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A B S T R A C T  

The hyperbolic metric hfl of the twice punctured complex plane gt is 

studied. A new recursive algorithm for computing the density Aft of h~ 
is given. For a proper subdomain G of gt we answer a question of G. 
Martin concerning quasiconformal mappings of G that  can be extended 
to the complement of G as the identity map. 

1. I n t r o d u c t i o n  

The hyperbolic metric h~ of a domain ~ C C, with card(C \ 12) _> 3, introduced 

by H. Poincar6 and developed by R. Nevanlinna (principle of hyperbolic met- 

ric) provides a convenient tool for the study of the intrinsic geometry of ~ and 

holomorphic mappings of plane domains. The conformal invariant ha is a Rie- 

mannian metric with a density function ~ .  For ~ = A, A = {z E C: Izl < 1}, h~ 

is the usual non-Euclidean metric of the unit disk A. Regarding the size of 0gt, 

the two extreme cases are ~ = A and ~ = C ( - I ,  1), C(-1 ,  1) = C \ { - 1 ,  1, co}. 

In the latter case we have no simple explicit expression for he(_1,1) , but several 
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estimates for Ac(-1,1) are given in [BePom]. For domains between these two ex- 

treme cases less seems to be known, but various estimates have been proved in 

the literature; see, e.g., [W2, HI. 

In this paper we review various estimates for the hyperbolic nletric and prove 

new estimates based on synnnetrization and polarization transformations. Some 

applications to meromorphic functions and quasiconformal mappings will be 

given as well. 

The paper is organized as follows. Section 2 is expository; it contains two 

parts. In the first one we survey known properties and estimates of the hyperbolic 

metric. Here we start with Nevanlinna's principle of the hyperbolic metric and 

then discuss symmetrization type results of A. Bermant, A. Weitsman, D. Minda, 

and A. Yu. Solynin. In the second part of Section 2 we discuss applications of 

the hyperbolic metric to quasiconfornlal mappings. The first such application 

was found by O. Teichmiiller IT]. Others are due to J. Krzyz, S. B. Agard and 

F. W. Gehring, and G. Martin. 

In Sections 3 and 4 we obtain new estimates for the hyperbolic metric of 

the twice punctured sphere and twice punctured disk, respectively. Besides, in 

Section 3, making use of an idea from [SOW], we establish an identity for the 

density Ac(-1A), which enables one to compute Ac(-1,1) in terms of a recursive 

procedure - -  we have not seen such a procedure elsewhere. This result is given 

in Lemma 3.19. Section 3 contains also two applications of our estimates - -  one 

for meromorphic fimctions (Theorem 3.23) that strengthens Bermant's theorem 

in [Ber] and the second for quasiconformal mappings (Theorem 3.28). Section 5 

contains one more application - -  here we prove an analog of Schottky's theorem 

for bounded analytic functions. 

Studying quasiconformal self-mappings of C( -1 ,  1), keeping the boundary 

pointwise fixed and homotopic to the identity, O. Teichmiiller proved that for 

prescribed a, b E C(-1 ,  1), among all such maps, there is one, f ,  with the max- 

imal dilatation K(f) = (1/2)log hc(-1,1)(a, b), with the property that  f(a) = b 
where the expression for K(f) is sharp. F. W. Gehring raised the question of a 

similar estinlate for the unit disk A, and this question was solved by J. Krzyz 

[Kr]. Very recently G. Martin [M] raised the same question for a general plane 

domain. We will provide an answer in Theorem 6.1 that is our main result in Sec- 

tion 6. In Theorem 6.4 we show that  an extremal quasiconformal self-mapping of 

has the maximal possible dilatation, denoted by ha (K) below, if f~ corresponds 

to a Fuchsian group of the second kind. In Theorem 6.9 we prove that ha(K) is 

invariant under conformal mappings. 
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Some open questions which we find interesting are discussed in Sections 3, 5, 

and 6. 

2. Pre l iminar ie s  

2.1. ESTIMATES FOR THE HYPERBOLIC METRIC. Every domain D c C having 

at least three boundary points (throughout this paper  we consider such domains 

only) has the unit disk A as the universal covering surface. If  ~r: A -+ D is a 

universal covering mapping, then the density of the hyperbolic metric (or the 

Poincar~ metric) AD of D is defined by the equation 

(2.2) AD(r~(z))]~r'(z)l = 1/(1 --Izl 2) (z • A, w = 7r(z) • D, w # ~ ) .  

In the case w = oc we set AD(OC) = ~D-~(0), where D -1 = {w: w -1 • D}. 

The hyperbolic metric of an open disconnected set is defined by components. As 

is well known, the density of the hyperbolic metric may be characterized as the 

maximal solution of the differential equation 

(2.3) A log ~ = 4~ 2 

in the domain D [H, p. 13]; therefore it has a constant curvature - 4 .  Tile 

hyperbolic distance between two points Zl, z2 • D is defined by 

hD(zl, z2) = infnD(7) with no(7)  = jf-~D(z)ldz], 

where the infimum is taken among all rectifiable arcs 7 C D joining zl and z2. As 

is well known, the definition given above for the hyperbolic distance is equivalent 

to the following one, 

(2.4) hD (Zl,  Z2) ~-- rain hA (~1, (2) = rain hA ((1, ~2), 

where the first minimum is taken over all ~1,~2 • A such that  1r(~1) = zl, 

7r(~2) = z2; in the second case, ~1 • A is fixed such that  7r(~1) = zl and the 

minimum is taken over all ~2 • A such that  7r(~2) : z2. 

In Complex Analysis the hyperbolic metric provides one of the most powerful 

tools - -  the so-called 

2.5. NEVANLINNA'S PRINCIPLE OF THE HYPERBOLIC METRIC ([N, pp. 49-50]). 

Let D and ~ be domains on C and let w = f(z) be holomorphic in D and take 

values in gt. Then 

(1) ,X~(f(z))ldw I < AD(z)ldz t Vz e D, 
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and 

(2) h ~ ( f ( z J ,  f(z2)) < hD(zl,z2) Vzl,z2 e D. 

As (2) shows, holomorphic mappings are contractions in the hyperbolic metric. 

If f is a conformal mapping onto ~2, then equalities hold in (1) and (2). Below 

we give a more general condition of the invariance of the hyperbolic distances. 

Let D be a domain on C. A subdomain ~2 C D will be called hD-convex 

(hyperbolically convex w.r.t. D) if for every pair of points zl, z2 E ~2 the domain 

contains at least one of the shortest hyperbolic geodesics joining zl and z2. 
This easily implies that an hD-Convex subdomain ~2 contains all the shortest 

geodesics joining Zl and z2. Indeed, let ~2 be hD-Convex. Assume that there is a 

shortest geodesic l ~ ~2 joining points zl, z2 E ~2. Since ~ is open there is a point 

z' E l \{Zl ,  z2} that  splits l into two subarcs ll and 12 such that 11 ~ ~2 joins Zl 
Z t and z' and 12 C ~ joins z' and z2. Since fl is hD-Convex and Zl, E ~2 there is a 

shortest geodesic l' C ~2 joining Zl and z'. Let l* = l' U 12. Then l* C ~2 and 

 o(r) = +  o(t2) <  o(tl) +  o(12) =  o(0. 

Thus l* is one of the shortest geodesics joining zl and z2 in D. Each geodesic, 

being an image of a circular arc under a universal covering mapping, is analytic. 

Therefore l* coincides with 1 since they are analytic arcs having a common subare 

12. This contradicts our assumption that l ~ S2 and therefore D contains every 

shortest geodesic joining zl and z2 if Zl, z2 E D. 

The latter implies that the intersection of two hD-Convex subdomains is hD- 
convex. There is a nice result of V. Jcrgensen [Jo] saying that  every disk or half 

plane contained in D is hD-convex. 

We shall use the following definition from [H]. We say that  w = f ( z )  maps 

a domain D1 C C onto a domain D2 C C if ] can be continued as an analytic 

function throughout D1 in such a way that all the values w = f ( z )  remain in 

D2 and, if similar, is true for the inverse function z = f - l ( w ) ,  i.e., f - 1  can be 

continued as an analytic function throughout D2 in such a way that  all values 

z = f - l ( w )  remain in D1. 

