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A B S T R A C T  

For a large class of closed subsets C of iR n, we show that the intersection 
of C with the set of badly approximable vectors has the same Hausdorff 
dimension as C. The sets are described in terms of measures they support. 
Examples include (but are not limited to) self-similar sets such as Cantor's 
ternary sets or attractors for irreducible systems of similarities satisfying 
Hutchinson's open set condition. 

1. In troduct ion  

We say t h a t  x E ll~ n is b a d l y  a p p r o x i m a b l e  if the re  is c > 0 such t h a t  for any  

p E Z n,q  E N one has  

(1.1) Iiq x - PII --- c/q 1/n. 

We deno te  the  set of  all  b a d l y  a p p r o x i m a b l e  vec tors  in ]I{ ~ by  B A .  I t  is well 

known t h a t  the  Lebesgue  measu re  of B A  is zero, b u t  never the less  th is  set is 

qui te  large,  name ly  i ts  Hausdor f f  d imens ion  is equal  to  n [$2]. W h e n  n = 1, a 

n u m b e r  is b a d l y  a p p r o x i m a b l e  if and  only if i ts  con t inued  f rac t ion  coefficients 
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are bounded. For n > 1 there is no analogous description, and very few explicit 

examples of badly approximable vectors are known. 

The goal of the present paper is to describe a large class of subsets of Rn which 

contain many badly approximable vectors. These sets will be described in terms 

of geometric properties of measures which they support. Thus we will show that  

whenever a measure # on Rn satisfies certain conditions, the intersection of its 

support with B A  has Hausdorff dimension equal to that  of supp #. The results 

are new even in the case n = 1. 

Let us introduce some notation and terminology. For x E If( n and r > 0, 

B(x,  r) stands for the open ball of radius r centered at x. For a ball B = B(x,  r) 

and a > 0, we denote B(x ,  ar) by aB. For an affine subspace £: C R n we 

denote by t: (~) the c-neighborhood o f / :  (with respect to the Euclidean metric). 

Hausdorff dimension will be denoted by 'dim'. 

In what follows, it will be a locally finite Borel measure on ]~ .  Following 

[KLW], given C, a > 0 and U C ~ we say that  # is a b s o l u t e l y  (C, a)-  

d e c a y i n g  on  U if for any non-empty open ball B C U of radius r centered 

in supp it, any affine hyperplane £ C R n, and any ~ > 0 one has 

a 

(1.2) it(BnZ: (~)) _< C(;)  it(B). 

Given D > 1, say that  it is D - F e d e r e r  on  U if one has 

#(3B) _< D#(B) 

for every ball B centered in supp # with 3B C U. In some papers this condition 

(more precisely, its stronger form with U = Nn) is referred to as the 'doubling 

property' .  

We will say that  a measure is a b s o l u t e l y  d e c a y i n g  (resp., F e d e r e r )  if for 

#-a.e. point of Nn there exist a neighborhood U of this point and C, a > 0 

(resp., D > 0) such that  # is absolutely (C,a)-decaying (resp., D - F e d e r e r )  

on U. Measures which are absolutely decaying and Federer form a subclass 

of the class of f r i e n d l y  measures, defined and studied in [KLW]. We refer the 

reader to §2 and §6 for more on absolutely decaying measures, and in particular 

to Remark 6.2 for a discussion of related conditions on measures considered 

recently in [PV2, KTV, U2, U3]. 

Let us also define the lower  p o i n t w l s e  d i m e n s i o n  of p at x by 

d / \def 7))  . ( x )  = lim inf log #(B(x ,  
r-~0 log r ' 
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and for B C R n put 
def 

d ( B ) =  inf d (x). 
--]~ x E B --]z 

The following is our main result: 

THEOREM 1.1: Let It be an absolutely decaying and Federer measure on ~ .  

Then for any open ball B with It(B) > 0 one has 

d im(BA n supp It N B) _> _d~ (B). 

We remark that it is well known, see e.g. [P, Theorem 7.1], that if _d~(x) _>/~ 

for It-a.e. x, then dim(supp It) _>/~. Consequently, 

(1.3) d i m ( s u p p p N B )  _>_rig(B) V o p e n B  w i t h # ( B )  > 0 .  

Furthermore, equality in (1.3) holds for many natural measures. For example, 

take/~ > 0 and say that # sat isf ies  a ~ - p o w e r  law on an open subset U of 

ll~ n if there are constants cl, c2 such that 

(1.4) cirri <_ I t (B(x,r))  _ c2r fl whenever x E suppit  and B(x , r )  C U. 

We will say that It sa t isf ies  a ~ - p o w e r  law (or sometimes simply sat isf ies  a 

p o w e r  law) if It-a.e. point of ll~ n has a neighborhood U such that  It satisfies a 

/~-power law on U. 

This condition is well studied. A set for which the restriction of the Hausdorff 

measure, in the appropriate dimension, satisfies a power law is sometimes called 

r egu l a r  or A h l f o r s - D a v i d  r egu la r  (see e.g. [Mat, Chaps. 4-6] and references 

therein). A measure It satisfying a/~-power law is obviously Federer, and also 

satisfies 

(1.5) ~ = dim(supp# O B) = d , (B)  = d , (x)  

for any open B with #(B) > 0 and any x E supp #; see e.g. [Mat, Thin. 5.7]. 

COROLLARY 1.2: Assume that It is absolutely decaying and satisfies a power 

law. Then for any open B C ~n one has 

dim(BA N supp It n B) = dim(supp It N B). 

A different proof of the above statement has recently appeared in [KTV]. 

It is easy to see that  Corollary 1.2 is a special case of Theorem 1.1. Indeed, 

it is enough to assume that supp # n B ~ 0, in which case one can write 

Thin. 1.1 
d~(B) < d im(BA n supp It n B) < dim(supp # N B) (1_.5) _d~(B), 
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and the assertion follows. 

Note that the absolute decay condition can be used to estimate d, from below: 

namely, # being absolutely (C, ~)-decaying on U implies that d~ (B) _> c~ for any 

ball B C U. However, this estimate is not necessarily optimal. In the case n = 1, 

the absolute decay condition is similar to a condition introduced by W. Veech 

in [V] (see Remark 6.2). Besides Lebesgue measure, the simplest example of a 

measure satisfying the conditions of Corollary 1.2 is given by the coin-tossing 

measure on Cantor's ternary set C; it follows that badly approximable numbers 

inside C form a set of Hausdorff dimension log 2/ log3 = dim(C). Even this very 

special case does not appear in the literature, although it is known to experts 

and is provable by other methods. We are grateful to Yuval Peres for describing 

a proof to us. 

Additional examples of measures which are absolutely decaying and satisfy 

a power law are Hausdorff measures, in the appropriate dimension, restricted 

to self-similar (or, more generally, self-conformal) sets satisfying Hutchinson's 

open set condition. This was proved in [KLW] in the self-similar case, and 

has been recently generalized by Urbanski [U2, U3]. We remind the reader of 

Hutchinson's setup in §7, and also describe new examples of measures which 

are absolutely decaying and satisfy a power law. These measures need not be 

supported on self-similar/self-conformal sets, and may have arbitrarily small 
dimension. They provide new examples to which the results of [KLW] and the 

present paper apply. In §7 we also construct a measure on the real line which is 

absolutely decaying and Federer, but does not satisfy a power law; thus Theorem 

1.1 is applicable to a larger class of measures than Corollary 1.2. 

The proof of Theorem 1.1 involves three intermediate steps. First, using a 

theorem of Dani [D1], it is shown that Theorem 1.1 follows from a dynamical 

result (Theorem 3.2) about abundance of certain bounded trajectories in the 

space G/F, where G = SLn+I(•) and F = SL~+I(Z). Bounded trajectories 

are then constructed by an iterative procedure, originally introduced in [KM1], 

using a result (Proposition 5.3) on uniform return (in terms of a given measure 

#) to large compact subsets of G/F. This procedure is described in detail in §4. 

Proposition 5.3 in turn is deduced from quantitative nondivergence estimates 

recently established in [KLW]. 

