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ABSTRACT 

In this paper we show that  the geodesic flow on a compact locally sym- 

metric space of nonpositive curvature has a unique invariant measure of 

maximal  entropy. As an application to dynamics we show that  closed 

geodesics are uniformly distributed with respect to this measure. Fur- 

thermore, we prove that  the volume entropy is minimized at a compact 

locally symmetric  space of nonpositive curvature among all conformally 

equivalent metrics with the same total volume. 

Introduct ion  

In 1969 Margulis [21] constructed for compact manifolds of negative curvature 

(or more generally for Anosov flows) a measure of maximal entropy, i.e., an 

invariant measure whose measure theoretic entropy coincides with the topolog- 

ical entropy. The main tools of his construction were the stable and unstable 

foliations. As an application he obtained precise asymptotic estimates for the 

growth of the number of periodic trajectories previously only known in the case 

of constant negative curvature. In 1972 Bowen [4] obtained an equidistribution 

result for the periodic orbits. More precisely, he showed that  if PT denotes 

the flow invariant measure supported on the finite number of periodic orbits of 

period at most T then ~T converges in the weak-star topology to a measure 

of maximal entropy. In 1973 Bowen [5] proved that  the measure of maximal 

entropy is unique and, therefore, his and Margulis' constructions lead to the 

same measure (see also [12]). 

Received October 19, 2003 and in revised form April 21, 2004 

171 



172 G. KNIEPER Isr. J. Math. 

At a MSRI problem session in 1984, A. Katok [6] conjectured that the geodesic 

flow on a certain class of compact, nonpositively curved manifolds (rank i mani- 

folds) admits a unique invariant measure of maximal entropy. Furthermore, the 

rank 1 (or hyperbolic) closed geodesics should be uniformly distributed with 

respect to this measure. In 1998 we [16] confirmed this conjecture (see also [17] 

for a survey). 

In this paper we would like to extend this result to all compact locally sym- 

metric spaces of nonpositive curvature and higher rank, provided they do not 

have a Euclidean factor. By the rank rigidity theorem of [1] and [7] this essen- 

tially implies the uniqueness of the measure of maximal entropy for all compact 

nonflat manifolds of nonpositive curvature. In the fiat case the topological en- 

tropy is zero and, therefore, every invariant measure has maximal entropy. 

The methods in our proof are completely different from the techniques used 

in the rank 1 case. Instead, tools developed in [19] will be of central importance. 

Description of the results 

Let (X, g) be a simply connected Riemannian manifold of nonpositive curvature. 

Denote for each unit tangent vector v E S X  by Cv the geodesic with initial 

condition 6v(0) = v. Then (X,g) is a symmetric space if for each p E X the 

geodesic reflection Sp: X -+ X given by Sv(cv(t ) = cv(-t) ) defines an isometry 

on X. For symmetric spaces the connected component G := Io(X) of the 

isometry group containing the identity acts transitively on X. Furthermore, for 

each p E X the isotropy group 

K := Gp = {g E G I gP =P} 

is a maximal compact subgroup of G. Hence, X is isomorphic to the coset space 

G/K. Each geodesic is contained in a flat totally geodesic subspace F, whose 

dimension is equal to the rank of X. A tangent vector v E T X  is called regular 

if the corresponding geodesic is contained in a unique fiat. Denote by Reg the 

set of regular vectors and its complement, called the singular set, by Sing. Then 

for any point p in a maximal fiat F the intersection 

Sing N TvF 

constitutes a finite number of hyperplanes. The Weyl chambers (sometimes 

called spherical Weyl chambers) are the connected components of SpF \ Sing. 
Each Weyl chamber W is a fundamental domain for the G-action on S X  in the 
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following sense. The union of all translations of the closure IP of W covers SX, 
i.e., 

U gw = sx .  
g6G 

Furthermore, for each Weyl chamber W and g 6 G the intersection of gW and 

W is empty unless g acts as the identity on the unique flat containing W (see 

prop. 2.12.5 of [9]). 

Now let X = G/K be a symmetric space of nonpositive curvature and without 

Euclidean factor, i.e., X is a symmetric space of noncompact type. Furthermore, 

assume that X has higher rank, i.e., rankX _> 2. Let F C G be a cocompact 

discrete subgroup (uniform lattice), i.e., M = X/F is a compact Riemannian 

manifold. For a fixed p 6 X, choose a Weyl chamber W C SpX. Then, for 

each v 6 W the orbit Gv constitutes a closed set invariant under the geodesic 

flow (see [9] for a comprehensive treatment of symmetric spaces of nonpositive 

curvature). 