2.6. THEOREM: Suppose that w = f (z )  maps D1 onto D2. Then 

(1) Ao2(f(z))lf '(z)[ = ADI(Z) Vz E D1. 

If, additionally, ~2k C Dk is hDk-convex and i f  w = f (z )  maps ~21 one-to-one 

onto ~22, then 

(2) hD~(Zl,Z2) : hD2(f(zl) , f (z2))  Vzl,z2 E ~21. 
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In order to apply the principle of the hyperbolic metric in quantitative esti- 

mates, we need to have a set of domains with known or well-controlled hyperbolic 

density. Often it is enough to consider the sphere C, the disk Ar = {z: Izl < r}, 

A = A1, or more generally, the disk At(z0) = (z: Iz - z0[ < r}, and the annulus 
K(rl , r2)  = {z: rl  < lzl < r2} punctured at a finite (perhaps zero) number of 

points. In what follows D ( Z l , . . . ,  zn) stands for the domain D C C punctured at 

z l , . . . ,  zn E D. By A(z; a, b) and h(Zl, z2; a, b) we shall denote the density of the 

hyperbolic metric of C(a, b) and the corresponding hyperbolic distance in C(a, b); 

A(z) = A(z; -1 ,  1), h(zl, z2) = h(zl,  z2; -1 ,  1). One can consider A(z; a, b) either 

as a function of z or as a function of the punctures a and b, depending on the 

problem studied. 

The following lemma by Bermant presents one of the first results concerning 

the monotonicity of A(z; a, b) as a function of the parameters a and b. 

2.7. LEMMA ([Ber]): (1) The function A(0; 1,re ie) with t = 1 increases in 0 for 

0<0_<~r ;  

(2) with 0 = 0, A(0; 1, tei°) increases in - o c  < t < O; 

(3) with 0 = 0, A(0; 1, te ie) decreases in 0 < t < 1. 

Applying this lemma, Bermant [Ber] solved some interesting problems on the 

meromorphic and holomorphic functions. The following theorem is one of them. 

2.8. THEOREM ([Ber]): Let f E T~, where T~ is the class of functions holomorphic 

in A with the normalization f(O) = O, If'(0)[ -- 1. If  wl, W2, argw2 ---- 7r÷argwl,  

are exceptional for f in A, that is, Wl, w2 E C \ f (A) ,  then 

[Wl[ q-IW2[ > 4~r2F-4(X/4) -- 0.228 
2 - " "  

where F(.) stands for the Euler gamma function. Equality occurs here iff f (z) = 

ei~fo(ei~z) E T4, where a, fl C R and fo is a covering mapping of C( -A1 ,A1)  
with A1 = 4r2F-4(1/4).  

In [Wl, W2] A. Weitsman developed the theory of symmetrization for the 

hyperbolic metric; this provides a very efficient method of estimating the 

hyperbolic distances. 

2.9. THEOREM ([W2],  see also [Sol, Theorem 13]): Let a domain D be circularly 

symmetric with respect to the ray R0 -- {z: .~z = 0, ~z _> 0}. Let D N Tr = 

{z: [z[ -- r, [argz[ < 80(r)}, r > 0, 0 < 00(r) _<'~r, where Tr = OAr; in the case 

Vr C D, Oo(r) -= 7r and D N T r  = {z: ]z I = r,]argz] <_ ~90(r)}. Then AD(re i°) 

increases strictly in O, 0 <_ 0 ~ Oo(r), except the cases when D = AR, D = 
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C \  AR, and D = K(r l , r2) ,  where 0 ~_ rl < r2 ~_ oc. In the exceptional cases 

Av(re ~0) is constant on Tr. 

2.10. COROLLARY: Let D satisfy the assumptions of Theorem 2.9 and let us 

assume that D is not exceptional for the equality cases of this theorem. Let 

rx ~_ O, r2 ~_ O, 0 < 0 < 7r, 0 ~ ~ ~_ lr - 0 .  Then the function hv(r le i° , rze  ~(~+e)) 

increases strictly in 0 for 0 <_ min{00(rl), 00(r2) - ~)  and increases strictly in 

for 0 <_ ~ <_ 80(r2) - 8. In particular, 

h . ( z l , z 2 )  >_ h.(Iz l l ,  Iz2l) for all Zx,Z2 e D. 

I f  Zl ~ z2, then equality is attained here iff zl, z2 E Ro. 

In [Sol] Solynin found another method for proving the symmetrization results 

of Weitsman [W2] with a complete description of the equality cases. Solynin's 

approach is based on the polarization transformation introduced by V. Wolontis 

[Wo] in 1952. 

By a p o l a r i z a t i o n  of a set E C C w.r.t. R we mean the set 

(2.11) -PlzE = ((E U E*) NH)U ( ( E N E * )  N H__), 

where E* -- {z: ~ e E}, H -- {z: .~z > 0}, and H_ = C \ H. Sometimes we also 

use a similar notation for a symmetric image A* of a set A with respect to an 

arbitrary line L. 

The polarization of E w.r.t, an arbitrary oriented circle L C C is defined by 

PLE -~ ~P-I(PIz(~P(E))), 

where ~ is an arbitrary M5bius mapping that takes L onto R and preserves the 

orientation. 

The following theorem due to D. Minda [Min] deals with the hyperbolic den- 

sities of a domain that is already polarized. 

2.12. THEOREM ([Min]): Let L be a straight line and for a given z E C let 

z* denote the point that is symmetric to z w.r.t. L. Let D be a domain on C, 

z, z* E D, and let D(z)  and D(z*) denote the connected components of D \ L 

containing z and z*, respectively. I f  D(z)  C (D(z*))* then 

<_ 

Equality here occurs iff D(z)  = D(z*), i.e., iff D is symmetric w.r.t. L. 

The above symmetrization results follow from Solynin's polarization theorem 

[Sol] that is formulated here for the polarization w.r.t, circles on C. 
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2.13. THEOREM ([Sol]): Let  L be a circle centered at Zo C C with radius R,  

0 < R < oc. Let  L + and L -  s tand for L oriented in the positive and nega- 

tive direction, respectively. For a given domain D, let D1 and D2 denote the 

polarization o l D  w.r.t. L + and w.r.t. L - ,  respectively. Then 

(1) AD~ (z) < min{AD(Z), AD(Z*)R2/lz - z0] 2} Vz C D1 N AR(zO), 

(2) AD2 (z) <_ min{AD(Z), AD(Z*)]z -- zol2/R 2} Yz e 0 2  \ AR(Z0), 

(3) )~Dl(Z))~Vl(Z*) =- AD~(Z)AD._(z*) <_ AD(Z)AD(Z*) YZ s.t. Z,Z* e D. 

Equal i ty  in any one of  these inequalities occurs only in the cases D = D1 or 

D = D2. 

I f  L is a straight line, then (1) - (3) are true i f  we set Iz - zo l /R  = 1 in (1) 

and (2). 

2.14. THEOREM: (1) The assertion of  L e m m a  2.7 (1) holds for every fixed t > O; 

(2) The assertion of  L e m m a  2.7 (2) holds for every fixed O, [0 - 7r[ <_ 7r/2; 

(3) The assertion of  L e m m a  2. 7 (3) holds for every fixed 0 E R. 

Proof: (1) Let t > 0 be fixed and let 01 < 02 _< 7r, where 01 _> 0 if t 

1 and 01 > 0 if t = 1. Evidently,  the domain  C(1, te i°1 ) coincides with the 

polar izat ion of C(1, te i°2) w.r.t,  the s t raight  line L = L(~r + (01 + 02)/2), where 

L(~)  = {z = tei~: - ec < t < oc}. Therefore,  Theorem 2.13 (1) implies the 

str ict  inequali ty k(0; 1, te ~°2) > A(0; 1, te ~°~) since the equali ty conditions of tha t  

theorem evidently are not satisfied. 