The construction of bounded trajectories using uniform return estimates has 

several other applications; two of them, to bounded trajectories of the Teich- 

miiller geodesic flow and to Diophantine approximation with weights, are briefly 

discussed in the last section of the paper. 
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2. Prel iminaries  

In this section we introduce some notation and collect some well-known results 

which we will need in later sections. 

If ~ is a collection of sets, we let uGd= ef UBE~ B. If p is a map defined on tJG, 

we let ~o(G)d=-ef{p(B): B • G}. 

PROPOSITION 2.1 (Besicovitch, see e.g. Theorem 2.7 in [Mat]): For any n • N 

there exists N = Nn • N (the Besicovitch constant of ~ )  with the following 

property: for any bounded subset A of R n and any collection G of dosed balls 

in ~n such that each point of A is the center of some ball of G, there are disjoint 
N 

countable subcollections G1, . . . , GN such that A i8 covered by Ui=l UGi. Con- 

sequently, any such ~ contains a countable subcovering G' of A of multiplicity 

at most N. 

Throughout  the paper n E N will be fixed, and the Besicovitch constant of 

~ will be denoted by N. 

For a measure # on ~n and a measurable map p: l~ n --~ l~ n , the p u s h f o r w a r d  

p , #  of # under p is defined by p.#(A)a=ef#(p-l(A)). It will be also convenient 

to introduce the following notation: for y E ]~n and c > 1 let Py,c be the affine 

transformation of l~ n defined by 

(2.1) , ,def , py,c~x) = c(x - y). 

The following immediately follows from the definitions: 

LEMMA 2.2: Let # be absolutely (C, a)-decaying (resp., D-Federer) on U. Then 

for any y E l~ ~ and any c _> 1, (Py,c).# is absolutely (C, a)-decaying (resp., D- 

Federer) on py,c(U). 

The maps Py,c will be repeatedly used for 'zooming in' on smaller parts of 

sets and measures: observe that  py,¢ maps a ball B(y ,  r/c) onto B(0, r). It will 

be important  for our purposes, given a measure tt and a ball B = B(0, r) C II~ n , 
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to consider all measures obtained from # by zooming in on sub-balls of B. More 

precisely, for any a > 1 we define 

(2.2) .~t~,B,ade----f{(~y,a~),it: y E supp#, k E Z+, B ( y , r / a  k) C B}.  

If B is a subset of ~n and f is a real-valued function on lI~ n , let 

llfll. %f sup lf(x)[; 
xEB 

and if # is a measure on Rn such that  #(B) > 0, we define Ilfll,,B to be equal 

to ]]fiiBnsuppt~. Given C, a > 0, a subset U of l~ n, a measure # on U and a 

real-valued function f on U, say that  f is (C, a ) - g o o d  on U w i t h  r e spec t  to  

it if for any open ball B C U centered in supp it and any e > 0 one has 

(2.3) it({x ~ B :  If(x)l < ~}) _< C it(B). 

See [KM2], [BKM] and [KLW] for various properties and examples. Here is one 

of them, a modified version of [BKM, Lemma 3.3]: 

LEMMA 2.3: Let U be a subset ofll~ n, it a measure on U, m E N, C , a  > 0, and 

let f = ( f l , . - . ,  fro) be a map U --+ ~m such that each fi  is (C, a)-good on U 

with respect to it. Then the function x ~ [[f(x)[[, where [[. [[ is the standard 

Euclidean norm, is ( v ~ C ,  a)-good on U with respect to it. 

We will also need the following facts: 

LEMMA 2.4: Let it be absolutely (C, a)-decaying on U C I~ n . Then any affine 

function f on Rn: 

(i) is (C',a)-good on U with respect to it, where 

(2.4) C' = C(C - ' / "  + 2)"; 

(ii) satisfies 

(2.5) Iifiis _< (1 + 2cl/a)iif[itt,B 

for any ball B C U centered in supp #. 

Proof." Without loss of generality we can assume that  f is nonzero, and, after 

suitable scaling and taking absolute value, replace it by the distance function 

from some hyperplane £: in I~ n . Then the left hand side of (2.3) coincides with 
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that of (1.2), so, if we denote Ilfll~,B by 6, to establish (i) we need to prove that 

for any ball B C U centered in supp # radius r one has 

Denoting by r the radius of B, one has 

(2.7) 
- 

On the other hand, B rh Z: (~) = 0 when ~ < ~ - 2r, and otherwise one has 

(2.8) #(Bn£(~)) 5 ~ ( 5 -  2 r ~  ~ 
, - T ,  

The minimum of the right hand sides of (2.7) and (2.8) achieves its biggest value 

when 5/r = C -~ + 2, hence one has (2.6) with C' as in (2.4). 

To demonstrate (ii), note that  for any ¢ > ~ one has 

1 -  # (B  M Z:(~))#(B) <_ C ( ~ ) ~ ,  

hence ~ _> C-1/ar. On the other hand one clearly has r >_ (l[fl[B -- 5)/2, which 

immediately yields (2.5). I 

In the remaining part of this section we describe an elementary construction 

of compact subsets of Rn. Let Ao be a compact subset of ~n, and let /a be a 

finite measure on Ao. Say that a countable family ,4 of compact subsets of A0 

is t ree- l ike  1 r e l a t ive  to  # if .4 is the union of finite subcollections `4k, k E N, 

such that .4o = {Ao} and the following four conditions are satisfied: 

(TL0) #(A) > 0 for any A E `4; 

(TL1) V k E N  VA, B E A k e i t h e r A = B o r p ( A M B ) = 0 ;  

(TL2) V k E N  V B E A k  B A E A k _ l s u c h t h a t B C A ;  
(TL3) Vk E N VB E Ak_I Ak(B) # O, where 

Ak(B)de=f{A E Ak : A C B}. 

The reason for this terminology is quite clear: every member of the family 

corresponds to a node of a certain tree, Ao being the root, and sets from Ak 

correspond to vertices of the kth generation. Conditions (TL1-3) say that  every 

1 The terminology is borrowed from [KM1], but the definition is slightly changed 
for the sake of better exposition. 
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vertex of the tree has at least one child and (except for the root) a unique parent, 

and sets corresponding to nodes of the same generation are/,-essentially disjoint. 

Let ,4 be a tree-like collection of sets relative to a measure #. For each k E N, 

the sets U~4k are nonempty and compact, and from (TL2) it follows that UAk 

is contained in UAk-1 for any k E N. Therefore one can define the (nonempty) 

limit set of A to be 

Aoo = 0 UAk. 
kEN 

Notice that for a strongly tree-like collection Am C supp #. 

In many cases it is important that, as k --+ oo, the sets from Ak become 

smaller. We will formalize it by defining the kth stage d iamete r  dk (A) of A: 

dk(.A) d-ef max diam(A), 
AEA~ 

and saying that A is s t rongly  tree-like if it is tree-like and in addition 

(STL) limk-+o~ dk(A)  = O. 

Note that any compact subset of IR n is a limit set of a strongly tree-like collec- 

tion of sets; for example, for K C [0, 1] n we may take for Ak the dyadic cubes 

of sidelength 2 -k in [0, 1] n whose intersection with K is nonempty, and take 

Lebesgue measure for #. On the other hand, a representation of a compact set 

as a limit set of a strongly tree-like collection often helps to estimate its Haus- 

dorff dimension. To state the desired estimate requires some more terminology. 

For k E Z+ and B E Ak let us define the 'density of children' of B in A by 

(~(~, ,A)d__ef ]A(U,Ak+I (B)), 
#(B) 

and then let 

Ak(A)% f rain 6(B,A); 
BEAk 

note that the latter is always positive due to (TL3). 
The following lemma generalizes results of C. McMullen [Me, Proposition 2.2] 

and M. Urbanski [U1, Lemma 2.1]. 

LEMMA 2.5: Let A be a strongly tree-like (relative to #) collection of subsets 

of Ao. Then there exists a measure v with Aoo = supp u such that for any 

x E Aoo, 

(2.9) d~ (x) > d u (x) - lim sup Y ~ o  log Ai (A) 
- k - + o o  log dk (A) 
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Consequently, for any open ball B intersecting A ~  one has 

E -o log  i(A) 
dim(A~ N B) _~ _du(B ) - lira sup 

k ~  log dk (.4) 

Proof'. We basically follow the argument of [U1]. Define measures uk induc- 

tively as follows: put u0 = #]Ao, and, given uk-1, set 

 (UAk (B) n A) 
(2.10) uk (A)d--ef E It(UAk(B)) 

BEA~-I 

This definition makes sense since by (TL0) and (TL3) one knows that #(UAk (B)) 
> 0 for any B E .Ak-1. The countable additivity of vk can be easily shown using 

(TL1) and (TL2), and one can see by induction that 

Uk(UAz) = #(Ao) for every k • N. 

