THE STRUCTURE OF UNIFORMLY GATEAUX SMOOTH BANACH SPACES

BY

MARIÁN FABIAN*

Mathematical Institute, Czech Academy of Sciences Zitna 25, 11567 Praha 1, Czech Republic e-mail: fabian@math.cas.cz

AND

GILLES GODEFROY

 $Equiv{e}$ d'Analyse, Université Paris VI *Boite 186, 4, Place Jussieu, 75252 Paris Cedex 05, France e-mail: gig@cer.jussieu.fr*

AND

VÁCLAV ZIZLER**

Mathematical Institute, Czech Academy of Sciences Zitnd 25, 11567 Praha 1, Czech Republic and Department of Mathematics, University of Alberta T6G 2G1, Edmonton, Canada

 e -mail: zizler@math.cas.cz

ABSTRACT

It is shown that a Banach space X admits an equivalent uniformly Gâteaux smooth norm if and only if the dual ball of X^* in its weak star topology is a uniform Eberlein compact.

^{*} Supported by AV 101-97-02, AV 1019003 and GA CR 201-98-1449.

^{} Supported by GA CR 201-98-1449, AV 1019003 and GAUK 1/1998. Received February 24, 2000**

I. Introduction

A classical result, which goes back to D. P. Mihnan [241 and B. J. Pettis [29], asserts that a uniformly Fréchet smooth Banach space is reflexive. P. Enflo's renorming theorem [8] states that the existence of such norms characterizes superreflexivity. However, characterizing Banach spaces on which smooth norms exist, in various possible meanings of the word '%mooth", turns out to be quite a difficult task. We refer, e.g., to [3], [7], [9], [19], and [23] for more on this subject.

The present work shows that the existence of a uniformly Gâteaux smooth norm on a given Banach space X provides a lot of information on the structure of X.

Our approach relies on the use of methods of weak compactness. In [22], J. Lindenstrauss posed a problem whether smoothness of a Banach space implies the weak compact generating (WCG) in some overspace ([22, Problem 9]). We provide a positive answer in the case of *uniform Gdteaux* smoothness. On the other hand, let us recall that there are C^{∞} smooth spaces that are not subspaces of weakly compactly generated spaces. For instance, the spaces defined in [20, pp. 222 and 224] are not subspaces of WCG spaces and yet they admit equivalent C^{∞} -smooth norms (cf., e.g., [7, p. 194], [33]).

Our main result in this note (Theorem 2) provides a characterization of Banach spaces on which there exists an equivalent uniformly Gâteaux smooth norm. Its proof is based on showing that such a space X is $K_{\sigma\delta}$ in X^{**} in its weak* topology and therefore admits projectional resolutions of identity (PRI) for every equivalent norm ([35]; cf., e.g., [7, p. 240]). Then one can apply the result from [10]. Theorem 2 is followed by several remarks showing that it is essentially optimal.

II. **Notation**

We work in real Banach spaces. The notation we use in this note is classical and can be found, e.g., in [7] or [9]. In particular, the unit sphere of a Banach space X is denoted by S_X , i.e., $S_X = \{x \in X; ||x|| = 1\}$. The weak* closure of a subset S of a dual space is denoted by \overline{S}^* . A norm $\|\cdot\|$ is said to be uniformly **Gâteaux smooth** (in short, UG-norm) if for every $h \in X$, the limit

$$
\lim_{t\to 0}(\|x+th\|-\|x\|)/t
$$

exists uniformly on $x \in S_X$. A compact set K is said to be **Eberlein** (respectively **uniform Eberlein**) if it is homeomorphic to a weakly compact subset of $c_0(\Gamma)$ for some Γ (respectively to a weakly compact subset of a Hilbert space), considered in its weak topology.

III. The results

The main result in this paper is based on the following lemma, in which some ideas from [33] and [25] are used.

LEMMA 1: Let X be a Banach space with an equivalent uniformly Gâteaux smooth norm. Then X is a $K_{\sigma\delta}$ subset of (X^{**}, w^*) , *i.e.*, $X = \bigcap_{p>1} \bigcup_{m>1} K_{m,p}$, where $K_{m,p}$ are some weak^{*} compact sets in X^{**} .