(2) Fix 0, 7r/2 < 0 < 37r/2. Let 0 < t l  < t2 < ec and let L denote the circle 

centered at  z0 = re i°, r < t l  tha t  passes through z = 1. Next,  we choose the 

p a r a m e t e r  r satisfying the  equat ion 

(tl  - r)(t2 - r) = [z0 - 1[ 2. 

I t  is easy to see tha t  under  these conditions, the point  z = 0 lies inside the circle 

L and the domain  C(1, t2e ~°) coincides wi th  the polar iza t ion of C(1, t i e  ~°) w.r.t .  

L if L has posit ive orientat ion.  Therefore the desired assert ion again follows from 

Theorem 2.13 (1). The  monotonic i ty  is str ict  because the equali ty conditions of 

Theorem 2.13 (1) are not satisfied. 

Applying  the polar izat ion w.r.t,  a circle Tr with a suitable r we prove the third 

assert ion of the theorem.  
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2.15. HYPERBOLIC METRIC AND QUASICONFORMAL MAPPINGS. 

O. Teichmiiller was the first who used the hyperbolic metric in the study of 

quasiconformal mappings. The following theorem appeared in [T]. 

2.16. THEOREM ([T]): Let K > 1. I f  f is a K-quasiconformal self-mapping of 
C, normalized by the conditions f ( - 1 )  = -1 ,  f(1) = 1, f(oo) = oo, then 

h(zo, f(zo)) <_ (1 /2) logK 

for each Zo E C(-1,  1). Moreover, given any pair zo, wo E C(-1,  1) satisfying 
h(zo, wo) <_ (1/2) log K there exists a normalized K-quasiconformal serf-mapping 

of(2 homotopic to the identity on C(-1,  1) such that f(zo) = To. 

In fact, Teichmiiller's Theorem 2.16 deals with the characteristic h~(K) of a 

given domain fl C C defined as follows. Let K >_ 1 and let f~(K) denote the 

class of K-quasiconformal self-mappings f of f~ with boundary values given by 
the identity mapping that is homotopic to the identity on ~. That is, there is 

a continuous mapping g: C x [0, 1] -+ C such that 9(z, t) = z for all z C C \ 9t, 

0 < t < 1, and g(z,O) = z for all z E gt and 9(z, 1) = f (z )  for all z C ft. Then 

ha(K) is defined by 

(2.17) ha(K) = sup ha(z, f (z)) .  
zea,fEft(K) 

It follows from Teichmiiller's theorem that 

(2.18) he(-1,1) (K) = (1/2) logK. 

J. Krzyz [Kr] considered the problem posed by F. W. Gehring concerning the 
value of hA (K). Below we shall use the following standard notation [LV], 

~OK(r) = #- l ( I t ( r ) /K) ,  

where K > 0, 0 < r < 1, and 

2 

is the modulus of the unit disk A slit along the segment [0, r]; this doubly con- 

nected domain is usually called the Gr5tzsch ring. Here J~(r) denotes the com- 

plete elliptic integral of modulus r, R~(r) = £(r ' ) ,  where r' = x/1 - r 2 is the 

complement of r [AVV]. 
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2.19. THEOREM ([Kr]): Let K > 1 and f c A(K) .  Then for every z E A 

(2.20) hA(z, f(z)) < d(K), 

where 
1 1 + a(K) 

d(K) = ~ log 1 - a(K--) and a(K) = # - l ( 2 a r c o t h v ~ ) .  

The bound in (2.20) is best possible, and for every K > 1 and z0, w0 C A with 
hA(zo, wo) = d(K)  there is ~ u.iq,~e r.~ction f~ ( z ,  zo, wo) e A ( K )  such that 

fK(zo, zo, ~o) = ~o. 

Thus, in our notation 

(2.21) hA(K) = d(K). 

Theorem 2.19 without the uniqueness assertion was proved by J. Krzyz [Kr]. 

The proof in [Kr] is essentially based on the Teichmiiller construction in IT] of 

the extremal function denoted here by f g  = fg(Z, Z0, W0). 

To prove the uniqueness assertion we may assume that  z0 = 0 and w0 = 

- p ,  0 < p < 1. The function fg  is constructed in IT] in such a way that  

(fg)~/(fg)z = k(p(z)/Iqo(z)], where k = ( g  - 1 ) / ( g  + 1) and ~o is holomorphic 

in A except for a simple pole at z = 0. Moreover, ~ has no zeros in A. This 

implies that  the function 

/ S~(z2) + p 
~,~(z) = V f ¥ ~  ~ 

is a K-quasiconformal self-mapping of A such that  

(fK)~ _ k ~l(z) 
(?-~)z I~l(z)l 

with some function ~1 that  is holomorphic in A. Therefore, by the uniqueness 

theorem of K. Strebel [St], 97K is the unique extremal Teichmiiller mapping for 

its boundary values. Now if f E A(K)  and f (0)  = - p ,  then the function ]~(z) = 

v/( f(z  2) + p)/(1 + pf(z2)) is a K-quasiconformal self-mapping of A that  has 

the same boundary values as fK. Therefore f must coincide with fK and the 

uniqueness assertion follows. 

I t  will be useful to know that  

(2.22) ttc(_l,1)(K) < ha(K) VK > 1. 
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Indeed, in view of (2.18) and (2.21), the inequality (2.22) is equivalent to the 
inequality 

(2.23) K -  1 K +------1 < #- l (2arc°thv/K)"  

The function #(r) decreases in 0 < r < 1. Hence, after some calculations, we see 

that (2.23) is equivalent to 

/ \ K - 1  v ~ + l  
(2.24) #{ ,-;7-7-7, ~ ] > log 

1" k / k ' - l - l /  

Setting r = (K - 1) / (K + 1) we reduce (2.24) to the inequality 

1 + r  I 
#(r) > log 

r 

which is known to be true; cf. [LV, p. 61, (2.10)]. 

Some interesting applications of the hyperbolic metric in the study of quasi- 

conformal mappings were found by S. B. Agard and F. W. Gehring [AG]. They 
used the following estimate for the hyperbolic distances in C(-1 ,  1). 

2 .25 .  LEMMA ([AG]):  IfZl,Z2 e C ( - 1 , 1 ) ,  then 

h(zl ,  z2) _> h(i cot a l ,  i cot a2), 

where 

(, o~k=arcsin , k = t , 2 .  
zk + 11 + ]Zk -- 1 

Lemma 2.25 has the following geometric meaning. For a curve "y C C(-1 ,  1) 
let ")'* mean the projection of "y onto the positive imaginary axis, taken along an 

ellipse that has the foci at z -- - 1  and z -- 1, i.e., 

~/* = {it, t >_ O, such that there is z e "y with [z - iI + [z + 1[ = 2 ~ } .  

Then the hyperbolic length of 7 is bigger than the hyperbolic length of ")'*. 
Agard and Gehring [AG] gave also the explicit expression for the lower bound 

in Lemma 2.25: 

1 (#(s in  ½a2) ~ i f o < a 2 < a l < I r / 2 .  (2.26) h ( i c o t a l , i c o t a 2 )  = ~log # ( s i n ½ ~ ]  - - 

It was shown by Agard and Gehring that Theorem 2.16, Lemma 2.25 and equation 

(2.26) imply the following so-called angle distortion theorem. Note that the 

function ~ag in [AG] is the same as our ~x/g .  
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2.27. THEOREM ([AG]): Suppose that f is a K-quasiconformal mapping of C, 

f (c~ ) = cx~. Then for each triple of distinct finite points z0, zl, z2, 

sin ~fl >_ qOl/K ( sin ~o~), 

where 

IZl - z21 ) ( c~ arcsin 
Izl - z01 ¥ Iz2 - z01- '  

I f (zd  - f(z2)l ).  ( 9 arcsin 
I f (zd  - f(zo)l T If(z2) - f(zo)l  

This inequality is sharp. 

Very interesting results linking the quasiconformal mappings and the hyper- 

bolic metric were recently obtained by G. Martin [M], who applied a new tech- 

nique based on the holomorphic motions. The following theorem is among them. 