For each v in the interior of W (regular direction) the geodesic flow restricted 

to SMv := F\Gv C SM is mixing with respect to the probability measure #v 
induced by the Liouville measure on SM. Furthermore, the projection of each #v 
onto M is the normalized Riemannian volume. The ergodicity has been obtained 

by Mautner [22] and mixing is a consequence of Moore's ergodic theorem [23]. 

By homogeneity of the orbit Gv the sum of the positive Lyapunov exponents X, 

is constant on SMv. This sum is also the measure theoretic entropy h,. (SMv) 
of the geodesic flow restricted to SMv since Pesin's entropy formula asserts that 

for smooth invariant probability measures their measure theoretic entropy is the 

average of Xv. For general invariant probability measures Ruelle's inequality [24] 

implies that the average of X, and, hence, X, is an upper bound for the measure 

theoretic entropy. Therefore, the measure #v maximizes the entropy among all 

invariant measures and by the variational principle, h,~ (SMv) coincides with 

the topological entropy htop(SMv) of the geodesic flow restricted to SMv. 
Furthermore, there is an algebraic description of htop(SM,) = h,,, (SMv) = 

Xv as the sum of the positive roots evaluated at v. It attains its maximum 

at a unique element Vmax 6 W which we will call the maximal direction [25]. 

In particular, the topological entropy of the geodesic flow on SM, is maximal 

on SMmax -- F\Gvmax. Moreover, the topological entropy of the unrestricted 

geodesic flow on SM coincides with the entropy of the geodesic flow on SMmax, 

and, therefore, the Liouville measure #v .... induced on SMmax defines a measure 

of maximal entropy for the geodesic flow on SM as well. 

The main result of this paper asserts: 
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THEOREM 1: For each v in the interior of a spherical Weyl chamber, the geodesic 

flow Ct restricted to SMv has a unique measure of maximal entropy and is, 

therefore, given by the induced Liouville measure #v. 

The following theorem is a consequence of Theorem 1. 

THEOREM 2: The geodesic flow ~t: S M  --+ S M  has a unique measure of maxi- 

real entropy. This measure is the Liouville measure induced on the maximal set 

S Mmax. 

As a corollary we obtain the uniform distribution of closed geodesics in a 

compact locally symmetric space. Let P~(M) be a maximal set of e-separated 

closed geodesics on M. Two closed geodesics c1, c2: IR ~ M are called e- 

separated if d(cx(t),c2(t)) > e for some t E IR, where d is the distance function 

induced by the Riemannian metric. In this set consider the subset of closed 

geodesics 

P~(T) = {c e P~(M) I per(c) _< T} 

of period less than T. In his thesis, Spatzier showed [25], using a closing lemma 

(see also [2] chapter 5 for a published version of Spatzier's result and [9] for 

a geometric proof of the closing lemma), that  the exponential growth rate of 

P~(T) is equal to the topological entropy, i.e., 

lira log card P~ (T) = h, 
T-~oo T 

provided e > 0 is sufficiently small. Consider the invariant measure #T defined 

by 
1 

fd#T = Y~{ceP,(T)} ~ fper(c) f(d(s))ds 

M card P, (T) ' 

where per(c) denotes the period of the closed geodesic c and f is a continuous 

function on SM.  As a corollary of the uniqueness of the maximal measure we 

obtain: 

THEOREM 3: For e > 0 sufficiently small a maximal set of closed geodesics is 

uniformly distributed with respect to the measure #v ..... of maximal entropy, 

i.e., 

p T  --+ ~v . . . .  

in the weak-star topology as T -+ oo. 



Vol. 149, 2005 THE UNIQUENESS OF THE MAXIMAL MEASURE 175 

Remark: We do not know if one can choose the closed geodesic to be pairwise 

non-homotopic. As we were told by Ralf Spatzier, it does not follow from his 

work that the exponential growth rate of non-homotopic closed geodesics is 

equal to the topological entropy. 

The proof of Theorem 3 is a consequence of the uniqueness of the measure of 
maximal entropy together with Spatzier's result [2] and the following proposition 

whose proof is essentially given in [16]. There, the proposition is stated for non- 

homotopic closed geodesics, but all what is used in the proof is that they are 

separated. 