Proof: Assume that $\|\cdot\|$ is an arbitrary equivalent norm on X. Pick any $G \in X^{**}\backslash X$. Let $H = G^{-1}(0)$ be the subspace of X^* consisting of all the elements of X^* that vanish at G. The space H is a norming subspace of X^* , that is, there is $\mu > 0$ such that for all $x \in S_X$, $\sup\{|f(x)|; f \in H, ||f|| \leq 1\} \geq \mu$. Indeed, assume that $||G|| = 1$ and dist $(G, X) \ge \delta$. We have $H^* = X^{**}/H^{\perp}$, and it follows from the basic duality results that for all $x \in S_X$,

$$
\sup\{|f(x)|; f \in H, ||f|| \le 1\} = \inf\{||x - \lambda G||; \lambda \in \mathbb{R}\}
$$

\n
$$
= \min\{\inf_{|\lambda| \le \frac{1}{2}} \{||x - \lambda G||\}, \inf_{|\lambda| \ge \frac{1}{2}} \{||x - \lambda G||\}
$$

\n
$$
\ge \min\left\{\frac{1}{2}, \inf_{\lambda \ge \frac{1}{2}} ||x - \lambda G||\right\}
$$

\n
$$
\ge \min\left\{\frac{1}{2}, \inf_{|\lambda| \ge \frac{1}{2}} \{|\lambda| \cdot ||\frac{1}{|\lambda|}x - \frac{\lambda}{|\lambda|}G||\}\right\}
$$

\n
$$
\ge \min\left\{\frac{1}{2}, \frac{1}{2} \text{ dist } (G, X)\right\}
$$

\n
$$
\ge \min\left\{\frac{1}{2}, \frac{5}{2}\right\}.
$$

Using the idea in [33] and [25], for any equivalent norm $\|\cdot\|$ on X, we define for all $n, p \in \mathbb{N}$ the subsets $S_{n,p}(\|\cdot\|)$ in X as follows:

$$
S_{n,p}(\|\ .\ \|) = \{x \in X; \ |f(x) - g(x)| \le 1/p
$$

whenever $f, g \in X^*, \|f\| \le 1, \|g\| \le 1$ and $\|f + g\| > 2 - 2/n\}.$

We now assume that $\|\cdot\|$ is an equivalent uniformly Gâteaux smooth norm on X. Its dual norm is W^*UR , i.e., $f_n - g_n \to 0$ in the weak* topology whenever ${f_n}$ and ${g_n}$ are bounded in X^* and $2||f_n||^2 + 2||g_n||^2 - ||f_n + g_n||^2 \to 0$ (see [7, Theorem II.6.7]). Thus for any $p \in \mathbb{N}$, one has

(1)
$$
\bigcup_{n\geq 1} S_{n,p}(\|\,.\,\|) = X.
$$

We will show that

$$
X = \bigcap_{p \geq 1} \bigcup_{n \geq 1} \overline{S_{n,p}(\|\cdot\|)}^*.
$$

It follows from (1) that it suffices to prove that for any $G \in X^{**}\backslash X$ there is a $p \in \mathbb{N}$ such that

$$
(2) \tG \notin \bigcup_{n\geq 1} \overline{S_{n,p}(\|\cdot\|)}^*.
$$

We set $H = G^{-1}(0)$, and define an equivalent norm q on X by the formula

$$
q(x) = \sup\{|f(x)|; f \in H, ||f|| \le 1\}.
$$

We claim that

$$
S_{n,p}(\|\,.\,\|)\subset S_{n,p}(q).
$$

In order to prove this claim, we observe the bipolar theorem implies that the dual unit ball B_{q^*} satisfies

(3)
$$
B_{q^*} = \{f \in X^*; \ q^*(f) \leq 1\} = \overline{\{f \in H, ||f|| \leq 1\}}^*.
$$