2.28. THEOREM ([M]): Let ft be a planar domain. Suppose that z ,w  E f~ and 

h~(z ,w)  < (1/2) logK.  Then there is a K-quasiconformal mapping f C ~2(K) 

such that f ( z )  -- w. 

In [M] the homotopy condition was not mentioned, but analyzing the proof of 

[M, Theorem 5.1] we see that the mapping f constructed satisfies the condition 

f C ~(K) .  
The paper [M] ends with the following question: Is it true that h~(z, f ( z ) )  < 

(1/2) logK for a K-quasiconformal mapping f with boundary values given by 

the identity mapping? 

The relations (2.18) and (2.22) show that the answer is "no" if ~2 is the disk. 
Moreover, it follows from Theorem 3 and some remarks in [KK, Ch. 4], that the 
answer is "no" for all domains of the form C ( a l , . . . ,  a~) if ai, i = 1 , . . . ,  n, are 

distinct and n > 3. It will be shown in Section 6 that the correct upper bound 
in Martin's question is d(K).  

In this section we mentioned only results linking quasiconformal mappings and 

the hyperbolic metric that we plan to discuss later in this paper. For the general 

theory we refer the reader to the book of Krushkal and Kiihnau [KK] and to the 

references therein. 

3. The hyperbolic distances in C(-1, 1) 

First we sum up some simple properties of the distance h(zl,  z2). 

{ z : ~ z > a ,  ~ z > 0 } , a E R .  
Let Ia = 
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3 .1 .  LEMMA:  (1) I [Z l ,  Z2 E I 0 " - { 1 , o o } ,  t h e n  

Isr. J.  Math. 

h ( z l , - z 2 )  _> h(zl,  22) > h(zl,  z2), h ( z l , - z 2 )  >_ h ( z l , - 22 )  >_ h(Zl, z2). 

Equality in the first and fourth of these inequalities occurs iff Nzl • Nz2 = O; 

equality in the second and third ones occurs iff .~zl • .~z2 = O. 

(2) Every disk or half plane in C(-1,  1) and every disk A~(1) with r <_ 2 is 

h-convex. 

Every image of an h-convex domain under a M6bius automorphism of C(-1,  1) 

is h-convex. 

The assertions of this lemma are easy consequences of Lemma 2.12. Assertion 

(2) of Lemma 3.1 implies the h-convexity of every disk Ar(a)(a) with a > 1, 

r(a) = ~ -  1 and of every half disk A +  (a) = Ar(~)(a)f3 H. In particular, the ( )  
quadrant I0 is h-convex. 

Further we shall show that every inequality for the hyperbolic distance h(zl,  z2) 

generates several new estimates. To this end we use a self-mapping of two-sheeted 

surface over C. Such an approach was applied in our previous paper [SOW] in 

studying the Teichmfiller extremal capacity. 

Consider the Riemann surface T~I consisting of two sheets over the domain 

C(-1,  1) branched at the points -1  and oo; and let 7~2 be a similar Riemann 

surface branched at the points - 1  and 1 (cf. Fig. 1). 

7~1 "R.2 

+ + + 0 0 0 + + '÷ + 0 
- - - - - 1  1 z = F ( w )  - 1 -  - 7 ' - -  1 

- -  - -  J - -  - -  

0 0 0 0 
+ + -t- - 1  1 - 1 +  ~ -bq- 1 

t I 

Figure 1. 

The function 

(3.2) F ( w )  = - - - i f - -  + ' 

where X/'(w + 1)/2 > 0 when w > -1 ,  maps the Riemann surface 7¢~ conformally 

onto T¢2. Thus, z = F(w)  maps C(-1,  1) onto itself in the sense of Theorem 2.6. 
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The inverse mapping given by 

(3.3) w - - g ( z ) = - l + 2 ( z + v / ~ - l )  2 with ~ - 1 > 0  f o r z > l  

maps the quadrant Io in one-to-one way onto the domain 

D0-- {w e H: Iw+l l  > 2}. 

By Lemma 3.1 the domains I0 and Do are h-convex. Combining this result with 

Theorem 2.6 we get 

3.4. LEMMA: The following equalities hold true: 

v7 -11 
A(g(z)) = A ( z ) [ v ' ~ - ~ ~  ~/ , ' ~ - f [ 4  Vz • H \ { - 1 ,  1, c~}, 

h(g(z , ) ,  g(z2)) = h(z , ,  z2) Vz,, z2 • I0 \{1, ~} .  

Let £(p) = {z • Io: [ z -  1[+ [ z + l [  = 2p}, p > 1, be an arc of ellipse, 
£(1) = [0,1). The function g(z) takes the arc £(p), p >_ 1, to the semicircle 

T~p)(-1) = {w: [w + 1[ = r(p)} NH, where r(p) = 2(p+ ~ ) ~  (see Fig. 2). 

' ( ( z ~ ) )  . - - "  " - . .  ", ~ 2  

- i 

Figure 2. 

Therefore, the projection along the ellipse (cf. the Agard-Gehring lemma) 
corresponds under the mapping g(z) to the circular projection onto the ray 

{w: ~w = 0, ~w  _< -1}. We remark that the computation below in (3.7) 
and (3.8) shows that I ~  + ~ [  is a constant on the ellipses with foci at 
-1,  1. These facts immediately lead to 

3.5. COROLLARY: I f  Z = x + iy moves on £(p) so that  y increases, then the 

function A ( z ) ~ -  1 [, and therefore A(z), decreases. 
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This Corollary shows that the Agard-Gehring estimate in Lemma 2.25 is a 

consequence of the symmetrization results and some simple properties of the 

Joukowski function. 

Next we combine Lemma 3.4 with known estimates for the hyperbolic metric 

in order to get some new ones. Let ri  = rl(z) = [Z  - -  1[, r_ 1 = r_i(z)  = [z + 1[, 

R1 = R I ( Z )  = I g ( z )  - 1], R - i  = R_i(z )  = ]g(z) + 1 I. The parameters R1 and 
R-1 can be easily expressed in terms of rl ,  and r - i .  Indeed, from (3.3) we have 

(3.6) Ri = 2v/lz 2 - 1 1 1 ~ 1  + ~ Z - l l 2  

----- 2 ~ ( r l  + r-x -t'- 2 rlv/-r-ir---i-1 cos((,o/2)), 

where qo is the angle in (0,7r] formed by the segments [z, 1] and [z,-1] at z. 

Applying (3.6) and the Law of Cosines, we find 

2 rlx/-~Y~-i @1 + r - i  + v/(ri  + r - i )  2 - 4 ) .  R1 (3.7) 

Similarly, 

(3.8) R - i  = (1/2)@1 ~ - / ' - 1 - [ -  ¢ ( r l  "4-r_l)2 - 4) 2" 

Now the Weitsman symmetrization result for h(zi, z2) (see Corollary 2.10) may 

be written in the following form. 

3.9. LEMMA: The function h(zi,  z2) admits the following lower estimates: 

h ( l + r l ( z i ) , l + r i ( z 2 ) ) ,  h ( l + r _ l ( Z l ) , l + r _ i ( z 2 ) ) ,  V Z l , Z 2 E H \ { - 1 , 1 ,  cx~}; 

h(1 + Ri(z i ) ,  1 + Rl(z2)), h(1 + R - i ( z i ) ,  1 + R-i(z2)),  Vzl, z2 • 70 \{1 ,  00}. 

The first and third estimates become equality for a11 zl > 1, z2 > 1, the second 

for all zi < -1 ,  z 2 < -1 ,  and the fourth becomes equality for all zi, z2 such that 

~ Z  1 = ~ Z  2 = O, ~ Z  1 ~__ O, ~ Z  2 ~ O. 

As we have mentioned above, the fourth estimate of this lemma coincides with 

that of Agard-Gehring. Sometimes, but not always, the new estimates of Lemma 

3.9 are better than those known before. 

For explicit estimates we need to express h(a, b) with 1 < a < b < oc in terms 

of simple functions. Below we get such an expression in terms of the function 

.(t).  
3.10. 