Further, in view of (TL1) one has Uk+l(A) = uk(A) for each A • Ak. Hence one 

can conclude, using induction, that vt(A) = uk(A) for each A • Ak and g _> k. 

It follows then from (STL) that the sequence {Vk} has a unique weak limit, a 

finite measure u with supp u = A ~  such that 

(2.11) u(A) = uk(A) for any A • Ak. 

Making use of (2.10) and (2.11), one inductively computes that 

#(A) for any A • Ak. (2.12) u(A) < k-1 
- I-L:o A (A) 

Now take x • Ao~ and 0 < r < dl (.4). Then there exists k = k(r) such that 

dk+l (.A) < r < dk(A), and one can write 

u(B(x,r))  _<u(U{A • Ak+l : A ~ B ( x , r )  # 0}) 

(2~2)#(U{A • .Ak+l : A gl B(x, r )  # 0}) < #(B(x,2r))  
- -  k - -  k " 

[a=o At(A) l-It=o Ai(A) 

Therefore for r < 1, 

- ~t=0 log At(A) log u(B(x, r)) > log#(B(x, 2r)) k 

log r -- log r 

log 2"~ E~_o log At(A) log #(B(x, 2r)) ( kl Jr 
>- log(2r) 1--~gr ] logdk(A) 

Since lim~_~o k(r) = 0 due to (STL), taking lim in f~0  of both sides of the above 

inequality yields (2.9). It remains to mention that the second part of the lemma 

follows immediately from (1.3). | 
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3. F r o m  b o u n d e d  t r a j e c t o r i e s  t o  b a d l y  a p p r o x i m a b l e  v e c t o r s  

Let G = SLn+I(IR), F = SLn+l (7/.), and denote by r: G --+ G/F, g ~ gr,  the 

natural projection map. G acts on G/F by left translations via the rule gTr(h) = 

7r(gh), g, h • G. Equivalently one can describe G/F as the space of unimodular 

lattices in I~ T M  , with ~r(g) corresponding to the lattice gZ n+l C ]I{ n+l , and the 

action of G on G/F coming from the linear action of G on I~ n+l . We will be 

interested in the action of the one-parameter subsemigroup 

of G on G/F, where 

(3.1) 

Fde=f {gt : t ~_ 0} 

g t ~  f diag(et/n, . . . , etl '~, e-t) .  

Note that  the action of elements of F on a lattice A contracts the last component 

of every vector of A and expands the remaining components. 

Fix a norm I1" II on ll~ n+l , and for c > 0 let 

(3.2) K~ de=f lr((g • G :  Ilgvll Vv • 7/~ n + l  \ {0}}), 

i.e., Ke is the collection of all unimodular lattices in ~n+l which contain no 

nonzero vector smaller than c. Recall that  G/F is noncompact and has finite 

G-invariant measure. Each K~, however, is compact (Mahler's Compactness 

Criterion, see e.g. [R, Chapter 10]), and {K~}~>0 is an exhaustion of G/F. 

Let us also define the following map from R n to G: 

X)l 
(here In stands for the n x n identity matrix). Note that  the lattice r ( x )Z  n+l 

is given by 

thus serving as a connecting tool between the two sides of the inequality (1.1). 

From this observation it is not hard to interpret badly approximable points of 

I~ n in terms of bounded F-trajectories on G/F as follows: 

PROPOSITION 3.1 (Dani [D1]): x C B A  iff Fr(x)•  n+l C t(e for some e > O. 

It is clear from the above proposition that  Theorem 1.1 will immediately 

follow from 
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THEOREM 3.2: Let # and B be as in Theorem 1.1. Then for any A E G/F, one 

has 

(3.4) dim({x E supp# M B :  FT(x)A is bounded}) ~_ d~(B). 

It is important that the group 

Hd----ef{v(x) : x e ~n } 

is the so-called expanding  horoshperical  subgroup of F; in other words, H- 

orbits on G/F are exactly the unstable leaves with respect to the F-action. More 

precisely, for any fixed t > 0 the conjugation by g~ gives rise to an expanding 

homothety of H of the form 

(3.5) gtr(x)g-t = r(e(l+l/n)tX). 

Let us observe that taking # equal to Lebesgue measure in Theorem 3.2 (or 

equivalently, Haar measure on H) one can deduce that 

(3.6) 
for every A E G/F, the set {h E H : FhA is bounded} 

has full Hausdorff dimension at any point of H. 

As a historical remark, let us point out that Dani in [D1] used the correspon- 

dence of Proposition 3.1 and Schmidt's result on the full Hausdorff dimension of 

the set BA to derive (3.6); and that later a dynamical proof of a generalization 

of (3.6) appeared in [KM1]. See [K4, §3] for a more detailed historical account. 

One of the main technical tools used in [KM1] was an iterative procedure of 

constructing points with bounded trajectories based on Lemma 2.5, which can 

produce many of them assuming that a certain 'uniform return' condition is 

satisfied. In the present paper we follow a similar strategy. Namely, in the next 

section we describe a modified version of the aforementioned procedure, thereby 

reducing Theorem 3.2 to verifying a uniform return property (Corollary 5.4). 

The latter is deduced in §5 from the quantitative nondivergence estimates of 

[KLW]. 

4. From uniform r e tu rn  to bounded  t ra jec tor ies  

The goal of this section is to describe an abstract scheme for constructing 

bounded trajectories of certain actions, which, in particular, will be applica- 

ble in the context of the previous section, that is, the action of F and H on 
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G/F. Namely, for n E N and a > 0 let us denote by Sn,a the semidirect product 

Rn x Z o f R n  a n d Z ~ { g k : k E Z } g i v e n b y  

S d-el/jR" = n , a - \  , g : g x g  -1 ax gx E lRn}. 

Note that,  in view of (3.5), for any t > 0 the subgroup of G as in the previous 

section generated by gt and H is isomorphic to S~,e(l+l/~)t. 

Let us assume now that  we are given an action of the group Sn,a on an abstract 

set Y, which we will simply denote by (3', Y) ~ ~/Y, ~ E Sn,a, y E Y.  Suppose 

also that  we are given a family M of measures on ]R n, a ball B C ]R n, two 

subsets K, Q of Y, and a positive y. Say that  ~4 has the y - u n i f o r m  r e t u r n  

p r o p e r t y  with respect to the triple (B, K, Q) if for any u E A/I and any y E Q 

one has 

u({x E B :  (gx)y E K}) _> (1 - rl)u(B). 

The following theorem is the main result of this section: 

THEOREM 4.1: Given a _> 2, D > 0 and a neighborhood U of 0 in R n, let # 

be a D-Federer measure on U with 0 E supp #, and let a dosed ball B C U 

centered at O, two subsets K ,Q  of an Sn,a-space Y and 0 < 77 < 1 / D N  satisfy: 

(i) (2B)K C Q 

(ii) the family J~l~,S,a has the q-uniform return property with respect to 

(B ,K ,Q) .  

Then for any y E Q one has 

(4.1) dim({x E s u p p # M B  : (gkx)y E Q Vk E N}) > d~(B) l o g ( ~ )  
- - l o g  a 

Proof: First note that  it is enough to prove the theorem for Y = Sn,a (that 

is, for the left action of S , , ,  on itself). Indeed, if for y E Y one denotes by Try 

the (Sn,a-equivariant) map Sn,a --+ Y,  ~ ~ "Yy, it is not hard to see that  (ii) is 

equivalent to saying that  for any y E Q 

(4.2) 
the family ~/u,B,a has the y-uniform return 

property with respect to (B, ]C, Q), 

~ . /  ~def --1 def 1 where/C = IvLy ) = try (K) and Q = Q(y) = try (Q). Likewise, (i) is equivalent 

to saying that  for any y E Q one has 

(4.3) (2B)/C C Q. 
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On the other hand, if, given y • Q, one knows that 

(4.4) dim({x • s u p p # N B : g k x  7 e Q Yk • N}) > d , (B)  l o g ( ~ )  
- l o g  a 

for any 7 • Q, one can let 7 be the identity element in Sn,a (which belongs to 

Q as long as y • Q), and deduce (4.1). Thus it is enough to start with two 

subsets/C, Q of Sn,a, assume (4.3) and (4.2), and demonstrate (4.4). 