We note that (3) implies that the unit ball of H for the original norm $\parallel \cdot \parallel$ is contained in the unit ball of H for the norm q^* . Since, on the other hand, one clearly has $q^* \ge || \cdot ||$ on X^* , it follows that the norms $|| \cdot ||$ and q^* coincide on H, and that H is a 1-norming subspace of X^* for the norm q^* . By (3), if $q^*(f) \leq 1$, $q^*(g) \leq 1$ and $q^*(f+g) > 2-2/n$, there are nets (f_{α}) and (g_{α}) in H, weak* convergent to f and g respectively, such that $||f_{\alpha}|| \leq 1$ and $||g_{\alpha}|| \leq 1$ for all α . Since the norm q^* is weak*-lower semicontinuous, one has $q^*(f_{\alpha} + g_{\alpha}) > 2 - 2/n$ when α is large enough. The norms $|| \cdot ||$ and q^* coincide on H, and thus $||f_{\alpha} + g_{\alpha}|| > 2 - 2/n$ for large α .

If now $x \in S_{n,p}(\|\cdot\|)$, we have $|f_{\alpha}(x) - g_{\alpha}(x)| \leq 1/p$ for α large enough, and hence $|f(x)-g(x)| \leq 1/p$. It thus follows that $x \in S_{n,p}(q)$. This shows our claim.

In order to prove (2), it therefore suffices to show that one has

$$
G \notin \bigcup_{n \geq 1} \overline{S_{n,p}(q)}
$$

for $p \in \mathbb{N}$ large enough. To this end, choose $p \in \mathbb{N}$ such that $p > 1/q^{**}(G)$. Fix $n \in \mathbb{N}$ and set for simplicity $S_{n,p}(q) = S$. We need to show that $G \notin \overline{S}^*$. Pick $f \in X^*$ with $q^*(f) = 1$ and $G(f) > 1/p$, and let $x \in X$ be such that $q(x) \leq 1$

and $f(x) > 1 - 1/n$. Since H is 1-norming for q^* , there is $g \in H$ with $q^*(g) \leq 1$ and $g(x) > 1 - 1/n$. We have then

$$
q^*(f+g) \ge (f+g)(x) > 2 - 2/n.
$$

From the definition of S, for all $z \in S$ one has $(f - g)(z) \leq 1/p$. On the other hand, $G(f - g) = G(f) > 1/p$. It follows that $G \notin \overline{S}^*$.

For every $p \in \mathbb{N}$, let the family $\{K_{m,p}\}_m$ be identical after reindexation to the collection $\{\overline{S}_{n,p}^* \cap kB_{X^{**}}\}_{n,k}$. We have shown that

$$
X=\bigcap_{p\geq 1}\bigcup_{m\geq 1}K_{m,p}.
$$

This concludes the proof of Lemma 1.

We are now ready to state and prove our main result.

THEOREM 2: (i) A Banach space X admits an equivalent uniformly Gâteaux smooth norm if and only if the dual unit ball B_{X^*} equipped with the weak^{*} *topology & a uniform Ebcrlein compact.*

(ii) *A compact space K is a uniform Eberlein compact if and only if* $C(K)$ *admits an equivalent UG-norm, if and only if there is a Hilbert space H and a bounded linear operator from H onto a dense set in* $C(K)$ *.*

Proof: (i) Assume that $\|\cdot\|$ is an equivalent UG-norm on X. Since X is a $K_{\sigma\delta}$ subset of (X^{**}, w^*) , X is in particular weakly countably determined (WCD), i.e., there are weak* compact sets $\{K_n\}$ in X^{**} such that, given $x \in X$ and $G \in X^{**} \setminus X$, there is n_0 such that $x \in K_{n_0}$ and $G \notin K_{n_0}$ ([7, Chapter VI]). Therefore $(X, \|\cdot\|)$ together with all of its subspaces has a projectional resolution of identity (see [7, Chapter VI]). Now the proof of $(10, \text{ Lemma 7})$ (which uses only the existence of such a projectional resolution with respect to the UGnorm) shows that (B_X, w^*) is uniformly Eberlein. Conversely, assume that $(B_X, w^*) = K$ is uniform Eberlein. Then by [5] (cf., e.g., [16, p. 233]), there is a Hilbert space $\mathcal H$ and a bounded linear operator T from $\mathcal H$ to $C(K)$ with dense range. It follows from $([7, \text{ Theorem II.6.8}])$ that the space $C(K)$ has an equivalent UG-norm, and so does its subspace X .