(3.11) 

LEMMA: If  1 < a < b < c¢, then 

a--1 / 
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ProoE: It is known (see [Ne, pp. 318, 319]) tha t  the function 

.~ ' (k)  k2 1) (3.12) 4 = with = (1 /2)(z  + 

maps the upper  half  plane H conformally onto the domain 

{~: 0 < ~ (  < 1 , 1 ~ -  1/21 > 1/2} 

such that  ~ ( - 1 )  = oc, ~(oc) = 1, ((1)  = 0. 

Using the formulas 

~(ir/r ')  = r'~(r) and ~'(ir/r ')  = r ' [~ ' ( r )  - i~(,')] 

(cf. [¢rRy, p. 90S]), we 

(3.13) ( ( - c )  = i ~ ' ( iV/~  - 1)/2) = 1 + i(2/Tr)#(V/(c - 1)/(c  + 1)) 
~(iv/(C + 1)/2) 

with c > 1. 

The  function (3.12) can be extended to the conformal mapping of the universal 

covering surface over C ( - 1 ,  1) onto H. Therefore h(zl, z2) = h~(~(Zl), ~(z2)). 

Now using (3.13), after simple computa t ion  we find the desired relation. 

The  function (3.12) leads to the following well-known explicit expression for 

the hyperbolic density (cf. [Ne]): 

(3.14) A(z)- K'(z)l 
2 ~ ( z )  

For z = x > 1, (3.13) and (3.14) imply 

x - 1  x - 1  -1 

which expresses A(x) as a flmction of a real variable x. Formula (3.15) together  

with the well-known relations 

~'(1) = 7r/2, ~ ( r )  = log(4/ r ' )  + a ( r ) ,  

where a ( r )  ~ 0 as r --+ 1, give the following asymptot ic  equality: 

(3.16) log A(x) = - log x - log log x - log 2 + a(x) 

with a(x) -+ 0 as x -+ ~ .  
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Lemma 3.4 is suitable for computing the hyperbolic density. A similar compu- 

tational method for the TeichmiiUer capacity p(z)  was used in our paper [SOW]. 

The idea of such a computation is classical: we will use the identity that is 

satisfied for A in order to bring our computation to the region with a known 

asymptotic behaviour of A. Following [SolV] consider the sequence zn, where 

z0 = z 6 -T0 \{1 ,  e<D} and 

{ g(zn) if ~g(z,~) >_ O, 

z ~ + l =  - g--~-n) otherwise. 

To show that  zn --+ oc as n ~ c~, we consider the function u(z)  = log Ig(z)/zl, 
which is evidently harmonic in the domain ~t~ = I0 "- A~(1), where 5 > 0 is small 

enough. 

Consider the boundary behaviour of u(z): if x >_ 1 + 5, then 

u(z )  >_ log(4z - 3) > log(1 + 5); 

if 0 < x < 1 -  5, then 

u(x)  > log(l/x) > log(1 + 5); 

if y >_ 0, then 

u(iy)  > log(4(y + l /y ) )  > log 8. 

L e t z = l + S e  i ° , O < O < r r .  Then 

]g(z)/z] = ]4z + 4V/-fiz ~ - 1 - 3/z] 

= I1 + 4x/~e  i°/2 + 76e~°1(1 + 0(5)) 

= [(1 + 8 v ~ c o s  0/2 + 326 + 146cos O] lIe (1 + 0(5)) 

_> (1+  185) 1/2 (1 + 0(6)) > 1 +  6 

for all 6 > 0 small enough. 

Clearly, Ig(z) /z i  --+ oo as z 6 -[o tends to oo. Therefore the maximum principle 

shows that u(z)  > log(1 + 6) for all z E ft~. Hence IZn+lt >_ (1 + 6) lz,~l for all n 

if z = z0 E ~ .  Thus iz,~i --+ oo for all z 6 i0 \{1,  o~}. 

By Lemma 3.4 and the symmetry property of the hyperbolic density, 

/ 
z 2 . - 1  - 11 

= 1 + 4 ? C T c x l  4 
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Therefore, 

(3.17) 
n-:  t r Y + l +  z v  -ll 4 

log A(z) ---- log A(zn) + E log 

The asymptotic behaviour of A(z) for z tending to c~ is known (see, for example, 

[N, p. 246]): 

(3.18) log A(z) = - l o g  Izl - log log Izl  + + : ( l / z ) ,  

where C~ = - l o g 2  by (3.16). Now (3.17) and (3.18) give 

3.19. LEMMA: The asymptotic formula 

n--1 

log A(z) = - log 2 - log Izn I - log log IZn ] + E log 
k=0 

holds true with a,~ --+ 0 as n --+ oc. 

By the Hartogs result (see [Ne, p. 328]), 

(3.20) A(0) = 47r2F-4(1/4) = 0.228 . . . .  

I v Y + l +  zkv/~:~--ll 4 
~- Og n 

Using our formula with an initial point z = 0 and n = 8, we get the value 

A(0) = 0.229...  which agrees with (3.20). Some other computational results 

making use of the formula in Lemma 3.19 are shown in Fig. 3 and Fig. 4. 

Now, we give one more estimate, also connected with the symmetrization result 

of A. Weitsman [W2]. Let A1 and h: be the hyperbolic density and hyperbolic dis- 
tance in C(-1,  1, 0), respectively. By Weitsman's theorem, A 1(1 + re ~°) increases 

in 0 < 0 < ~r. Thus, 

(3.21) h1(~: ,~2)>_h:(1+, ' : (~1) , l+r:(~2))  for all ~:, @ e C(-1,  1, 0). 

For z:,z2 E Io \{1,  c~} let (1,@ E H denote the preimages of z:,z2 under 
Joukowski's mapping z = (1/2)((+ 1/(), which takes C(-1,  1, 0) onto the surface 

R2 in the sense of Theorem 2.6. Next, let 1 + Sl and 1 + s2, respectively, be the 

images of the points 1 + r1((1) and 1 + r1((2) under this mapping. With this 

notation, Lemma 3.9 and the estimate (3.21) imply 

3.22. LEMMA: f f  Zl, z2 C C(-1,  1), Zl ~ z2, then 

h(z:,z2) > h ( l + s : , l + s 2 ) .  
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Equal i ty  here occurs iff Zl, z2 E (1, oc). 

After simple calculations one sees that  sk = s(zk),  k = 1, 2, where 

s = ~ / ( 2 ( 1  + ~)) 

with 

Isr. J. Math.  

(~ = (~(Z) = I ~ ( Z ) -  11 : ~ / ~  (V/7"l -}-T_ 1 -~- 2 ~ -  ~//r l -~-T_ 1 --  2 )  . 

Figure 3. The function log A(x) is plotted on the real axis. The formula in 

Lemma 3.19 with n -- 4 (dash-dotted line) and n = 8 (solid line) is used. 

3.23. THEOREM: Under the hypotheses o f  Theorem 2.8, 

I~l~lt~,=l ~ 4 7 r 2 r - 4 ( 1 / 4 )  • 

I I F I ~1 I I I I 

"1 

0.5 / / l  
0 / 

/ 
/ k _o., / \, 

/ \ 

/ /  N .  

2 5 1  ~ I I i 1 I I I I 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Now we give a couple of applications of our estimates of the hyperbolic metric. 

The first of them gives a stronger version of Bermant's theorem for the class/~ 

introduced in Theorem 2.8. 
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Equality occurs only for the functions f ( z) -- eia fo( eiZ z ) detined in Theorem 2.8. 

Proof." We may assume that Iw21 _> IWll. Let 7r: A -+ C(wl,w2) be a universal 

covering mapping with 7r(0) = 0. By the principle of subordination (see, for 

example, [Ne, p. 227]), 

(3.24) Ac(wl ,~ ,2) (O)  = 1/1~'(o)1 <_ 1/If'(o)l = 1. 

By performing a linear mapping, we see that (3.24) is equivalent to 

Iw21+ Iwll - 2 
This together with Corollary 3.5 implies 

(3.25) A(0)< Iw2l+lwllil-(Iw2[-lwll)2 
and the desired inequality follows from 3.20). 

0.8 

0.6 

0.4 

0.2 

i i i - u  i I 

% 

\ 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Figure 4. Some level curves of the function log A(z) are plotted. 

computation, the formula in Lemma 3.19 with n = 8 is used. 