PROPOSITION 4: Suppose there exists a sequence Tk --4 cx) such that 

lim 1 T,.--+cx~ Tkk log card P~(Tk ) = htop. 

Then the accumulation points of {#Tk } with respect to the weak-star topology 
are measures of maximal entropy. 

Closely related to the topological entropy is the volume entropy which is 

defined for any compact manifold (M, g). Namely, if X is the universal covering 

of M, Br(p) the geodesic ball of radius r about p E X, and vol(Br(p)) the 

volume with respect to the Riemannian metric g lifted to X, then the volume 

entropy is given by 
h(g) = lim logvol(Br(p)) 

r--+oo r 

By a result of Manning [20] the volume entropy h(g) is less than or equal to 

the topological entropy htop(g). Equality holds if the metric has nonpositive 
curvature [20] or more generally has no conjugate points [10]. Besson, Courtois 
and Gallot [3] have shown that compact locally symmetric spaces of negative 

curvature have minimal entropy among all homotopy equivalent Riemannian 

manifolds having the same volume. More precisely, they obtained: If (M0, go) 
is a compact locally symmetric space of negative curvature and of dimension 
at least three, then for all other homotopy equivalent compact Riemannian 

manifolds (M, g) 
(volgo (M) ~ 1/n 

h(g) >_ \ volg(M) ] h(go). 

Furthermore, the inequality is strict unless g and go are isometric up to a scaling. 

This result has been recently extended by Connell and Farb [8] to products of 

compact locally symmetric spaces of negative curvature, provided the dimension 

of each factor is at least three. 
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It is a difficult question if the same holds true for compact locally symmetric 

spaces of higher rank, which are not products. However, we give an affirmative 

answer to this question in a conformal class of such a locally symmetric space. 

In the rank 1 case this is an old result of A. Katok [11] (see also [14] and [18] 

for a general survey). 

THEOREM 5: Let (M, go) be a compact n-dimensional locally symmetric metric 
of nonpositive curvature and g any other metric conformally equivalent to go. 

Then the inequality 
Ivolgo(M)'~ l/~ h, ~ 

is strict unless the metrics g and go are homothetic, i.e., they agree up to a 
constant. 

P r o o f  of  the  theorems  

Let v be a vector in the interior of a fixed Weyl chamber W, SMv := F\Gv 
be the closed subset of SM invariant under the geodesic flow Ct on SM and 

# :__ #v be the Liouville measure induced on SMv. 
For each flow invariant measure v on SMv we denote by h,(SMv) the mea- 

sure theoretic entropy and by htop(SMv) the topological entropy of the geodesic 

flow Ct restricted to SM,. First we remark that  it is enough to prove unique- 

ness of the measure of maximal entropy among the ergodic measures on SMv. 
This follows from the fact that  by the ergodic decomposition theorem we can 

decompose each invariant measure v into the average of ergodic measures vv, 

i.e., 

v = ]E vydm(y), 

where m is a probability measure on the set E of all ergodic Ct-invariant mea- 

sures on SM~. Since entropy is an affine function on the set of probability 

measures on SMv, 

hv(SMv) = JE h~ (SMv)dm(y). 

If h~(SMv) = htop(SMv) the variational principle implies h~(SM,)  = 
htop(SMv) for m almost all y • E.  Therefore, the uniqueness in the class of 

ergodic measures yields uniqueness in general. 

Let A + be the set of positive roots a: TpF --4 R, associated to the Weyl 

chamber W C TpF contained in the tangent space of a maximal flat F.  As was 
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shown in [25] (see also [91), the sum 

= F_, 
aEA+ 

is equal to the sum of the positive Lyapunov exponents of Ct: SMv -+ SMv, 
where m~ is the multiplicity of the root a. As explained above it is equal to the 

topological entropy htop(SM~). Now consider an ergodic invariant measure on 

SMv such that  h~ (SM~) = htop (SMv). Therefore, Ruelle's entropy inequality 

[24] 
P 

h (SMv) < __J, Mo xvg  
becomes an equality and by a well-known result of Ledrappier and Young [19] 

the conditionals ux on the strong unstable foliation W ~ in SMv are smooth and, 

hence, absolutely continuous to the conditionals #x of #. 

We recall that  the conditionals u~ are defined as follows (see [19], page 513). 

Let { be a measurable partition subordinate to W ~, i.e., a measurable parti- 

tion such that  for all x E SM~ we have 

(a) c 
(b) ~(x) contains a neighborhood of x open in the submanifold topology of 

Then there exists a family of probability measures u~ on ~(x) such that  for all 

measurable sets A C SMv, 

x ~ u~(A) = ux(A ~ ~(x)) 

is measurable with respect to the a-algebra Be generated by elements of ~. 