(ii) Assume that K is a uniform Eberlein compact. By the proof of (i), there is a bounded linear operator from a Hilbert space $\mathcal H$ onto a dense set in $C(K)$ and thus $C(K)$ admits an equivalent UG-norm (cf., e.g., [7, Theorem II.6.8]). If $C(K)$ admits an equivalent UG-norm, the dual unit ball of $C(K)$ is a uniform Eberlein in its weak* topology by (i). Hence such is its closed subset K .

IV. Remarks

Let us discuss how Theorem 2 relates to some known results in this area.

(1) H. Rosenthal showed in [30] that there exists a probability measure μ such that the space $L^1(\mu)$, which is WCG and admits a UG-norm since it contains $L^2(\mu)$ as a dense subspace ([7, Theorem II.6.8]), contains a closed subspace X_R which is not WCG. As a subspace of a space with UG-norm, X_R admits a UGnorm.

(2) If K is a uniform Eberlein compact and L is a continuous image of K , then L is a uniform Eberlein compact ([4]). Indeed, by Theorem 2 (ii), $C(K)$ has an equivalent UG-norm and so does its subspace $C(L)$. By the same theorem, L is a uniform Eberlein compact.

(3) Let E be an Eberlein but not a uniform Eberlein compact set ([5]; cf., e.g., $[2, p. 417]$). The space $C(E)$ is weakly compactly generated ([1]; cf., e.g., $[16, p. 225]$ and thus there is a reflexive space R and a linear continuous map from R to $C(E)$ with dense range ([6]; cf., e.g., [16, p. 227]). By Theorem 2, $C(E)$ is not UG-renormable and thus by ([7, Theorem II.6.8]) the space R is not UG-renormable. The first example of a reflexive not UG-renormable space was shown in [21] (cf., e.g., [7, p. 170]).

(4) If a Banach space X has an equivalent weakly uniformly rotund norm, or equivalently if its dual X^* has an equivalent UG-norm, then X^* is a subspace of a WCG space (Theorem 2). Therefore X has an equivalent norm that is with its dual norm locally uniformly rotund, and thus X has $C¹$ smooth partitions of unity (cf., e.g., [7, Chapter VII and VIII]). If X is a subspace of $l_{\infty}(\mathbf{N})$ and X has an equivalent UG-norm, then X is separable, and this applies in particular to $X = C(K)$ where K is a separable compact ([26]) or to representable spaces X ([14]). In fact, a UG-renormable Banach space which continuously and linearly injects into $l_{\infty}(\mathbf{N})$ is separable. Indeed, if X is a subspace of a WCG space and X^* is weak* separable, then X is separable (use [31, Theorem 2.4] or [35, Corollary 2]; see also [34] or [36, Section 3]). Hence, in particular, the two spaces defined in [20, pp. 222 and 224] do not admit equivalent UG-norms.

(5) It follows from Theorem 2 and ([13, Theorem 2.10]) that a Banach space X has an equivalent UG-norm if and only if there is a Markushevich basis ${x_{\alpha}, f_{\alpha}}_{\alpha \in \Gamma}$ of X such that, for every $\epsilon > 0$, there is a partition $\Gamma = \bigcup_{i=1}^{\infty} \Gamma_i^{\epsilon}$ and there are integers m_i^{ϵ} such that for every $i \geq 1$ and every $f \in B_{X^*}$,

$$
\operatorname{card}\{\gamma \in \Gamma_i^{\epsilon};\ |f(x_{\gamma})| > \epsilon\} \leq m_i^{\epsilon}.
$$

We recall that a Markushevich basis $\{x_{\alpha}, f_{\alpha}\}\$ is a biorthogonal system in the

Banach space X such that the closed linear hull of $\{x_{\alpha}\}\$ equals X and $\{f_{\alpha}\}\$ separates points of X (cf., e.g., [16, Chapter 10] or [35, Section 4]).