% 

L 

\ 
L 

2 

For the 
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Equality in (3.24) occurs iff f ( z )  has the form r(ei/~z); equality in (3.25) holds 

only if [wl[ = [w2 [. The desired equality assertion is immediate. 

Let the complex numbers wu = rk( f )e  2~ik/n, rk( f )  > 0, k = 0 , . . .  ,n  - 1, be 

exceptional for a function f such that f (0)  -- 0, [if(0)[ = 1. If f is univalent in 

A, then 

n--1 

(3.26) U rk(f) >_ 1//4 Vn E N. 
k=O 

The case n : 1 is known as the Koebe 1//4-theorem; the case n : 2 is due to 

G. Szeg5 [Sz]; the case n = 3 was treated by G. M. Goluzin [G] and also by 

E. Reich and M. Schiffer [RS]. In the general case, this inequality was established 

by V. N. Dubinin [D]. 

3 . 2 7 .  O P E N  PROBLEM. It seems interesting to prove inequalities similar to 

(3.26) for the class 7~ and for tile class A4 of all normalized functions f that  are 

meromorphic in A. In Theorem 3.23 we have taken the first step in this direction. 

The following theorem provides an example of an application of our estimates 

of the hyperbolic metric to quasiconformal mappings. This result is similar to 

the Agard-Gehring Theorem 2.27. 

3.28. THEOREM: Suppose that f is a K-quasiconformal mapping of  C, f(oo) = 
oo. Then for each triple zo, zl,  z2 

(3.29) If(z2) - / ( z o ) l  + I / ( zd  - f(zo)l  - I z 2  - zol T l z l  - Z o l  " 

This inequality is sharp. 

Proof: Without loss of generality we may assume that  zl = f ( z l )  = -1 ,  z2 = 

f(z2) : 1. Suppose also that If(zo) - 11 + If(zo) + 11 < IZo - 11 + IZo + 1 I, 
for otherwise (3.29) follows trivially, since ~l/ l(( t)  <_ t. Now, f is a normalized 

K-quasiconformal mapping of C( -1 ,  1). Hence Theorem 2.16 implies that 

1 
(3.30) h(zo, f(zo)) <_ -~ log g .  

From Lemmas 3.9 and 3.10 we obtain 

1 l~_~v ~ j l .  
- I....  lzo ::zoll> I ) 
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The desired inequality now follows from (3.30) and (3.31). 

The sharpness of inequality (3.29) easily follows from the equality assertions 

of Theorem 2.16 and Lemma 3.9. 

4. Twice-punctured  disk 

Let D be a simply connected domain in (; and let a, b E D, a ¢ b. The do- 

main D(a, b) equipped with the hyperbolic metric AD(a,b) gives an example of a 

hyperbolic space depending on one real parameter. The unit disk A punctured 

at the points =kk, 0 < k < 1, may be considered as a model of such a space. 

Let Ak(z) and hk(zl ,  z2) denote the hyperbolic density and hyperbolic distance 

in A ( - k ,  k). In this section we show that  Ak and hk are subject to the relations 

similar to those of A and h. 

4.1. LEMMA: (1) I fz l , z2  C A N I 0 \ { k } ,  Zl ¢ z 2 ,  then 

h k ( z l , - z 2 )  > hk(zl,  22) > hk(Zl, z2), hk(Zl,--z2) > hk(zl,--22) _> hk(zl,  z2). 

Equafity in any one of these inequalities occurs iff the corresponding pairs of 

points coincide up to symmetry  w.r.t, the corresponding coordinate axis. 

(2) Non-Euclidean disks and non-Euclidean half planes in A ( - k , k ) ,  

punctured non-Euclidean disks A~.h)(k) \{k}  with the non-Euclidean radius 

r _< log((1 + k)/(1 - k ) ) ,  punctured discs Ar \ { - k , k }  with ~ <_ r < 1, and the 

punctured half disk {z E A ( - k ,  k) :Nz > 0} are hk-convex. 

The next lemma follows from Corollary 2.10 via an auxiliary conformal 

mapping z ~ (z - k)/(1 - kz). 

4.2. LEMMA: Let zl, z2 C A ( - k ,  k), zt ¢ z2, and let z (k) denote the projection 

of a point z E A ( - k ,  k) onto the segment [k, 1] along the non-Euclidean circle 
centered at k. Then 

h Iz(k) z (k)~ hk(zl ,z2)  > kt 1 , 2 /. 

_(k) Equality here is attained i f f  z j  = z j  , j = 1, 2. 

Now we construct an analog of function (3.2) for the domain A ( - k ,  k). Let 

z - -  FI( ) : 

where 

(4.3) f l (w )  = ksn(w, k2), f2(~) = 1 + ( i / r ) logC,  
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and log ~ means the principal branch of the logarithm and sn is the Jacobian 

elliptic function sn. The function FI(~) maps the suitable annulus K ( t - : ,  t) = 
{~: t - :  < I~l < t}, t > 1, punctured at ~ = 1 conformally onto the domain 

A ( - k ,  k). Due to the conformal invariance of the modulus of a doubly-connected 

domain the parameters t and k are subject to the relation 

(4.4) log t =/t(k2).  

It is known (see, for example, [Ku, p. 167]) that Ft(4) takes every semicircle 

T + = Tr N ]H[ with 1 < r < t onto the arc £(h)(n) n Io of the non-Euclidean 

ellipse £(h)(~) = {z: h a ( z , - k )  + ha ( z , k )  = n} with n = h a ( F t ( r ) , - k )  + 

ha(F:(r) ,  k). Therefore the projection along the non-Euclidean ellipses in the 

z-plane corresponds to the circular projection in the C-plane. 

It is also easy to see that F1(4) takes the domain K(1, t)N H eonformally onto 

A A I0. By Minda's Lemnm 2.12, K(1, t) N H is hyperbolically convex w.r.t. 

K ( t - : ,  t). Therefore, 

hk(Zl, Z2) : hK(t- , , t  ) \ { 1 } ( F l l ( z : ) ,  F l l ( z 2 ) ) ,  

by Theorem 2.6 and Lemma 4.1. Combining these results and Corollary 2.10, we 

get 

4.5. LEMMA: IYZl, Z2 E A ( - k ,  k), z: ~ z2, then 

hk(zl,  z2) _> hk(ial ,  in2), 

where iot k stands for the projection of zk onto the imaginary positive axis along 

the corresponding ellipse £(h)(n). 

Equality here occurs iff z: = in1, z2 = in2 or z: = - in1 ,  z2 = - in2 .  

4.6. Remark: There is no complete analogy between our results concerning the 

distances h(zl,  z2) and ha(z:, ze) because we cannot iterate F~-: in the same way 

as we do with g(z) defined by (3.3). So there is no asymptotic formula for the 

hyperbolic density Ak similar to such a formula for A. 

5. Schottky's theorem for bounded functions 

Schottky's theorem is concerned with the rate of growth of holomorphic 

mappings, or, more generally, quasiregular mappings of the unit disk A into 

the complex plane that omit two finite values, which we assume to be 0 and 1. 

Thus we define 

A ( r , M , K )  = {f: A ~ AM \{0,  1}: f is g-quasiregular, If(0)l = r}, 
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with 0 < r < M < oo, M > 1, K > 1. As is well known [LV], in the case 

K = 1 the functions in the class A ( r , M )  = A( r ,M,  1) are holomorphic. The 

classical case deals with the class A(r)  = A(r, oo). Schottky's problem for the 

class .4(r, M, K)  consists of finding the following extremal function: 

(5.1) C A ( t , r , M , g ) = s u p { I f ( z ) ] :  f e A ( r , M , K ) ,  [ z [= t } .  

In the special cases we shall use the abbreviations CA(t, r, M) = ¢~t(t, r, M, 1) 

and CA(t, r) = CA(t, r, oc). 
In our next lemma we prove the existence of a special function that is extremal 

for the Schottky problem in the class A(r, M).  