In order to do this, given a D-Federer measure v on U and an element 

of Sn,a, we are going to define a (possibly empty) collection 7/ = 7/(7, v) of 

disjoint closed balls A of radius r/a each contained in B = B(0, r) and centered 

in supp v such that 

(4.5) gA7 N ~ ~ O 

for any A • 7/(7, u), and 

v(B) v({x • B : g x 7  ¢ K:}). (4.6) v(UT/(7'v)) > DN 

Indeed, first consider the collection ~ of all balls of radius r/a centered in 

B(0, r/3)PIsupp v (note that all those balls are contained in B since we have as- 

sumed that a >_ 2). Using Proposition 2.1 one can choose a disjoint subcollection 

~' such that 

(4.7) v(O~') > u(B(O,r/3)) Federer> v(B) 
- N - DN" 

Now define 7 / to  be the set of balls A in G' satisfying (4.5). Then (4.6) follows 

from (4.7) and 

. ( u n )  > - , ({x  • B :  ¢ 

Note that if in addition 7 E Q and v E .h4,,B,a, it follows from (4.6) and (4.2) 

that 

.(Un('y, ~)) 
(4.8) v(B) >_ IlDN - 7; 

in particular, the collection 7/ is  non-empty as long as ~ < 1/DN. 
Next, let us fix 7 and construct a certain collection A of subsets of B. Here 

is the inductive construction. First let Aod=er{B}, then define 

~1 d~-ef~-~ (~, ~); 
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and, more generally, if Ai is defined for all i _< k, we let 

,4  de f  
k + l =  LJ Ak+l(g) ,  

AEAk 

where for A B(y,  ro/a k) -1 ~--- = ¢fly,a k (B) we define 

def  - 1 Ak+l (A) = Ty,a k (?_/(gk y.),, (~y,a k ),#)). 

LEMMA 4.2: For any k E Z+ and A E .Ak+l, one has 
(a) gk+lA 7 M £ ~ 0; 
(b) gk+lA 7 C Q; 

(c) A is centered in supp #. 

Proof: By definition, A E Ak+l if and only if 

(4.9) A - 1  , = ~y,~k(A ) = g-kA'gky, 

where A' E 7-/(gkyT, (~y,~,),#). Therefore gk+lA7 = gA'gkyT, which has non- 

empty intersection with /C in view of (4.5), hence (a). As for (b), it is an 

immediate consequence of (a) and (4.3). For (c), note that A' is centered in 

supp(~y,ak),#, and apply (4.9). I 

Note that  if one in addition assumes that ~ E Q, then part (b) of the above 
lemma implies that 

(4.10) gky7 E Q whenever k E Z+ and B(y , r /a  k) E Ak. 

We now claim that A is strongly tree-like relative to # as long as 7 is chosen 
to lie in Q. Indeed, properties (TL1), (TL2) and (STL), with dk(.A) = 2r/a k, 

are immediate from the construction. As for (TL3), it follows from the choice 

of ~/< 1/DN and 

LEMMA 4.3: For any k E Z+ and A E Ak, one has 

5(A,A) >_ 1 /DN - 77. 

Proo~ Let A B(y , r /a  k) -1 = = ~y,ak (B), denote (~y,a ~),# by v, and write 

5(A,A) = 
#(UAk+I (A)) ~ (U~y,la k (7-/(gky') ,, v))) v(UT-/(gk y') ', v) 

,(A) 

which is not less than 1/DN - ~l in view of (4.8) and (4.10). I 
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Applying Lemma 2.5, we conclude that  the dimension of the limit set Am of 

.4 is at least 

dim(Am) > du(B) - lim sup ~ik-° log (1 /ON - 7) 
- - k-+~ log(2r/ak) 

k + 1 log (1 /ON - 7) l°g(t  O-TD-~N-v) 
= d~(B) = _d~ (B) - limk_~msup - - k  log(2r)k -- log a - log a 

It remains to observe that  parts (b) and (c) of Lemma 4.2 imply that  Am is 

contained in the set in the left hand side of (4.4). I 

5. F r o m  q u a n t i t a t i v e  n o n d i v e r g e n c e  to  u n i f o r m  r e t u r n  

We now return to the setup of §3. That  is, let G = SLn+I(I~),F = SLn+I(Z), 

7r: G --+ G /F  the projection map, and Ke defined as in (3.2). We also define 

14; d=ef the set of nonzero rational subspaces of ]R n+l . 

Fix a Euclidean structure on ]R n+l , and for g E G and V E W define ey(g) to be 

the covolume of gV M gZ n+l in gV. Equivalently, one can extend the Euclidean 

norm II" II from ~n+l to its exterior algebra, and set 

ey(g)~fiJg(vl A . . .  A vk)]], 

where ( V l , . . . ,  vk} is a generating set for Zn+IMV; note that  the above quantity 

does not depend on the choice of {v,}. 

The following 'abstract nondivergence' theorem is a special case of [KLW, 

Theorem 4.3]. 

THEOREM 5.1: Given n E N, and positive constants C, D, a, there exists C1 = 

C1 (n, C, D, a) > 0 with the following property. Suppose B C I~ ~ is a ball, 

# is measure on I~ ~ such that B is centered at supp # and # is D-Federer on 

/)d----ef3n+lB, h : [3 -+ G is a continuous map, 0 is a positive number not greater 

than 1; and suppose also that for each V E )4; 

(i) the function evoh is (C, a)-good on [~ with respect to #, 

and 

(ii) [[evoh[[,,B >_ O. 

Then for any 0 < ¢ <_ O, 

/t({X E B :  ~(h(x) )  ¢ /k"e} ) _ C1 ].t(B). 



152 D. KLEINBOCK AND B. WEISS Isr. J. Math. 

We remark that  this theorem generalizes [KM2, Theorem 5.2], which, in its 

turn, builds on quantitative estimates for non-divergence of unipotent flows due 

to Dani and Margulis [Mar, D2]. A more general version can be found in [KT], 

where in particular an explicit value of C1 = (n + 1)C(D2N)  n+l is given. 

We are going to apply the above theorem choosing h of a special form. Namely, 

using gt as defined in (3.1) and ~- as defined in (3.3), and taking an arbitrary 

u E G and t > 0, let 

(5.1) ht,~ (x)ae--4fgtT(X)U. 

The following was essentially proved in [KM2]: 

LEMMA 5.2: Let ht,~ be defined as in (5.1). 

(a) For any u E G, t > 0 and w E A(IRn+:), the map x ~ ht,u(x)w is attine. 

(b) For any compact subset Q of  G /F  and any nonempty  ball B C R" there 

exists to = to(Q, B) > 0 such that 

(5.2) Ilevoht,u]l, > 1 

for all u e 7r-l(Q), t _> to and V E 14;. 

Proof: Let us fix a basis e l , . . . , e n + l  of ]R n+l,  and for I = { i l , . . . , i k }  C 
def  

{ 1 , . . . , n +  1}, il < i2 < " "  < ik, we let e x = e i l  A . . .  Aeik E Ak(Rn+l), with 

the convention eo = 1. Expand uw with respect to the corresponding basis of 

A(R ): 

(5.3) u w  = 2_., w ie l .  
I C { 1  .. . . .  n + l }  

To prove (a), it suffices to show that  the map x ~ ht,u(x)el is affine for each 

I ,  which is easily verified. Indeed, the action of T(X) leaves e l , . . . ,  en invariant 
n and sends en+l to en+l + ~i=1 xiei, therefore 

(5.4) T ( x ) e I =  {e~ i f n + l ~ I ,  
e1 + ~-~in__l,i~ti q-XielU{i}\{n+l} otherwise, 

and an application of gt clearly does not make things any worse. 