Furthermore, u decomposes with respect to ~, i.e., 

= / ux(A)du(x). u(A) 

The conditional measures u~ are up to a set of u-measure zero uniquely charac- 

terized by those properties. If u is a measure of maximal entropy ux is absolutely 

continuous for u-almost all x to #x, where #x are the conditionals of the Liou- 

ville measure # := #v restricted to SM~. Furthermore, the Radon Nikodym 

derivative p = du~/d#~ has the property ([19], page 533) that  

p(y) I-Ij~l Jac D¢IE ~ (¢-Jy) 
O4) p(x) 1-'[j=l JacD¢lEu(O-Jx) ' 

where JacD¢lEU(x) is the Jacobian determinant of ¢ = ¢1 restricted to EU(x) 
= TzWU(x). Since the Jacobian is constant on SMv, p(y) = p(x) for all 
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y E ~(x), and since vx and v~ are probabili ty measures, p = 1. Let A be 

the subset of SM, such that  for each continuous function f E C°(SM~) the 

t ime average coincides with space average, i.e., 

( /; / }  1 f(¢tx)dt = fdv A =  x E S M v i l i m ~  

By the ergodicity of v, A is a set of full measure and the decomposition 

f 
~,(A) = ] vx(A)dv 

for v-almost all x E SM,. implies that  vx(A) = 1 Hence, for v-almost all 

x E SMv, we have 

/..={ ,im 1/0" (~) T . ~  T f(Ot(p))dtdvx(P) 

for all f E C°(SMv). Furthermore,  the dominated convergence theorem and 

Fubini's theorem imply 

fdu = lim 1 f o Ct(p)duz(p)dt. 
T--,~ T (z) 

As we have seen by the considerations above dvx = d#~ for v-almost all x and, 

therefore, the equation 

= f oct (p)d#z (p)dt 
T--+~ -T (x) 

holds for v-almost all x. Therefore, the proof of Theorem 1 is complete if we 

show that  for all x E X 

(1) f~ f o ¢'(p)d#z(p) ~-+ / fd# (~) 

as t -+ co. For that  it will be of importance that  # is mixing. 

PROPOSITION 6: Let U C WU(xo) be a relatively compact open neighborhood 
Of Xo in W~(xo). Then for f E C°(SMv) 

f u f  °¢t(p)dp~o(P) ~ ~M, fd#, 

as t --+ oo, where #xo is the normalized Riemannian volume on the open subset 
U c W~(xo). 
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Proof: Since the unstable foliation W u is transversal to the center stable foli- 

ation W cs and both foliations are smooth, we can choose to a given x0 a con- 

stant 5o > 0 such that  the cartesian product of the balls W~S(xo) and W~o (xo) 

of radius 5o about x0 with respect to the induced Riemannian metric on the 

corresponding leaves is diffeomorphic to an open neighborhood of x0 in SMv. 
More specifically, there exists a further constant 51 > 0 such that  the map 

B: W :(xo) × W?o(xo) + SMv 

with (x, y) ~ W~ (x)A W~S(y) is well defined and determines a diffeomorphism 

onto its image. Hence, for each x E W~(Xo) the holonomy map 

H=o,~: W~o(Xo) --+ W~(x) 

with y ~ B(x, y) determines a diffeomorphism onto its image as well. Note that  

it suffices to prove the proposition for small open neighborhoods and, therefore, 

we can assume that  U is contained in W~o (x0). Choose a measurable partition 

subordinate to W ~ such that  for all x E W~(Xo) the sets ~(x) are given by 

Hxo, (U). 
For 0 < 5 _< 50 consider the box 

(2) U 
~EW2"(~o) 

Using the decomposition of the measure # with respect to the partit ion 

/SM,,~(x) fdp*dp=fSM, fd# 

for all f E L:(SM,,), where 

#w,L(x) 

is the normalized Riemannian measure pw,~(x) on WU(x). Since # is mixing, 

we obtain for all f, g E L 1 (SMv) 

lim L f oCt.gd# = lim [ / f oCt(y)g(y)dp~(y)d#(y) 
t - - ~  M,, t--+°° JsM,,  (x) 