Indeed, assume that X admits an equivalent UG-norm. Then X is a subspace of a WCG space and thus admits a Markushevich basis, say $\{x_{\alpha}, f_{\alpha}\}_{{\alpha}\in\Gamma}$ ([1]; ef., e.g., [16, p. 219]). As X is a subspace of WCG, the set $\{\gamma \in \Gamma; f(x_{\gamma}) \neq 0\}$ is at most countable for every $f \in X^*$ (cf., e.g., [34], [16, p. 249] or [36, Section 4]). The dual unit ball B_{X^*} in its weak star topology is a uniform Eberlein compact by Theorem 2. Thus [13, Theorem 2.10] can be used to derive the result. Conversely, if X admits such a Markushevich basis, then the dual unit ball B_{X^*} in its weak star topology is a uniform Eberlein compact by [13, Theorem 2.10]. Then X admits an equivalent UG-norm by Theorem 2.

(6) A WCG space X is UG-renormable if and only if there exists a reflexive UG-renormable space R and a linear continuous map $T: R \to X$ with dense range. Indeed, since X is WCG there is (see [7], Cor. VI.5.2) a weak*-to-weak continuous linear one-to-one map S from X^* into a space $c_0(\Gamma)$. We apply the factorization theorem ([6]) to S, and it gives that $S = AB$, where B maps X^* to a reflexive space R_0 and the operators A and B are one-to-one. It follows that $B = B_0^*$ is conjugate to a bounded linear operator B_0 from $R = R_0^*$ to X, with dense range. By $([2, \text{ Lemma } 3.5]),$ the unit ball of the factoring space R_0 is uniformly Eberlein, and thus R is UG-renormable. Note, however, that R cannot be taken superreflexive in general, as shown by the example constructed in [17]. This example shows that there exists a reflexive space, whose unit ball is uniformly Eberlein in the weak topology, and which is therefore homeomorphic to a weakly compact subset of a superreflexive space, but which is not *affinely* weakly homeomorphic to a subset of a superreflexive space. Hence such homeomorphisms are bound to "break" the linear structure.

(7) The renorming argument from the proof of Lemma 1 shows in particular that if X is UG-renormable and Y is a norming subspace of X^* , then there exists an equivalent UG-norm on X such that Y becomes 1-norming for this new norm. This is not so when "UG" is replaced by "Fréchet smooth" or "Gâteaux smooth". In the Fréchet smooth case, one can take $X = J^*$ and $Y = J$, where J is James' space. In the Gâteaux smooth case, one can take $X = C([0,\omega_1])$ and Y the norm closed linear hull of the Dirac measures $\{\delta_{\alpha}; \alpha < \omega_1\}$ ([11]).

(8) The sets $\overline{S_{n,p}(\|\cdot\|)}^*$ from the proof of Lemma 1 cannot in general be replaced by the similar but larger weak* closed subsets $H_{n,p}$ of X^{**} defined by

$$
H_{n,p} = \{ F \in X^{**}; \ |F(f-g)| \le 1/p
$$

whenever $f, g \in X^*, ||f|| \le 1, ||g|| \le 1$ and $||f+g|| > 2 - 2/n \}.$

Indeed, by [18], there exists a dual weakly uniformly rotund norm $\|\cdot\|$ on James' space J. If $(X, \|\cdot\|)$ is the predual of J equipped with the predual norm to $\|\cdot\|$, then X^{**} is UG-smooth ([7, Theorem II.6.7]) and one has for all $p \in \mathbb{N}$ that

$$
\bigcup_{n\geq 1}H_{n,p}=X^{**}.
$$

(9) There exists a direct construction of PRI from the uniform Gâteaux smoothness (without using the concept of WCD). Indeed, recall that a multivalued mapping Φ from the dual X^{*} into X is called a *projectional generator* on X if $\Phi(x^*)$ is a nonempty at most countable subset of X for every $x^* \in X^*$ and if for every set $\Gamma \subset X^*$, closed under linear combinations with rational coefficients, the following identity holds:

$$
(*) \qquad \Phi(\Gamma)^{\perp} \cap \overline{B_{X^*} \cap \Gamma}^* = \{0\}.
$$