5.2. LEMMA: Let 0 < r < M, 1 < M <_ ec. There is a function F ( z ; r , M )  E 

A(r, M)  that maps the disk A onto the universal covering surface over the disk 

AM punctured at the points 0 and 1 such that the point w = F(z; r, M)  runs 

monotonically along the segment I - M , - r ]  when z runs through the segment 

[-1,  0] and such that F(0; r, M) = - r .  

Proo~ We construct F(z; r, M)  as follows. Choose parameters 0 < (f < 1 and 

r > 0 and consider the M6bius mapping 

(5.3) f l (z )  = --iT z(1 -- i5) + i(1 + i5) _ (1 + r),  
z(1 + i5 )  - i(1 - i5) 

which takes the unit disk A onto the upper half plane H such that 

f1(1) = -1 ,  f1 ( -1 )  = - (1  + 2T), f l (0)  = - (1  + T) + Te i(~+2arctan(i), 
I+5 
r +--'-g~ J. f l ( - - r )  - - (1  ~- T) ~- Te i (~+2arc tan  

Note that f l  takes the segment [-1,  1] onto the semicircle 

{z = - (1  + T) + Tel°: 0 < 0 < 7r}. 

Consider the circular quadrangle 

Q(T) = H \  zX \ A,(1 + T) \ 2 ~ ( - ( 1  + T)). 

Let f2 map Q(T) conformally onto N such that 

f 2 ( 1 +  27) = - f 2 ( - ( 1  + 2T)) = M, f2(1) = - f 2 ( - 1 )  = 1. 

The function f2 can be continued 1)y symmetry to a universal covering mapping 

from H onto the domain f~(M) = C "- ( - co ,  - M ]  \ [ M ,  o c ) \ { - 1 ,  1}. 
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Next we consider the function 

(5.4) 13(¢) = 
+ M 2 _ ~/(M 2 _ 1)(M 2 _ ~2) 

~+1 

which maps the domain C \ ( - co ,  - M ]  \ [ M ,  co) conformally onto A M such that 

f3(1) = 1, f a ( - 1 )  = 0, f3(M) = - f 3 ( - M )  -- M. 

Finally, the function w = F(z) with 

F = f30  f2 o f l  

gives a universal covering mapping from A onto AM(0 , 1). It is easy to see that  

we can choose the parameter 5, 0 < 5 < 1 in (5.3) so that F(0) = - r .  Besides, 

by our construction, the segment [-1,  0] goes to the segment I - M , - r ] .  

5.5. THEOREM: For all r, M, and t, satisfying the conditions under 

consideration, 
CA(t, r, M) = - F ( - t ;  r, i ) .  

The equality [f(Zo)[ = CA(r, M) for some Zo, Izol = t, occurs iff 

f ( z )  = F((-ZlZot/Zo); r, M). 

Proof" Let f E .A(r, M). By the principle of the hyperbolic metric, 

(5.6) f(zo)) <_ ha(O, zo). 

The domain AM(0, l) is circularly symmetric w.r.t, the negative real axis. Hence 

by Corollary 2.10, 

(5.7) haM(o,1)(f(0), f(zo)) >_ h&M(o,1)(--r,--If(zo)l) 

= h-length([-r, -If(zo)I]) 

and 

(5.8) haM(0,1) (--r, F ( - t ;  r, M) ) = h-length([-r, F ( - t ;  r, M]) 

= ha  (0, z0), 

where h-length denotes the hyperbolic length in AM(0,1). The second 

equality in (5.8) follows from the construction of the function F(z; r, M).  The 

relations (5.6) - (5.8) together with the monotonicity property of the function 

h-length(I-r,-t]) lead to the desired equality. 
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By the equality statement of Corollary 2.10 the equality in (5.7) can occur 

only if f (0)  = - r  and - M  < f(zo) < - r .  This together with the monotonicity 

property of hA~(O,1)(--s, --r) gives 

f(O) = - r ,  f(zo) = F ( - t ;  r, M),  

if If(zo)l -- ~Mt ,  r, M).  The function ~ = F-X( f (z ) ;  r, M) with F - l ( - r ;  r, M) = 

0 satisfies the Schwarz lemma. Since w(zo) = F -  1 (f(zo); r, M)  = - t  = -Izol  then 

F -1 (f(z) ;  r, M) = -z(lzot/zo),  and the equality assertion follows. 

Theorem 5.5 combined with the K-quasiconformal Schwarz leumla leads to 

Schottky's theorem for bounded K-quasiregular mappings. 

5.9. THEOREM: For all r, M,  K,  and t satisfying the conditions under 
consideration, 

~A(t, r, M, K) -- --F(--qoK(t); r, M). 

The equality If(z0)l = ~bn(t ,r ,M,K) for some zo, Iz01 = r, hdds t rue only 

for the function F(-wK(Z(Izoj/zo)); r, M), where WK(') is the K-quasiconformal 
function that is extremal for the K-quasiconformal Schwarz 1emma (see [LV]). 

In the classical case the function @A(t,r) can be expressed in terms of the 

well-known distortion functions of quasiconformal theory as follows from [Hem], 

[ M ] . F o r O < r < l ,  0 < K < o o ,  let 

where 

K - 1  

,,,,<(,) = r. ,< ( t___)) -,] 
L991/K(t,) with r = (t/t') 2. 

The function CA(t, r) admits the following asymptotically sharp bounds [Hem], 

CA(t,r) < 1 (re~)(l+t)/(l_t) for r _> 1, 

~bA(t,r) < ~I (ew)(l+t)/(l_t) for r _< 1. 

More refined estimates occur in [AnVam]. The best estimates known to us are 

due to S.-L. Qiu [Q], who proved that  for K _> 1, t > 0, 

16~K(t) _< min{16t + A K - A, (16t + 8) K - 8}, A = exp(2#(1/~/1 + t)). 
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5.10. OPEN PROBLEM. It would be interesting to find similar explicit upper 

bounds for CA (t, r, M, K)  in the general case. The main question here is to find 

a suitable explicit expression for the function f2 defined in the proof of Lemma 

5.2 that maps the circular quadrangle onto the upper half plane. 

6. D i s t o r t i o n  o f  t h e  i n t e r i o r  o f  a d o m a i n  u n d e r  K - q u a s i c o n f o r m a l  self- 
mapping 

In this section we study some properties of the function h~(K) introduced in 

Section 2. The following theorem relative to Martin's question mentioned in 

Section 2 gives sharp bounds for hn(K). 

6.1. THEOREM: If ~ is a planar domain and K > 1, then 

1 
log K _< hn (K) _< d(K),  

where d(K) is defined in Theorem 2.19. These bounds are sharp. 

Proof'. We need to prove the second inequality only. The first one follows from 

Martin's Theorem 2.28. 

The ingredients of the proof presented below are known and belong to 

L. Ahlfors, L. Bers, and others. We shall adopt those to our situation. Here we 

follow closely the exposition in [B2, pp. 16, 17] and in [Gar, Ch. 3]. 

The domain ~ may be identified with the quotient A/G, where G is a torsion 

free Fuchsian group acting on A. Let A be the limit set of G. Then either A = ~i', 

or A is a closed nowhere dense subset of T. 

Let ~: A --+ ~ be a universal covering mapping. It is known that every mapping 

f :  f~ -4 f~ homotopic to the identity lifts to a mapping p: A --+ A commuting 

with every g E G and then 

(6.2) ~ o p  = f o ~ .  

Vice versa, every such mapping p satisfies (6.2) with some mapping f :  ft -+ 

f~ homotopic to the identity. Moreover, the mapping p is bijective and K- 

quasiconformal if f is. If so, p extends by continuity to T. Since p commutes 

with all elements of G, it leaves each point of A fixed. Besides, it leaves T \ A 

pointwise fixed if and only if f is homotopic to the identity modulo (T \ A)/G. 
Thus, if A = T, then p E A(K).  For z0 C fi let ~0 E A satisfy ~(~0) = Zo and 

let w0 = P(~0). By (2.4), 

(6.3) ha(zo, f(Zo)) = min hA(~o,w) <_ hA(~o, Wo) <_ d(g). 
w:~(~)=f(zo) 
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The second inequality in (6.3) follows from the Krzyz Theorem 2.19. 

