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I. Introduct ion  

A classical result, which goes back to D. P. Mihnan [241 and B. J. Pettis [29], 

asserts that a uniformly Fr~chet smooth Banach space is reflexive. P. Enflo's 

renorming theorem [8] states that the existence of such norms characterizes super- 

reflexivity. However, characterizing Banach spaces on which smooth norms exist, 

in various possible meanings of the word '%mooth", turns out to be quite a 

difficult task. We refer, e.g., to [3], [7], [9], [19], and [23] for more on this subject. 

The present work shows that the existence of a uniformly G~teaux smooth 

norm on a given Banach space X provides a lot of information on the structure 

of X. 

Our approach relies on the use of methods of weak compactness. In [22], 

J. Lindenstrauss posed a problem whether smoothness of a Banach space implies 

the weak compact generating (WCG) in some overspace ([22, Problem 9]). We 

provide a positive answer in the case of uniform Gdteaux smoothness. On the 

other hand, let us recall that there are C a smooth spaces that are not subspaces 

of weakly compactly generated spaces. For instance, the spaces defined in [20, 

pp. 222 and 224] are not subspaces of WCG spaces and yet they admit equivalent 

C~-smooth  norms (cf., e.g., [7, p. 194], [33]). 

Our main result in this note (Theorem 2) provides a characterization of Banach 

spaces on which there exists an equivalent uniformly G£teaux smooth norm. 

Its proof is based on showing that such a space X is K ~  in X** in its weak* 

topology and therefore admits projectional resolutions of identity (PRI) for every 

equivalent norm ([35]; cf., e.g., [7, p. 240]). Then one can apply the result from 

[10]. Theorem 2 is followed by several remarks showing that it is essentially 

optimal. 

II .  N o t a t i o n  

We work in real Banach spaces. The notation we use in this note is classical 

and can be found, e.g., in [7] or [9]. In particular, the unit sphere of a Banach 

space X is denoted by Sx ,  i.e., S x  = {x C X;  Ilxll = 1}. The weak* closure of a 

subset S of a dual space is denoted by S*.  A norm II - II is said to be u n i f o r m l y  

G f i t e a u x  s m o o t h  (in short, UG-norm) if for every h C X, the limit 

lim(llx + t h l l  - I [ x l l ) / t  
t--~o 

exists uniformly on x E Sx .  A compact set K is said to be E b e r l e i n  (respectively 

uniform Eber l e in )  if it is homeomorphic to a weakly compact subset of c0(F) for 
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some F (respectively to a weakly compact  subset of a Hilbert  space), considered 

in its weak topology. 

I I I .  T h e  r e s u l t s  

The  main result in this paper  is based on the following lemma, in which some 

ideas from [33] and [25] are used. 

LEMMA 1: Let X be a Banach ,space with an equivalent uniformly Ggteaux 

smooth norm. Then X is a K~6 subset of (X** ,  w*), i.e., X = Np>l Um21K,~,p, 

where Km,p are some weak* compact sets in X**. 

Proof  Assume tha t  II • [1 is an arb i t rary  equivalent norm on X.  Pick any 

G E X * * \ X .  Let H = G - l ( 0 )  be the subspaee of X* consisting of all the 

elements of X* that  vanish at G. The space H is a norming subspace of X*, tha t  

is, there is p > 0 such tha t  for all x • Sx ,  sup{If(x)] ;  f • H,  Ilfl] -< 1} _> #. 

Indeed, assunm that  HGI[ = 1 and (list ( G , X )  _> 5. We have H* = X * * / H  -k, 

and it follows from the basic duali ty results tha t  for all x • S x ,  

sup{[/ (x) l ;  f • H,  H/I[ -< 1} = inf{l[x - AG[I; A • ~ }  

= rain{ i n f (  x - AClI}, inf {[[x - A t i l t  
I;q<~ I.M>_½ 

> rain { 1 - ,  inf [ I x -  a C l l j  
- 2 ~,>½ 

> rain 2 '  I~[n_>f½ "1[~[ x - G[I} 

1 1 
_> rain { 5' 2 dist (G, X) } 

1 

Using the idea in [331 and [25], for any equivalent norm [I-II on X,  we define 

for all n , p  • N the subsets sn,~(ll • II) in x as follows: 

Sn,p([I • II) = {x • X;  If(x) - g(x)[ < l i p  

whenever f , g  • X*,  II/ll -< 1, Ilgll -< 1 and Hf + 911 > 2 - 2/n}.  