For (b), take V E W of dimension k, 1 < k _< n + 1, let {v l , . . . ,Vk}  be a 

generating set for Z n+l n V, and denote vl A . . .  Avk by w. It follows from 

Minkowski's Convex Body Theorem, see e.g. [$3, Chapter II, Theorem 2B], that  

u V  A uZ n+l contains a nonzero vector of norm at most 2vkl /k~v(U)l /k  , where 

Vk is the volume of the unit ball in II~ k . Now recall that  u is chosen so that  
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lengths of all nonzero vectors of uZ n+l are uniformly bounded away from zero. 

Therefore there exists Q depending only on Q and n such that  at least one of 

the coefficients wl in (5.3) has absolute value not less than 0. 

Note that  @oht,u(X) = [Iht,~(x)wl[, and that  (5.2) holds trivially for any 

t > 0 if k = n + 1, so let us assume 1 < k < n. Using (5.3), (5.4) and (3.1), 

write ht,u(x)w as a sum of two terms: e-(1-s-~ )t ~ n + l e I  wle l  and 

(5.5) e "~ ~ we ..t- ~ -[-WIu{n+l}-..{i}Xi el.  
n-}-l~I iEI 

Then observe that  every component wi of w appears in the sum (5.5), which 

implies that  for some I the projection of ht,u(x)w onto e1 is an affine func- 

tion with at least one coefficient of absolute value not less than oe~ t >_ oe t/n. 

Therefore (5.2) holds whenever e t is not less than (0. diam(B)/2) -n. 1 

PROPOSITION 5.3: Given n E N and C,D,a,~I > O, there exists a compact 

subset K of G/F  with the following property: for any compact Q c G/F  and 

any nonempty ball B C I{ n centered at O, there exists to > 0 such that Vt > to, 

Vu E 7r -1 ( Q ), and for any measure # on ~n with 0 E supp # which is absolutely 

(C, a)-decaying and D-Federer on 3n+IB, one has 

(5.6) #({x E B :  7r(ht,~(x)) E K}) _> (1 - ~?)#(B). 

Proof." It follows from Lemma 5.2(a), Lemma 2.4(i) and Lemma 2.3 that for 

any u E G, t >. 0 and w E A(Rn+I), the function £yoht,u is (2n/2C',c~)-good 

on 3n+lB with respect to #, where C'  is as in (2.4). Choosing u E 7r-l(Q) and 

t > to, with to as in Lemma 5.2(b), one deduces from Lemma 2.4(ii) that  

Ilevoht,~ll.,. __ (1 + 2C1/C~) -1 .  

Thus one can take 0 = (1 + 2C1/~) -1 and 

C2 = Cl(n,  2n/2C(C-1/~ + 2) a, D, a)(1 + 2C1/~) a, 

and apply Theorem 5.1 with h = ht,u to establish that  for any 0 < s < 

(1 + 2C1/a) -1 one has 

#({x E B :  7r(ht,u(x)) E K~}) _> (1 - C.2ca)#(B). 

To deduce (5.6), it remains to take K = Is'e, where s is small enough so that  

C2c '~ < ~. | 
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COROLLARY 5.4: Given n E N and C,D,a,~? > 0 with ~ < 1 /DN,  there exists 

a compact subset Q of G/F with the following property: for any A E G/F and 

any ball B C Rn centered at 0 there exists to > 0 such that for any measure 

# on ]~n with 0 E supp # which is absolutely (C, a)-decaying and D-Federer on 

3n+~B one has 

(5.7) dim({x E s u p p # M B  : gktr(x)A E Q Yk E N}) _> du(B ) 

for any t > to. 

log( ) 
(1 + 1/n)t 

Proo~ As was mentioned before, for any fixed t > 0 the subgroup of G gener- 

ated by gt and H is isomorphic to Sr~,a where a = e (l+l/n)t. With some abuse 

of notation, let us identify Sr~,a with its image under the isomorphism sending 

x E ]R n to T(X) and g to gt. 

We claim that  K as in Proposition 5.3 has the following property: for any 

compact Q c C/F, any ball B C IRn centered at 0 and any a > e (l+l/n)t°, 

where to is as in Proposition 5.3, the family 

(5.8) .A4d_ef { all measures u on I~'~ C Sn,a with 0 E supp v which are } 
absolutely (C, a)-decaying and D-Federer on 3n+lB 

has the q-uniform return property with respect to (B, K, Q). Indeed, if A E G/F 

is given by A = uZ n+l, it is clear that  r~(ht,~,(x)) coincides with gtr(x)A, and 

A E Q ¢=:=> u E 7r -1 (Q) for any subset Q of G/F. Letting a = e (l+l/n)t with 

t > to, one observes that  the r/-uniform return property of 54 with respect to 

(B, K, Q) is an immediate consequence of (5.6). 

To establish (5.7), note that  it follows from Lemma 2.2 that  for any # as in 

the statement of the Corollary and any a > 1, 54~,B,a is a subfamily of 54 as 

in (5.8). Thus it remains to choose a compact subset Q of G/F containing both 

A and (2B)I(,  if needed increase to so that  e (l+l/'~)t° >_ 2, and apply Theorem 

4.1 to conclude that  (5.7) holds for any t > to. I 

Proof of Theorem 3.2: One knows that  there exist x0 E supp # M B and con- 

stants C, D , a  such that  # is absolutely (C, a)-decaying and D-Federer on a 

neighborhood of x0. Thus, by shrinking the size of B and changing coordinates, 

one can assume that  B is centered at 0 E suppp, and # is absolutely (C, e)- 

decaying and D-Federer on 3n+lB. Hence Corollary 5.4 applies, resulting in 

estimate (5.7) for any t > to. It remains to observe that  Uke•gktT(X)A C Q 

implies that  F r (x )A is contained in a compact set Uo<s<t g-sQ, and that  the 

right hand side of (5.7) tends to dt,(B ) as t --+ oo. 1 
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6 .  C o n d i t i o n s  o n  m e a s u r e s  

In this section we discuss the conditions on measures which we have used. First 

we show that ,  under the assumption that  it is Federer, the absolute decay of it 

can be expressed in several equivalent ways, in particular, it suffices to consider 

hyperplanes £ passing through centers of balls. 

We will use the following notation: for two open subsets U1, U2 of ~ ,  say 

that  U1 C3/]2 if for any ball B C U1, 3B is contained in [72. 

PROPOSITION 6.1 : For a Federer measure it on ll~ n , the following conditions are 

equivalent: 

(1) it is absolutely decaying. 
(2) For it-a.e, point of ]~u there exist a neighborhood U of this point and 

C, a > 0 such that for all atone hyperplanes £ and all bails B = B(x,  r) C 

U with x E supp it M £, (1.2) holds. 
(3) it-a.e, point of Nn has a neighborhood U for which 

i t (B(x , r )  M £(5~)) 
(6.1) sup ) ~ o  0. 

xcsupp.,S(~,~)cu, c~x i t(B(x,  r)) 

(4) it-a.e, point of I~ n has a neighborhood U for which 

i t ( B ( x ,  n 
(6.2) sup )a-~o 0. 

xesupp#,S(x,r)C(], any £ i t ( g ( x , r ) )  

Proof: The implications (1) ~ (2) ~ (3) are immediate. Suppose (3) holds; 

for it-a.e, xo E l~i '~ choose U 9 xo as in (3), and also assume, as we may, that  

it is D-Federer on U for some D > 0. Then take a neighborhood 0 C~ U of 

x0. After that,  given a ball B = B(x,  r) C U centered in supp it and any affine 

hyperplane £, choose y E B M supp it M £(~)  (if there is no such y, then there is 

nothing to worry about). Let £y  be the affine hyperplane parallel to £ passing 

through y. Then for any 5 > 0, 

Hence 

£(~5r) and £(~)  C - y  
n d e f ~ ,  

B C ~y = t~(y, 2r) C 3B C U. 

it(B ('1 < it(By A C(y 26r)) it(By) Federer< 
i t ( B )  - i t ( B y )  i t ( B )  - 

D#(By M £(2~r)) 

#(By) ' 

which shows that  (6.2) is a consequence of (6.1). 