Therefore, 

= LM fd#" LM,, gd#" 

lim fSM. f~(x)f o Ct(Y)g(y)d#x(y)dp(x) = L fd#, 
t+oo fSM~ gd# M,, 
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provided fSM, gd# ~ O. We apply this to a continuous function f :  SMv ~ 
and the characteristic functions g = XB~. Since ~ is a partition, the support of 

x ~ f~(z) ] o Ct(y)xB~(y)d#s is contained in B~. Hence 

fB~ f~(s) f o Ct(y)d#s(y)d#(x ) f 
lim fd#. Js M,, 

The proposition is now a simple consequence of the continuity of 

x ~ f f o Ct(y)dpx 
J~ (x) 

at Xo, whose proof is provided in the next lemma. | 

LEMMA 7: Let f: SMv ~ I~ be a continuous function. Then for each c > 0 

there exists 5 > 0 such that 

i ~(x) f oCt(Y)d#s(Y) - ~(xo)] Od~t(Y)d#xo(Y) < ~ 

for a11 x E B6, where B5 is the box defined in (2). 

Proof: For all x e B~ the holonomy map Hxo,x: ~(xo) ~ ~(x) is smooth and, 

therefore, absolutely continuous with respect to the smooth conditional measure 

#x of the stable foliation. Therefore, (H~-ol, x) .#s  = q~- d#x o and Ilqx - 11] "-+ 0 

as x --+ x0. For x • D5 = W~CS(xo) consider 

(~) (xo) 

J~ (so) J~(so) 

Then 

IAI <- f~(xo) I'f °¢t °Hx°'x(Y)qx(Y)- f °¢t(Y)qx(y)ld#x°(Y) 

+ ~ If o ¢t(y)qx(y ) - f o Ct(y)ld#xo(y ) 
(xo) 

_< sup Iqx(Y)l [ If o Ct o Hxo,x(Y) - I o Ct(y)ld#xo(y ) 
ye~(xo) JS(xo) 

+ Ilflloo [ lax(y) - lld,xo(y). 
J~ (xo) 
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Since y E ~(Xo) and Hx0,x(Y) E ~(x) are on the same center stable leaf, 

dl (¢t  o Hxo,x (Y), Ct (y)) < dl (Hxo,x (Y), (Y)), 

where dl (V,W) = maxte[o,1] d(cv(t),cw(t)) and d is the distance induced by 

the Riemannian metric on G/K.  The uniform continuity and the fact that  

IIq~ - 111 ' 4  0 for x --4 Xo implies that  for each e > 0 one can choose D~ C D~ o = 

W~(xo) such that  

If o (b t o g~o,x(y ) - f o Ct(y)ld#xo(y ) < e 
(~o) - 2 • supve~(~o) Iq~(Y)I 

and 

]qx(Y)- lldp~o(y) < e 
(zo) - 2.  ][fl]~ 

for all x E B~. This proves the lemma. | 

Now we show that  Theorem 2 is a simple consequence of Theorem 1. Let u 

be an invariant measure of maximal entropy for the geodesic flow on SM.  Then 

by Ruelle's inequality, we have 

= htop(SM) ( f h~(SM) X(w)du. 
Js  M 

Since the sum X(w) of the positive Lyapunov exponents is equal to Xv for w E 

SMv and X(w) < XVmax = htop(SM) unless w E SM~ ..... the measure u must 

have full support on SMv ...... i.e., its complement must have measure zero. By 

Theorem 1 this implies u -- #v ..... . 

For the proof of Theorem 5 we need the following result which we proved in 

[18]. 

THEOREM 8: Let (M, go) be a compact manifold ofnonpositive curvature and 

# a ego invariant probability measure. Then, for any other metric g the estimate 

h•(go) 
h(g) > f ( s , ) ,  ° Ilvllgd~ 

holds. 

Now we are ready to prove Theorem 5. 

Proof: Let (M, go) be a compact locally symmetric space of nonpositive cur- 

vature and g = fgo a metric conformally equivalent to g. Let # be the measure 
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of maximal entropy for the geodesic flow with respect to go. Since the projec- 

tion of # on M is the normalized Riemannian volume, we obtain using Jensen's 

inequality 

I lvl lgdp- volgo(M) f 1/2dv°l 
SM)~ ° go 

~ .1 /n  
1 / f~/2dvol ) 

-< volgo(M) JM g0 / 

_ (volg(M) "~ */n 

\ volg 0 (M) / 

Note that  Jensen's inequality is strict unless f is constant. Hence, this yields 

Theorem 5. | 
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