Once X admits such a Φ , then a PRI with respect to any equivalent norm on X can be constructed. See [27], [28]; cf., e.g., [9, Chapter 6].

If X has uniformly Gâteaux smooth norm, then we can put for $x^* \in X^*$

$$
\Phi(x^*) = \bigcup_{n,p=1}^{\infty} \Phi_{n,p}(x^*),
$$

where $\Phi_{n,p}(x^*)$ is an at most countable subset of the set $S_{n,p}$ such that

$$
\sup \left\langle x^*, S_{n,p} \right\rangle = \sup \left\langle x^*, \Phi_{n,p}(x^*) \right\rangle.
$$

The proof that this Φ satisfies (*) goes similarly as the proof of Lemma 1.

(10) Any Banach space on which there exists a uniformly Gâteaux smooth function with bounded nonempty support has an equivalent UG-norm ([32]; see also [12]). However, it is not known whether the $c_0(\Gamma)$ spaces have UG-smooth partitions of unity.

References

- [1] D. Amir and J. Lindenstrauss, *The structure of weakly compact sets in Banach spaces,* Annals of Mathematics 88 (1968), 35-44.
- [2] S. Argyros and V. Farmaki, *On the structure of weakly compact subsets of Hilbert spaces and applications to* the *geometry of Banach spaces,* Transactions of the American Mathematical Society 289 (1985), 409-427.
- [3] S. Argyros and S. Mercourakis, *On weakly LindelSf Banach spaces,* Rocky Mountain Journal of Mathematics 23 (1993), 395-446.
- [4] Y. Benyamini, M. E. Rudin and M. Wage, *Continuous images of weakly compact subsets of Banach spaces,* Pacific Journal of Mathematics 70 (1977), 309-324.
- [5] Y. Benyamini and T. Starbird, *Embedding weakly compact sets into Hilbert spaces, Israel Journal of Mathematics* 23 (1976), 137–141.
- [6] W.J. Davis, T. Figiel, W. B. Johnson and A. Petczyfiski, *Factoring weakly compact operators,* Journal of Functional Analysis 17 (1974), 311-327.
- [7] R. Deville, G. Godefroy and V. Zizler, *Smoothness and Renormings in Banach Spaces,* Pitman Monographs 64, Longman, London, 1993.
- [8] P. Enflo, *Banach spaces which can be given an equivalent uniformly convex norm,* Israel Journal of Mathematics 13 (1972), 281-288.
- [9] M. Fabian, *Gâteaux Differentiability of Convex Functions and Topology. Weak Asphmd* Spaces, Wiley, New York, 1997.
- [10] M. Fabian, P. H~jek and V. Zizler, *Uniform Eberlein compacta and uniformly G~teaux smooth norms,* Serdica Mathematical Journal 23 (1997), 351-362.
- [11] M. Fabian, V. Montesinos and V. Zizler, *Pointwise semicontinuous smooth* norms, to appear.
- $[12]$ M. Fabian and V. Zizler, *On uniformly Gâteaux smooth C⁽ⁿ⁾-smooth norms on separable Banach spaces,* Czechoslovak Mathematical Journal 49 (1999), 657-672.
- [13] V. Farmaki, *The structure of Eberlein, uniformly Eberlein and Talagrand compact spaces in* $\Sigma(\mathbb{R}^{\Gamma})$, Fundamenta Mathematicae 128 (1987), 15-28.
- [14] J. Frontisi, *Representable Banach spaces and uniformly Gâteaux smooth norms,* Serdica Mathematical Journal 22 (1996), 33-38.
- [15] G. Godefroy, *Renormings of Banach spaces*, in *Handbook on Banach Spaces* (W. B. Johnson and J. Lindenstrauss, eds.), Elsevier, Amsterdam, to appear.
- [16] P. Habala, P. H~ijek and V. Zizler, *Introduction to Banach Spaces I, H,* Matfyzpress, Prague, 1996.