We now assume that  II • II is an equivalent uniformly G&teaux smooth  norm 

on X.  Its dual norm is W*UR,  i.e., f~ - g n  --+ 0 in the weak* topology whenever 

{fn} and {gn} are bounded in X* and 2ll/~ll 2 + 2[[g,,[I 2 - IIA + g~ll 2 ~ 0 (see 

[7, Theorem II.6.7]). Thus for any p • N, one has 

(1) U S'~,P (I]" [I) = X. 
n > l  
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We will show that  

x = N U 
p>l  n > l  

It  follows from (1) that  it suffices to prove that  for any G • X * * \ X  there is a 

p • N such that  

(2) a ¢ U sn,~(ll. II)*. 
n > l  

We set H = G-I(O),  and define an equivalent norm q on X by the formula 

q(x) = sup{If(x)l; f • H,  Ilfll < 1}. 

We claim that  

S,,,p( l l .  II) C S~,p(q). 

In order to prove this claim, we observe the bipolar theorem implies that  the 

dual unit ball Be. satisfies 

(3) Bq. = {f  • X*; q*(f) ~_ 1} = {f  • H, Ilfll -< 1}*. 

We note that  (3) implies that  the unit ball of H for the original norm I] • [6 is 

contained in the unit ball of H for the norm q*. Since, on the other hand, one 

clearly has q* >_ II . II on X*, it follows that  the norms II • II and q* coincide on H,  

and that  H is a 1-norming subspace of X* for the norm q*. By (3), if q*(f) <_ 1, 
q*(g) < 1 and q*(f  + g) > 2 - 2/n,  there are nets (f~) and (ga) in H,  weak* 

convergent to f and g respectively, such that  Ill-It ~ 1 and liga]l -< 1 for all c~. 

Since the norm q* is weak*-lower semicontinuous, one has q* (fa + g(~) > 2 - 2In 
when a is large enough. The norms II -  I] and q* coincide on H,  and thus 

Il l .  + g.l l  > 2 - 2 / n  for large ~ .  

If now x E Sn,p(l]. [I), we have Ifc~(X) -ga (x ) l  ~_ l i p  for (~ large enough, and 

hence I f ( x ) -  g(x) l <_ l ip.  It  thus follows that  x E Sn,p(q). This shows our claim. 

In order to prove (2), it therefore suffices to show that  one has 

n > l  

for p C N large enough. To this end, choose p E N such that  p > 1/q**(G). Fix 

n E N and set for simplicity Sn,p(q) = S. We need to show that  G ~ S*.  Pick 

f E X* with q*(f) = 1 and G(f)  > l /p ,  and let x E X be such that  q(x) ~ 1 
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and f (x )  > 1 - 1/n. Since H is 1-norming for q*, there is g E H with q*(g) < 1 

and g(x) > 1 - 1/n. We have then 

q * ( f + g ) >  ( f + g ) ( x ) > 2 - 2 / n .  

From the definition of S, for all z E S one has ( f  - g)(z) < 1/p. On the other 

hand, G( f  - g) = G( f )  > 1/p. It follows that G ¢~ S*. 

For every p E N, let the family {Km,p}m be identical after reindexation to the 

collection {S**,p A kBz** },,k- We have shown that 

x = ~ U Km,p. 
p>l  m>l  

This concludes the proof of Lemma 1. | 

We are now ready to state and prove our main result. 

THEOREM 2: (i) A Banach ,space X admits an equivalent uniformly G~teaux 

smooth norm if and only if the dual unit ball Bx* equipped with the weak* 
topology & a uniform Ebcrlein compact. 

(ii) A compact space K is a uniform Eberlein compact if and only if C(K)  

admits an equivalent UG-norm, if and only if there is a Hilbert space 7-/ and a 

bounded linear operator from 7/ onto a dense set in C(K).  

Proo£" (i) Assume that [] . 1] is an equivalent UG-norm on X. Since X is a K ~  

subset of (X**,w*), X is in particular weakly countably determined (WCD), 

i.e., there are weak* compact sets {K~,} in X** such that,  given x E X and 

G E X** \ X, there is no such that x E K~ o and G ¢ K,, o ([7, Chapter VI]). 

