • Ak conv{Q(hj - Xb)}j¢i + 2(Ak + 1)hQB'2 ~, 

where xb = (1 + 1/Ak)Qb E 2B~. 
Indeed, consider independent random vectors h i , . . . ,  hm uniformly distributed 

on S n-x. Then by Lemma 2.3 the probability that  (7) holds for every i with fixed 

Q and b is less than 

Pr({(7)  holds Vi}) _< 2e -c'mk/(nA~) 

for At: <_ c2k /~ i -nm,  where Cl and c2 are absolute constants. Take Ak = 

c 2 k / ~ .  Then 2(Ak + 1)5 < v ~ / ( 1 6 v ~ )  for an appropriate choice of an 

absolute constant c. Therefore the probability that there exist Q E A/k, b C ~/1 

such that the inclusion (7) holds for every i is less than 

qe~'k beA4 

-c,.,k/(,,A:) 
< 2,5/  ,~/  e 

< 2exp(2, ,  2 ]n - e l m  i n  

Thus there are absolute constants Co, c3 and c4 such that for m = [C0 n3] the 

probability 

Pr ({3k~Q e Ark, 35 C M such that  (7) holds Vi}) 

<- E Pr ({3Q e Aft:, 3b • M such that (7) holds Vi}) 
k 

< 2nexp(-c3n 2 In n) _ exp( -c4n  2 Inn). 

Hence we can find vectors hi, h2 , . . . ,  hm with the desired property. Moreover, the 

random choice gives such vectors with probability larger than 1 - e x p  ( -c4n  2 Inn). 

Now take such vectors and set B = conv{h~}i_<m. Fix k. Let P be an or- 

thogonal projection of rank k, A = Ak. Then the body P B  is A-symmetric with 

respect to some center a if and only if - P h i  + a E A(conv{hj}j<m - a )  for every 

i < m. The last inclusion implies 

- P h i  C Aconv{Phj}j¢~ - (A + 1)a 
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for every i. By the definition of 5-net there are Q E Ark and b E A,~ such that 

[[Q - Pi[ < 6 and [a - Qb[ < 6. Therefore maxi [(Q - P)hi[ < 6 and 

d is t ( -Qhi ,  Ac onv{Qh j } j ¢ i  - (A + 1)Qb) < 6 + A6 + (A + 1)6 = 2(A + 1)6. 

This means that for some Q E Ark and b E ~4 the inclusion (7) holds for every i. 

That contradicts the choice of {hi}. Thus we obtain that P B  is not A-symmetric 

for A = c2k/v/-nlnm. This proves the theorem. | 
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