- [17] P. Hájek, *Polynomials and injections of Banach spaces into superreflexive spaces,* Archly der Mathematik 63 (1994), 39-44.
- [18] P. H~.jek, *Dual renormings of Banach* .spaces, Commentationes Mathematicae Universitatis Carolinae 37 (1996), 241-253.
- [19] R. Haydon, *Trees in renorming theory,* Proceedings of the London Mathematical Society **78** (1999), 541–584.
- [20] W. B. Johnson and J. Lindenstrauss, Some remarks *on weakly compactly generated Banadl spaces,* Israel Journal of Mathematics 17 (1974), 219 -230 and 32 (1979), 382 383.
- [21] D. Kutzarova and S. Troyanski, *Reflexive Banach spaces without equivalent norms which* are *uniformly convex or uniformly differentiable in every direction,* Studia Mathematica 72 (1982), 92-95.
- [22] J. Lindenstrauss, *Weakly compact* sets, *their topological properties and the Banach spaces* they generate, Annals of Mathematics Studies 69, Princeton University Press, 1972, pp. 235-276.
- [23] S. Mercourakis and S. Negrepontis, *Banach spaces and Topology II,* in *Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), Elsevier Science* Publishers B.V., Amsterdam, 1992.
- [24] D. P. Mihnan, *On some criteria* for *the regularity of spaces of type (B),* Doklady Akademii Nauk SSSR 20 (1938), 243-246.
- [25] A. Molt6, V. Montesinos, J. Orihuela and S. Troyanski, *Weakly uniformly rotund Banach spaces, Commentationes Mathematicae Universitatis Carolinae 39 (1998),* 749-753.
- [26] A. Moltó and S. Troyanski, *On uniformly Gâteaux differentiable norms in* $C(K)$ *,* Mathematika 41 (1994), 233-238.
- [27] J. Orihuela, *On weakly Lindelöf Banach spaces*, in *Progress in Functional Analysis* (K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre, eds.), Elsevier Science Publishers, Amsterdam, 1992, pp. 279-291.
- [28] J. Orihuela and M. Valdivia, *Projective generators and resolutions of identity in Banach spaces,* Revista Matem~tica de la Universidad Complutense de Madrid 2, Suppl. Issue, 1990, pp. 179-199.
- [29] B. J. Pettis, A proof *that* every *uniformly convex space is reflexive,* Duke Mathematical Journal 5 (1939), 249-253.
- [30] H. P. Rosenthal, *The heredity problem* for *weakly compactly generated Banach spaces,* Compositio Mathematica 28 (1974), 83-111.
- [31] M. Talagrand, *Espaces de Banach faiblement lC-analytiques,* Annals of Mathematics 110 (1979), 407-438.
- [32] W. K. Tang, *Uniformly differentiable bump functions,* Archiv der Mathematik 68 (1997), 55-59.
- [33] S. Troyanski, *On uniform rotundity and smoothness in every direction in nonseparable Banach spaces with unconditional basis, Comptes Rendus de l'Académie* Bulgare des Sciences 30 (1977), 1243-1246.
- [34] J. Vanderwerff, J. H. M. Whitfield and V. Zizler, *Markushevich bases and Corson compacta in duality,* Canadian Journal of Mathematics 46 (1994), 200-211.
- [35] L. Vašák, *On one generalization of weakly compactly generated Banach spaces,* Studia Mathematica **70** (1981), 11-19.
- [36] V. Zizler, *Nonseparable Banach spaces,* in *Handbook on Banach Spaces* (W. B. Johnson and J. Lindenstrauss, eds.), Elsevier, Amsterdam, to appear.