Now suppose (4) holds. For #-a.e. x0 E l~ ~ choose ~ 9 x0 as in (4), and again 

assume that  # is D-Federer on U for some D > 0. Then take a neighborhood 
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U Ca (; of Xo. After that  take an arbitrary 0 < ~? < 1/DN, and choose 5 so 

that  

(6.3) < rl. 
# (B(x ,  r) M L: (&) 

sup 
,,esuppu,U(,,#)c0, any ~ # ( B ( x , r ) )  

Let cde=fs/2. We will show by induction on k that  for any ball B C U centered 

at supp # of radius r and any hyperplane £, 

(6.4) #(B M £ (ckr)) < (DN~)k" 
,(B) - 

The case k = 1 follows from (6.3). For k > 1, let 

2 ] : x E B M s u p p # M  

and, using Proposition 2.1, choose B' to be a subcollection of multiplicity at 

most N covering B M supp # M £ (c~+lr). Note that  

(6.5) UB' C 3B M £ (ck~). 

We therefore have 

tt(B n £ (c~+1~)) <_ I~( U B' n z(ck+,r)) < ~ ,(B' n ~(~ckr/2)) 
B'E/3' B'EB' 

(6.3) Prop. 2.1 
_< 7/ E #(B ' )  _< r /g# (uB ' )  

B'EB' 

(6.5) (6.4) 
<_ ~N#(3B M £ (c~)) <_ rlN(~lNU)kp(3U) 

Federer 
~_ (rlND)k+l#(B). 

This proves (6.4). 

Now let 
gel log ~?o a = where ~od-e--fDN~, 

log c ' 

r~defl . 
let w = l/rl0, let r > 0 and let e > 0 with c/r <_ c. Suppose B C U is a ball of 

radius r centered in supp #. Choose k so that  

(6.6) c k+l < e/r <_ c k. 
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We obtain 

#(B n L; (~)) = #(B O Z;(-5~)) (6._<6) #(B N L; ( ~ ) )  

_ ~k+l (6<4) q~#(B) = '1o #(B) 
~o 

log e/r 

_< = c 
~o 

Enlarging C if necessary to account for the case ~ > c, we obtain (1). | 

Note that  the above proof shows that,  if one in addition assumes that  # is 

D-Federer on II( n, all the above conditions are equivalent to 

(5) For #-a.e. point of Rn there exist a neighborhood U of this point, 5 > 0 

and 0 < ~/< 1/DN such that  (6.3) holds. 

Remark 6.2: Several recent papers, such as [PV2, KTV, U2, U3], deal with a 

more uniform version of the absolute decay condition. Let us say that  a measure 

# on Nn is u n i f o r m l y  a b s o l u t e l y  decay ing  if there exist positive C, a,  ro such 

that  (1.2) holds for any affine hyperplane L: C ~ ,  any c > 0, and any open 

ball B centered in supp # of radius r < ro. Clearly this is a property which 

implies absolute decay. On the other hand, the difference is not significant, as 

in all naturally arising absolutely decaying measures (see e.g. the subsequent 

section) the uniform property can be established as well. Note, however, that 

our condition has an advantage of being invariant with respect to restrictions 

to open subsets of lie n . 

Arguing as in the proof of Proposition 6.1, one can easily show that  # is 

uniformly absolutely decaying if and only if for some ro > 0 one has 

r) n 
(6.7) sup )~-~o O. 

x~supp tt,o<r<ro,£~x #(B(x,  r)) 

Note that  in the case n = 1, that  is, if # is a measure on the real line, condition 

(6.7) may be restated as follows: 

ar)) 
sup )~-+o 0. 

An a-priori stronger requirement, introduced by Veech IV] in the study of 

quadratic differentials, is 

#(B(x, Sr)) 
sup ----~5-~0 0. 

~eR,0<~<l #(B(x,r)) 
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Later, in [W], the following condition was used: 

There are C,a  > 0 such that  Vx E ~, 5 > 0, 0 < r < 1, 

p(B(x ,  6r)) < C6a#(B(x ,  r)) 

Still later, Urbanski [U2] used the following condition: 

There are 0 < ~? < 1, 5 > 0, ro > 0 such that  Vx E ~, 0 < r < r0, 

, (B(x,  5r)) < , , (B(x ,  r)). 

Using arguments as in the proofs of Proposition 6.1 and [U2, Prop. 3.1], it 

may be shown that  these four conditions on # are actually equivalent (and 

imply absolute decay). In this case one need not impose the condition that  # is 

Federer. Details are left to the reader. 

We now observe that  measures obeying a/3-power law for large enough j3 are 

absolutely decaying. 

PROPOSITION 6.3: Suppose # satisfies a ~3-power law, with/3 > n - 1. Then # 

is absolutely decaying, with a =/3 + 1 - n. 

This is simple and well known; see e.g. [PV2, U2]. We include a proof for 

completeness. 

Proof." For #-a.e. x0 E ll~ ~ choose U 3 x0 and Cl, c2 > 0 such that  (1.4) holds, 

and take a neighborhood U C3 U of x0. Let B = B(x, r) C U with x E supp #, 

let/2 be an affine hyperplane, and let 0 < ~ < r. Let 

Gd----ef{B(y, 2¢) : y e B N/:(e) n supp #}. 

Note that  all the above balls are contained in U. Using Proposition 2.1, take 

~1 to be a disjoint subcollection such that  

(6.8) ,(uGh) > 
#(B n £(~)) 

N 

For each A E G1, A N £  is a ( n -  1)-dimensional ball of radius at least s, contained 

in £ N 3B, and these balls are disjoint. Also £ N 3B is a (n - 1)-dimensional 

ball of radius at most 3r. Considering the (n - 1)-dimensional volume we find 

that  there is a constant c, depending only on n, such that  

r) n-I 
(6.9) # ~ 1  ~ C ~ ]  . 
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We therefore have 

it(£(~) n B) (1.4), (6.8) 
it(B) -< clN---'~it (U~a) r -  

(1.4) N (6___9) Ncc:(~)~+I-n. 
<- clr ----z#~lc2e~ cl 

Enlarging the constant Ncc2/o if necessary to account for the case ~ > r, we 

conclude that for some C > 0, it is absolutely (C,/3 + 1 - n)-decaying. | 

To conclude this section, we describe the absolute decay condition in terms of 

limits of the 'zooming in' process. Namely, suppose U is a bounded open subset 

of li( n , it a measure on Nn, 

Rd=ef max{r  > 0 : B ( x , r )  C U for some x E suppit}, 

and/3d-----efB(0, R). A measure u on /3  is called a U - m i n i - m e a s u r e  for  it if there 

are x E supp it and a > 1 such that  B(x,  R/a) C U and 

1 
u - i t(B(x,  R/a))((~x,a)*it)l~ 

(where Px,a is defined by (2.1)); that  is, u is obtained from it by 'zooming in' on 

B(x,  R/a) and renormalizing. We say that  u is a U - m i c r o - m e a s u r e  for  it if it 

is an accumulation point of U-mini-measures for it, with respect to the weak-. 

topology on measures on B. A measure # is called n o n p l a n a r  if for any affine 

hyperplane g, it(/:) = 0. 

The terminology of micro-measures, which was introduced by Furstenberg, 

enables us to formulate another characterization of absolute decay. Since we 

will not use it, we leave the proof (based on Proposition 6.1) as an exercise. 

PROPOSITION 6.4: A Federer measure it on ~n is absolutely decayingif and only 
if it-a.e, point of ~n has a neighborhood U such that all of U-micro-measures 
for it are nonplanar. 

7. E x a m p l e s  

In this section we construct measures # which are absolutely decaying and satisfy 

a power law, that  is, measures to which Corollary 1.2 applies. Note that  such 

measures are also 'friendly' in the sense of [KLW]. We also exhibit examples 

of measures which satisfy the assumptions of Theorem 1.1 but not those of 

Corollary 1.2. 
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7.1. HUTCHINSON'S CONSTRUCTION AND ITS GENERALIZATIONS. A map 

~o: R" -+ Nn is a similarity if it can be written as ~o(x) -- QO(x) + y, where 

0 E N+, O E O(n) and y E l~ n • It is said to be contracting if Q < i. It is known 

(see [HI for a more general statement) that for any finite family ~ , , . . . ,  ~m of 

contracting similarities there exists a unique nonempty compact set K, called 

the limit set  of the family, such that 

m 

K = U 
i----1 

Say that ~1 , - . . ,  ~m as above satisfy the open  set  condi t ion if there exists an 

open subset U C N~ such that 

y ) i (U)CU f o r a l l i = l , . . . , m ,  

and 

i ¢ j ~ ~i(U) M ~i(U) = O. 