Therefore (X, ]1 • I[) together with all of its subspaces has a projectional resolution 

of identity (see [7, Chapter VI]). Now tile proof of ([10, Lemma 7]) (which uses 

only the existence of such a projectional resolution with respect to the UG- 

norm) shows that, (Bx . ,  w*) is uniforufly Eberlein. Conversely, assume that 

(Bx . ,w*)  = K is uniform Eberlein. Then by [5] (el., e.g., [16, p. 233]), there 

is a Hilbert space 7t and a bounded linear operator T from 7/ to C(K) with 

dense range. It follows from ([7, Theorem II.6.8]) that the space C(K) has an 

equivalent UG-nornl, and so does its subspace X. 

(ii) Assume that K is a uniform Eberlein compact. By the proof of (i), there 

is a bounded linear operator fronl a Hilbert space 7 / o n t o  a dense set in C(K) 

and thus C(K) admits an equivalent UG-norm (cf., e.g., [7, Theorem II.6.8]). If 

C(K) adnfits an equivalent UG-norm, the dual unit ball of C(K) is a uniform 

Eberlein in its weak* topology by (i). Hence such is its closed subset K. | 
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IV .  R e m a r k s  

Let us discuss how Theorem 2 relates to some known results in this area. 

(1) H. Rosenthal showed in [30] that there exists a probability measure # such 

that the space LI(#), which is WCG and admits a UG-norm since it contains 

L2(#) as a dense subspace ([7, Theorem II.6.8]), contains a closed subspace XR 
which is not WCG. As a subspace of a space with UG-norm, XR admits a UG- 

norm. 

(2) If K is a uniform Eberlein compact and L is a continuous image of K,  then 

L is a uniform Eberlein compact ([4]). Indeed, by Theorem 2 (ii), C(K) has an 

equivalent UG-norm and so does its subspace C(L). By the same theorem, L is 

a uniform Eberlein compact. 

(3) Let E be an Eberlein but not a uniform Eberlein compact set ([5]; cf., 

e.g., [2, p. 417]). The space C(E) is weakly compactly generated ([1]; cf., e.g., 

[16, p. 225]) and thus there is a reflexive space R and a linear continuous map 

from R to C(E) with dense range ([6]; cf., e.g., [16, p. 227]). By Theorem 2, 

C(E) is not UG-renormable and thus by ([7, Theorenl II.6.8]) the space R is not 

UG-renormable. The first example of a reflexive not UG-renormable space was 

shown in [21] (cf., e.g., [7, p. 170]). 

(4) If a Banach space X has an equivalent weakly uniformly rotund norm, or 

equivalently if its dual X* has an equivalent UG-norm, then X* is a subspace 

of a WCG space (Theorem 2). Therefore X has an equivalent norm that is with 

its dual norm locally uniformly rotund, and thus X has C 1 snlooth partitions of 

unity (cf., e.g., [7, Chapter VII and VIII]). If X is a subspace o f / ~ ( N )  and X 

has an equivalent UG-norm, then X is separable, and this applies in particular to 

X = C(K) where K is a separable compact ([26]) or to representable spaces X 

([14]). In fact, a UG-renormable Banach space which continuously and linearly 

injects into /~ (N)  is separable. Indeed, if X is a subspace of a WCG space 

and X* is weak* separable, then X is separable (use [31, Theorem 2.4] or [35, 

Corollary 2]; see also [34] or [36, Section 3]). Hence, in particular, the two spaces 

defined in [20, pp. 222 and 224] do not admit equivalent UG-norms. 

(5) It follows from Theorem 2 and ([13, Theorem 2.10]) that a Banach space 

X has an equivalent UG-norm if and only if there is a Markushevich basis 
o o  

{x~, f~}~r  of X such that,  for every c > 0, there is a partit ion F = [-J~=l P~ and 

there are integers rn~ such that for every i > 1 and every f E Bx*, 

card{7 e F~; lY(x~)l > d ~ m~. 

We recall that a Markushevich basis {x~, fo} is a biorthogonal system in the 
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Banach space X such that the closed linear hull of {x~} equals X and {f~} 

separates points of X (eft, e.g., [16, Chapter 10] or [35, Section 4]). 