Let now A ¢ T and let b E T \ A. Then there exists a Dirichlet fundamental  

domain  D ~ for the group G which has an open boundary  arc a C O D  ~ such 

tha t  b E a C ~ \ A. Since D ~ is a simply connected Jo rdan  domain,  ~ maps 

D ~ univalently onto some simply connected domain ~ '  C ~;  it takes a onto a 

boundary  set a I c 0 ~  ~ in the sense of  the boundary  correspondence. 

Note tha t  if a point a belongs to a boundary  point  A E a ~ ( that  might  be 

non-singleton), then a C 0ft. Indeed, assmne tha t  a E ~ and choose a sequence 

zn ~ a, z,~ C fl~. Clearly, h~(zn, a) -+ 0 as n -+ oc. Since ~ is univalent 

in D ~ we can consider a univalent inverse mapping  ~ -1  from 12 ~ onto D/. By 

our assumptions,  ~- l (z , , )  -+ b E a. On the other  hand, there exists b ~ C 

A (10D p such that  ~(b') = a. Since G acts properly discontinuously on A, 

then mine: ~(¢)=~ h~(~, b ~) >_ c with some constant  c > 0 for all sufficiently big 

n. Therefore by (2.4), h~(zn, a) >_ c > 0 for such n and we get a contradiction. 

The  assumptions of the theorem for f imply tha t  the sequences z~ --~ a and 

f ( zn)  -+ a define the same boundary  point A. Therefore, the sequences ~ - l ( z n )  

and ~ - l ( f ( z ~ ) )  also define the same boundary  point b C a.  The latter means 

tha t  p keeps the unit  circle T to be pointwise fixed. Thus, p E A ( K )  and (6.3) 

holds true, which prove the theorem in the case under consideration. 

As was noted in [KK, Ch. 4], the lower bound in Theorem 6.1 is achieved only 

for the thrice punctured sphere. If  the Fuchsian group G corresponding to ~ is 

of the second kind, the proof  of Theorem 6.1 nmy be adapted in order to show 

that  h~(K)  is equal to the upper  bound in the inequality of Theorem 6.1. Thus, 

this upper  bound is achieved for a ra ther  wide class of domains.  

6.4. THEOREM: Let the Fuchsian group G corresponding to ~ be of the second 

kind. Then 

h~(K)  = d(K)  

for every K > 1. 

Proo~ The notat ion ~, G, D I, c~ used in what  follows was introduced in the 

proof  of the previous theorem. Choose a sequence (n E D I such tha t  ~ --+ b E c~. 

Let p~ > 0 be the biggest nmnber  such tha t  the non-Euclidean disk (h) A2p,~ (~n) lies 

in D' .  Clearly, Pn --+ oc as n -+ co. The MSbius mapping  

takes A (h) (p ~ p, ~n j  onto the disk Ar,~ with r,~ --+ 1 as n --+ oc. 
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Next, we define a K-quasiconformal mapping p~(() as follows. For ~ E D ', we 

set 

{¢~ l (r . fK(¢n(() /r ,~,O,  wo)) if ( C 5..~((n), 
Pn(() : ( otherwise. 

Here fg( - ,0 ,  w0) denotes the function that is extremal for Theorem 2.19 for a 

suitable w0. Then we continue pn(()  to the function defined on the whole disk A 

that commutes with every element g E G. It follows from Lemma 2 in [B1] that 

Pn • A(K).  

The arguments given in the proof of Theorem 6.1 show that for every pn there 

exists f~ • ~ ( g )  satisfying (6.2). Let zn --- ~(~,~). We have h~((,~,pn((n)) < p~ 

by the definition ofp~, and ha( (~ ,¢)  > 2pn for all ( • p(~,,) such that ~(()  = 

(u) D'. fn(Zn), by the assumption A2w(~n ) C Therefore, 

(6.5) hn(z~, fn(z~))  = min hA(~,~,() = hA((u,p~((,~)). 

By the definition of pn, 

(6.6) hA(~n,p~(~))  = hA(0, O,(p,~(~))) = h~(O, rnfg(O,O, wo)), 

where 

(6.7) hA(0, rnfK(0,  0, w0)) --+ hA(0, fK(0, 0, wo)) = d(K)  

since rn -+ l as n --~ oo. 

Now (6.5)-(6.7) imply the desired assertion. 

The assumptions of Theorem 6.4 may be interpreted in geometrical terms. By 

a free boundary continuum of f~ we mean a non-degenerate continuum 7 c 0 ~  

that  is a boundary arc of some simply connected subdomain 12' C f~. It is known 

(and follows also from the proof of Theorem 6.1) that  12 has a free boundary 

continuum if and only if the Fuchsian group of ~ is of the second kind. Thus, 

h~(K)  = d(K)  for every domain having a free boundary continuum. 

Actually, in the proof of Theorem 6.4 we only used the fact that  the 

covering map qo is injective on a hyperbolic disc which has an arbitrary large 

radius. This is always true for Fuchsian groups of the second kind. There are 

also Fuchsian groups of the first kind having the same property. Therefore, the 

equality h~(K)  = d(K) is still true for every domain ~ that corresponds to such 

a Fuchsian group of the first kind. 
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6.8. Remark: Let z0, w0 E gt be such that ha(zo, wo) = d(K). If f E gt(K) and 

f(zo) = Wo, then the function p defined by (6.2) belongs to A(K)  and satisfies 

the relation 

hA(zo,P(Zo)) = d(g). 

Therefore, by the uniqueness assertion of Theorem 2.19, p must be the 

Teichmiiller mapping fK(~,@,wo) for some ~o and w0 such that ~(@) = z0 

and ~(wo) = Wo. It follows from the Teichmiiller construction [Teich44] that 

fg(~, ~o, wo) does not commute with any M5bius self-mapping of A except the 

identity mapping. This implies that the Fuchsian group G relative to gt is trivial 

and therefore f} must be simply connected. 

We finish this paper by showing that h~ (K) is a conformal invariant. 

6.9. THEOREM: Ira domain ~1 C C is conformally equivalent to f~2, then 

h a , ( K ) = h a  2(K) VK>_I. 

Proo~ We may assume that gt is not exceptional. Let F be a conformal mapping 

from ~1 onto D2- Note that £tl and f~2 have the same unifornfizing Fuchsian 

group G. 

Let ~1: A -+ D1 be a universal covering nmpping. Then ~2 = F o ~Pl is a 

universal covering mapping of ~t2. 

As we have seen in the proof of Theorem 6.1, every f E ftl (K) lifts t o p  E A(K)  

commuting with every element of G such that 

~ l o p = f o ~ l  

and every such p may be regarded as a lift of some q E f~2(K): 

~ 2 o p = q o ~ 2 .  

This implies that every f E Ol(K)  may be represented in the form 

(6.10) f = F -1 o q o F 

with q E f~2(K), Vice versa, every q E ~2(K) may be represented as 

(6.11) q = F o f o F - I .  

Since the hyperbolic metric is invariant under conformal mappings, (6.10) and 

(6.11) imply the assertion of the theorem in the case under consideration. 
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6.12. OPEN QUESTIONS. It is an immediate consequence of the definition that 

ha(K)  increases in K. It seems plausible that ha(K)  decreases in ~, but we were 

unable to prove it. 

Another natural question concerns the density of the set of all values ha (K). 

For given K > 1, t > 0, and (1 /2 ) logK < t < d(K),  does there exist a domain 

such that ha (K)  = t? 

Our last question concerns an intriguing extremal problem with n-fold sym- 

metric conjectural extremal configuration. Let f~n denote the Riemann sphere 

punctured at n distinct points; ~t~ is the Riemann sphere punctured at the roots 
of unity ak -~ e 2 ~ r i k / n ,  k = 0 , . . . ,  n - 1. 

6.13 CONJECTURE: hu,,(K) < hu~(K) for ali K > 1. 

We expect the case of equality in (6.13) only for the images of ft* under the 

MSbius mappings. This problem may be reformulated in terms of fundamental 

polygons of the Fuchsian group relative to f~n. 
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