The family {~i} is called i r reducible  if there is no finite collection of proper 

affine subspaces which is invariant under each ~i. Well-known self-similar sets, 

like Cantor's ternary set, Koch's curve or Sierpinski's gasket, are all examples 

of limit sets of irreducible families of contracting similarities satisfying the open 

set condition. 
. m Suppose {~o~}i=1 is a family of contracting similarities of I~ n satisfying the 

open set condition, let K be its limit set,/~ the Hausdorff dimension of K, and 

# the restriction of the ~-dimensional Hausdorff measure to K. J. Hutchinson 

[H] gave a simple formula for/~ and proved that # is positive, finite, and satisfies 

a ~-power law. Assuming that {qoi} is irreducible, it was proved in [KLW, §8] 

that/z is absolutely decaying, and announced without proof in [KLW, §10] that 

dim(BA M K) = ft. The latter is now clearly seen to be a consequence of 

Corollary 1.2. 

In a recent preprint [U3], Urbanski extended the results of [KLW] to a larger 

class of measures. In particular, he proved that if {qoi}i~__l is a conformal irre- 

ducible iterated function system in II~ n, n >__ 2, K is its limit set (see [U3, §1] 
for definitions) and fl = dim(K), then the fl-dimensional Hausdorff measure 

restricted to K is absolutely decaying. The fact that it satisfies a power law 

was known before, see [B] or [MU, Lemma 3.14]. Hence, by Corollary 1.2, the 

intersection of K with B A  has full Hausdorff dimension. Another preprint [U2] 

of Urbanski contains examples of absolutely decaying and Federer measures on 
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the real line, in particular those coming from certain infinite iterated function 

systems. 

7.2. MORE TREE-LIKE COLLECTIONS. We now look more closely at limit 
measures constructed in the proof of Lemma 2.5. Let Aod-----ef[0, 1] n be the unit 

cube. Fix 

M E N ,  0 < A < I  such that  AM ~ E N  

(in particular A > 1/Mn), and let # be Lebesgue measure on Ao. Define a 

tree-like (relative to #) family A of subsets of Ao inductively as follows. Set 

A0~f{A0}, and, given a cube A E Ak, subdivide A into M ~ subcubes of equal 

size, with edges parallel to the coordinate axes, and let Ak+l (A) consist of AM n 

of them, chosen arbitrarily. Then by an easy induction, the following properties 

hold for all k E N: 

• Each A E Ak is a cube with sidelength equal to M-k;  

• #Ak  = (AMn) k. 

From this it is easy to see that  the union A of Ak over k E Z+ is strongly 

tree-like relative to #. Furthermore, the limit measure v, defined as the unique 

weak limit of sequence {L'k} given by (2.10), satisfies 

(7.1) v(A) = (AMn) -k VA E Ak. 

PROPOSITION 7.1: The limit measure ~ satisfies a ~-power law, where ~3 = 

dim(Ao~) = n - l o g ( l / A ) / l o g  M. 

Proof." It is immediate from the construction that  supp vk = UAk for all k E N, 

and that  the diameter of A E Ak is v ~ / M  k. Let x E supp v, 0 < r <_ x/~/M, 

B = B(x, r ) ,  and let k E N be such that  

(7.2) v ~ / M  k+l < r <_ v ~ / M  k. 

Since x E supp v C supp Vk+l, there exists A E Ak+l with x E A. By (7.2) we 

see that  A C B, hence 

(7.3) y(B) _> v(A) = 1/(AM~) k+1. 

On the other hand, by (7.2), diam(B) = 2r <_ 2v/-nM -k and hence there exists 

C, depending only on M and n, such that  

(7.4) #E  < C, where £d=ef{A E Ak+l : A M B ~ 0}. 
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This implies that  

(7.5) 

Reworking (7.2), we have 

u(B) <_ C/(AMn) k+l. 

log v ~ - log r log M + log vrn - log r 
(7.6) < k + 1 < 

log M - log M 

and putting together (7.3), (7.5) and (7.6) gives the required inequalities. I 

Example 7.2: Take A > 1/M in the above construction. Then, by Propositions 

6.3 and 7.1, the limit measu re ,  is absolutely decaying and satisfies a power law, 

hence satisfies the assumptions of Corollary 1.2. 

PROPOSITION 7.3: Suppose that in the above construction there is a constant 

c > 0 such that for each k E N and each cube A E Ak the following condition 

holds: 

for every a/~ne hyperplane £ C ~n 
(7.7) 

# { B  E Ak+l(A) : BMff-, (c/Mk) = O} > 1. 

Then the limit measure u is absolutely decaying. 

Proof: Note that  (7.7) implies that  AM ~ is at least n + 1, so, by Proposition 

7.1, v satisfies a power law and hence is D-Federer for some D. So, in view 

of the remark after the proof of Proposition 6.1 is enough to find 6 > 0 and 

0 < ~ < 1 /DN such that  

n 
(7.8) . ( B ( x ,  r)) < ,1 

for any x E supp u, any affine hyperplane £ and small enough r. 

Take r < v/-n/M, define k by (7.2), put B = B(x , r ) ,  and let C ,$  be as in 

(7.4). Suppose A E £. Then by (7.3), 

(7.9) 

Note that  for any e E N, 

(7.10) 

u(A) <_ u(B). 

#.Ak+I+e(A) = (AMn) t. 

Also, (7.7) and a straightforward induction on e show that  for any e E N, 

(7.11) #Ge _< (AM n - 1) e, 
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where 

Let 

Then one has 

~ed-----ef{A ' E Ak+l+e(A) : A' M ,g (c/M~+~) ~ O}. 

d e f ) ~ M  n --  1 

~o- AM n 

(7.12) 
~(A n £ (c/M~+*)) (7.1) #~e (r.10),(7.n) 

< _< o e . 
v(A) - #Ak+e(A) 

Choose ~ E N large enough so that  rlde=fcQe < 1/DN, and set 

(7.13) 5de-4fc/v~Me. 

Putting together previous computations, one has 

u(B M/:(~r)) (7.2),(r.13) u(B M £. (c/Mk+~)) 
< 

, (B)  - , (B)  

(7.9) , (A  M £ (c/Mk+~)) (7.41~7.121 
<- ~ v(d) - Coe < ~' 

AE$ 

proving (7.8). | 

Example 7.4: It is clear that  one can keep choosing as few as n +  1 sub-cubes at 

each stage, and not necessarily in a self-similar way, and still satisfy (7.7). See 

Figure 1 for examples. This gives a way to construct limit sets A ~  of tree-like 

families of subsets of Ao with dim(Aoo) = log(n + 1)/log M arbitrarily small, 

which are not limit sets of families of contracting similarities, and such that  

d im(BA M Aoo) = dim(Ac~). 

Figure 1. Three collections satisfying (7.7). Here n = 2 and M = 8. 
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Example 7.5: We now construct a measure on the real line which is Federer 

and absolutely decaying (thus scaling) but does not satisfy a power law. Choose 

an integer M > 3 and a sequence m~ $ oc, to be specified later. Then perform 

a tree-like construction using M-adic intervals, as follows. Take Ao = [0, 1] and 

,4 = {A0). Given k, let e = ~k be such that  k E {mr + 1 , . . . ,mr+ l} .  If ~k is 

odd and A E Ak, then Ak+l (A) consists of (say) the leftmost and rightmost 

subintervals of A; and if ek is even, then Ak+l (A) contains all the subintervals 

of A. 

It follows immediately from Proposition 7.3 that  the limiting measure u is 

absolutely decaying. Let us show that  u is Federer. Let B = B(x, r )  with 

x E supp u, and choose k by the requirement 

1/M k > r > 1/M k+l. 