Indeed, assume that X admits an equivalent UG-norm. Then X is a subspace 

of a WCG space and thus admits a Markushevich basis, say {x~, /~}~er  ([1]; eft, 

e.g., [16, p. 219]). As X is a subspace of WCG, the set {3' E F; f (x~)  ~ 0} is at 

most countable for every f e X* (eft, e.g., [34], [16, p. 249] or [36, Section 4]). 

The dual unit ball Bx* in its weak star topology is a uniform Eberlein compact by 

Theorem 2. Thus [13, Theorem 2.10] can be used to derive the result. Conversely, 

if X admits such a Markushevich basis, then the dual unit ball Bx .  in its weak 

star topology is a uniform Eberlein compact by [13, Theorem 2.10]. Then X 

admits an equivalent UG-norm by Theorem 2. 

(6) A WCG space X is UG-renormable if and only if there exists a reflexive 

UG-renormable space R and a linear continuous map T: R --+ X with dense 

range. Indeed, since X is WCG there is (see [7], Cor. VI.5.2) a weak*-to-weak 

continuous linear one-to-one map S from X* into a space c0(F). We apply the 

factorization theorem ([6]) to S, and it gives that S = AB, where B maps X* 

to a reflexive space R0 and the operators A and B are one-to-one. It follows 

that B = B~ is conjugate to a bounded linear operator B0 from R = R;  to 

X, with dense range. By ([2, Lemnla 3.5]), the unit ball of the factoring space 

R0 is uniformly Eberlein, and thus R is UG-renormable. Note, however, that R 

cannot be taken superreflexive in general, as shown by the example constructed 

in [17]. This example shows that there exists a reflexive space, whose unit ball is 

uniformly Eberlein in the weak topology, and which is therefore homeomorphic to 

a weakly compact subset of a superreflexive space, but which is not affinely weakly 

homeomorphic to a subset of a superreflexive space. Hence such homeomorphisms 

are bound to "break" the linear structure. 

(7) The renorming argument from the proof of Lemma 1 shows in particular 

that if X is UG-renormable and Y is a norming subspace of X*, then there exists 

an equivalent UG-norm on X such that Y beconles 1-norming for this new norm. 

This is not so when "UG" is replaced by "Fr~chet smooth" or "Ggteaux smooth". 

In the Fr~chet smooth ease, one can take X = J* and Y = J ,  where J is James' 

space. In the Ggteaux smooth case, one can take X = C([0, w~]) and Y the norm 

closed linear hull of the Dirac measures {5~; a < c0~} ([11]). 

(8) The sets Sn,p(ll. II)* from the proof of Lenmla 1 cannot in general be 

replaced by the similar but larger weak* closed subsets H,,,p of X** defined by 

Hn,p = (F C X**; [F(f - g)l <- l ip  

whenever f ,g  e X*, Ilfll ~ 1, IIglt 1 and IIf -4-911 > 2 - 2/n}. 
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Indeed, by [18], there exists a dual weakly uniformly rotund norm II • II on James' 

space J.  If (X, It- It) is the predual of J equipped with the predual norm to I1" II, 

then X** is UG-smooth ([7, Theorem II.6.7]) and one has for all p C N that 

U Hn,v = X * * .  

n > l  

(9) There exists a direct construction of PRI from the uniform Ggteaux smooth- 

ness (without using the concept of WCD). Indeed, recall that a multivalued map- 

ping • from the dual X* into X is called a projectional generator on X if q)(x*) is 

a nonempty at most countable subset of X for every x* E X* and if for every set 

P C X*, closed under linear combinations with rational coefficients, the following 

identity holds: 

(*) • ( r )  • n g x -  5-~* = {0}. 

Once X admits such a ~, then a PRI with respect to any equivalent norm on X 

can be constructed. See [27], [28]; cf., e.g., [9, Chapter 6]. 

If X has uniformly Ggteaux smooth norm, then we can put for x* C X* 

O<3 

e (x* )  = U e . ,~ (**) ,  
n ,p=  l 

where ~,,v(x*) is an at most countable subset of the set Sn,p such that 

sup (x*, &,p> = sup (x*, +,~,p(x*l >. 

The proof that this • satisfies ( ,)  goes similarly as the proof of Lemma 1. 
(10) Any Banach space on which there exists a uniformly Ggteaux smooth 

function with bounded nonempty support has an equivalent UG-norm ([32]; see 
also [12]). However, it is not known whether the c0(F) spaces have UG-smooth 

partitions of unity. 
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