Let A E .4k with x E A; then B contains at least one element of Ak+l, and 

3B intersects at most 2 elements of .Ak-1. All elements of Ak-1 have the same 

u-measure, say z, and the u-measure of any element of .4k+1 is at least z /M 2. 
Therefore 

u(aB_~) _< 2z _ 2M2, 
v(B) z /M 2 

as required. 

On the other hand, it follows from the discussion in [Mat, Chapter 5] that ,  

if the sequence me increases sufficiently rapidly, then the upper (respectively 

lower) Minkowski dimension of A ~  is equal to 1 (respectively log 2/ log M). In 

particular they are not equal, and hence, by [Mat, Thm. 5.7], the measure u 

does not satisfy a power law. 

8. Further  results  

In this section we discuss two more manifestations of the idea of applying uni- 

form return estimates to produce bounded trajectories. 

8.1. QUADRATIC DIFFERENTIALS. There are many interesting analogies be- 

tween the study of the dynamics of flows on homogeneous spaces of Lie groups, 

and flows on the moduli space of quadratic differentials. In this section we 

present a result, analogous to Theorem 3.2, in the quadratic differential setup. 

We refer the reader to [MW] and [KW] for all definitions which will be used in 

this section. 

Let S be a compact orientable surface of genus g with n punctures, where 

3g+n >_ 3, and let Q be the moduli space of unit-area holomorphic quadratic dif- 

ferentials over complex structures on S. This is a noncompact orbifold on which 
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Gd-- -ef SL(2, IR) acts continuously. It is partitioned into finitely many G-invariant 

suborbifolds called s t r a t a .  Say that X C Q is b o u n d e d  in a s t r a t u m  if its 

closure is a compact subset of a single stratum. 

For t E ~, let 0) 
gt = e_ti  e E G 

and Fde=f{gt : t >_ 0}. For s, 0 E/R let 

hsdef (1  s )  def~COS0 --sinO~ 
= 0 1 ' r 0 =  \ s inO cosO ] "  

The actions of {gt}, {hs}, {re} are often called the (Teichmiiller) geodes ic ,  

ho rocyc l i c ,  and circle flows, respectively. 

The following holds: 

THEOREM 8.1: Let q E Q, and let # be an absolutely decaying and Federer 

measure on IK Then for any open interval B with #(B) > 0 one has 

(i) dim({s E supp#  M B : Fhsq is bounded in a stratum}) >_ d_~ ( B), 

(ii) dim({8 E suppp  M B : Freq is bounded in a stratum}) ~_ d , (B) .  

The case in which p is Lebesgue measure is the main result of [KW]; its proof 

is similar to that  of Theorem 3.2 of the present paper, and can be modified to 

yield Theorem 8.1. Specifically, one can view Q as an Sl,a-space where Sl,a is 

a subgroup of G generated by Hde=f{hs} and a = e t, and repeat the argument 

as in the proof of Corollary 5.4 to derive the needed Hausdorff dimension es- 
timate from Theorem 4.1 and the following uniform return estimate similar to 

Proposition 5.3: 

PROPOSITION 8.2: For any positive C, a, D, ~1 there exists a compact K C Q 

with the following property: for any compact L C Q and any interval B C IR 

centered at O, one can find to = to(L, B) > 0 such that whenever t > to, 

q E L and # is an absolutely (C, a)-decaying and D-Federer measure on 3B 

with 0 E supp #, one has 

tt({s E B :  gthsq E K}) _> (1 - ~/)#(B). 

Proposition 8.2 can be derived from a quantitative nondivergence result for 

the horocycle flow on moduli space, in terms of a general measure, which is a 

variant of [MW, Thm. 6.10]. To state it, we introduce the following notation. 

Let Q be the space of (marked) unit area quadratic differentials over complex 

structures on S, let rr: Q --+ Q be the natural quotient map, and for q E 
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let £q denote the set of saddle connections for q. Note that  there is a natural 

identification of £q with/ :gq for any g E G. Now for ~ E /:q let /~(q) denote 

the norm of the holonomy vector of 5 with respect to the flat metric determined 

by q, and let 
/(sd-----efTr({q E Q:  V(~ E /:q,15(q) ~ C}). 

Note that,  as in the homogeneous space set-up, each K~ is compact, and for each 

stratum JM, {34 M K~}~>0 is an exhaustion of 34. Then one has the following 

analogue of Theorem 5.1: 

PROPOSITION 8.3: There are positive constants % Po, depending only on S, 

such that for any positive C, a, D there is a positive C t such that the following 

holds for any absolutely (C, c~ )-decaying and D-Federer measure # on an interval 

B C IR. Suppose J C ] R i s a n i n t e r v a I w i t h 3 J  C B, 0 < p <_ Po, q E Q, and 

suppose that for any 8 E/ :q ,  suptc J l~(htq) >_ p. Then for any 0 < e < p, 

The proof of Proposition 8.3 will appear elsewhere; it is similar to that  of 

[MW, Thm. 6.10], but with the assumption that  # is Federer substituting for 

condition (36) of that  paper. 

The deduction of Proposition 8.2 from Proposition 8.3 follows the lines of the 

argument of §5 and is left to the reader. 

8.2. DIOPHANTINE APPROXIMATION WITH WEIGHTS. Given an n-tuple r = 

( r l , . . . ,  rn) with 
n 

r i > 0  and ~ r i = l ,  
i=l 

say that  x = (Xl , . . . ,  Xn) E ~n is r -bad ly  a p p r o x i m a b l e  if there is c > 0 such 

that  for any p = (Pl , - . . ,Pn)  E En, q E N one has 

max ]qxi - p,l 1/~" >_ c/q. 
i 

Denote the set of all r-badly approximable vectors in IR n by r -BA. This def- 

inition was originally introduced in [K1] but can be traced back to [$4]. Note 

that  one has B A  = n -BA where nd=-ef(1/n,..., l / n ) ,  so that  one can think of 

the components of r as the weights assigned to different coordinates of x, re- 

covering the standard definition in the case of equal weights. It follows from 

W. Schmidt's general version of the Khintchine Groshev Theorem [S1] that  

Lebesgue measure of r -BA is zero. On the other hand, it is mentioned in [$4] 
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that  one can prove the existence of r-badly approximable vectors by a variation 

of a method due to Davenport. The fact that  the set r -BA has full Hausdorff 

dimension was conjectured in [K2] and was recently proved in [PV1]. This was 

further extended in the preprint [KTV], where the following was shown: let 

# = #1 x . . .  × #n, where each #i is a measure on ~ satisfying a power law; then 

dim(r-BA n supp #) = dim(supp #). 

Using the method of the present paper, it is possible to develop an alternative 

proof of the aforementioned result, and in fact establish a slight generalization: 

THEOREM 8.4: Let # = #1 × . . .  × #n, where each #i is an absolutely decaying 

and Federer measure on I~, and let B1 . . . .  , B,~ be open intervals with #i(Bi)  > O. 

Then 

dim(r-BA N supp# N (BI × " .  × Bn)) ~_ E c I ~ ( B i ) .  
i----1 

The first step of the proof is a reduction to a dynamical result; generaliz- 

ing Dani's correspondence (Proposition 3.1), one can interpret r-badly approx- 

imable points of ~n in terms of boundedness of certain trajectories on G/F  as 

follows: 

PROPOSITION 8.5 ([K1]): x E r -BA i f  and only if the trajectory 

{g~r)T(x)Zn+l : t > O} 

is bounded in G/F,  where 

g(r)def  d i a g ( e r l t  , . e r , ~ t , e - t ) .  

To construct many bounded g~r)-trajectories, one applies Theorem 5.1 with 

h of the form 

h,,u(x) fg r)T(x)u. 
The proofs of Lemma 5.2 and Proposition 5.3 go through with minor changes, 

since the g~r)-action still contracts the last component of vectors and expands 

the remaining components. However, the expansion rates are now different, 

which in particular replaces (3.5) by a more complicated conjugation relation, 

namely 

( r )  , , ( r )  ---- r(Arx),  where A~de--fdiag(e (l+rl)t e (l+r')t) gt T[x)g-t  , - " ,  • 

As a result, the uniform return method of §4 has to be modified, which in 
particular demands more restrictive assumptions on the measure #. 
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