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ABSTRACT 

We provide conditions on the complex dilatation of a homeomorphism f 

of the upper half plane It{ into C, which guarantee that  f(~I) is a proper 

subset of C and, in case where f (~)  is a Jordan domain, that f has a 

homeomorphic extension onto ~. 

1. I n t r o d u c t i o n  a n d  p re l imina r i e s  

Let f be a sense-preserving homeomorphism of the upper half plane H = 

{z E C : Im z > 0} into C and #: ]HI --+ C a measurable function with I#1 < 1 a.e. 

in IHI. We say that  f is a # - h o m e o m o r p h i s m  or #-conformal ,  if f is ACL in 

]HI, i.e. absolutely continuous on lines, see [A] or [LV], and the complex partial 

derivatives 

,z =~(f~-ifv ) and f~=l(fx+if~) 
satisfy a.e. the Beltrami equation 

(B )  = 

The function it is the c o m p l e x  d i l a t a t i o n  of f ,  and it is denoted by it = it/.  
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Note that  a It-homeomorphism in N, if it exists, can be viewed as a confor- 

real embedding of IHI endowed with the measurable conformal structure ds = 
Idz + I t(z)d:  I into C. It is well known that  if f is conformal in lE (endowed with 

the euclidian metric), then f(H) is a proper subset of C, and if, in addition, 

f(IH D is a Jordan domain, f has a homeomorphic extension on H, the closure 

of H in C = C U {e~}. The same is true for a #-homeomorphism in IHI with 

llitlloo < 1. If liitlioo < 1 we say that  it is b o u n d e d .  

If it is measurable and loca l ly  b o u n d e d  in ~ i.e. ]lItlAIl~ < 1 for every 

relatively compact subset A in IHI, a #-homeomorphism of H exists, and its image 

may be either C, see 4.2 below, or a proper subset of C. One may ask under 

what conditions on it, with or without the assumption that # is locally bounded, 

every It-homeomorphism f satisfies: 

(i) f (H) # C, and 

(ii) if, in addition, f(]H D is a Jordan domain, then f has a homeomorphic 

extension on IHI = the closure of ]HI in C. 

A sufficient condition, namely, 

(: + l I t(z) l) /( i  - l I t (z ) l )  5 O(z) a.e. 

for some function Q of bounded mean oscillation in ]HI can be derived from 

David's existence and uniqueness theorem [D]. For an explicit proof see [RSY]. 

An extension of this result to higher dimensions can be found in [MRSY], where 

the methods are quite different. 

The main results in this note are the following Theorem 1.3 and Theorem 1.4. 

Some of the ingredients in the proofs of these theorems were developed in [SY]. 

In Theorem 1.3, the assertion (i) above is obtained for an embedding f of ]HI 

into C under an assumption on the complex dilatation f near a single boundary 

point. In the latter theorem we assume that  It is locally bounded in ]HI and that  

lIt(z)l -4 1 as z -4 E for some open set E in R = OK possibly E = R. 

Let r > 0 and p be measurable a.e. positive in (0, r). We say that  p is loca l ly  

b o u n d e d  away f r o m  0, ifplA >_ po(A) > 0 a.e. for all relatively compact subset 

A of (0, r). We say that  p(t) -4 0 a.e. as t -4 0 +, if p -4 0 as t -4 0 +, t E (0, r) \ A 

for some set A of linear measure zero. 

Let E be an open set in l~ and U a neighborhood of E in C. We say that  

I#(x,y)l --+ 1 a.e.  u n i f o r m l y  in U as y -+ 0+,x  E E,  if U has a subset A with 

m2(A) = 0 such that  for all x E E,  

(1.1) lim I#(x,y)l = 1, (x,y) e U \ A ,  
y-+0+ 
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and there exists C > 1 such that  for all (xa,y) and (x : ,y )  in U \ A, 

1 1 - [ I t ( x l , y ) [  < C. 
(1.2) C -< 1 - I I t (x2 ,y) [  - 

1.3. THEOREM: Let f be an embedding of H into C and a 6 t(. Suppose that 

a has a neighborhood U in C such that f is ACL in U + = U N H with a locally 

bounded complex dilatation # = Itf in U +. I f  

(a) [It(x,y)]-+ 1 a.e. uniformly in U + as y-+ 0 +, x 6 U n 1(, 

(b) argIt is continuously differentiable with bounded partial  derivatives in 

U + , 

(c) [argIt[ < 200 < 7r in U +, 

then 

(i) f(H) # c, 
(ii) if, in addition, f(H) is a Jordan domain, then f has a homeomorphic 

extension on H tA (U N 1(). 

1.4. THEOREM: Let E be an open set in 1(, possibly E = 1(, It: IHI --+ C a 1ocally 

bounded measurable function, and f: H ~ C a It-homeomorpMsm. Suppose 

that every point a 6 E has a neighborhood U, U C C such that conditions 

(a)-(c) of Theorem 1.3 hold with Oo depending on U. 

If  f (~{) is a Jordan domain, and if f is quasiconformai in every domain D, D C 

H whose closure in -C is contained in H \ E ,  then f has a homeomorphic extension 

on H. 

Suppose that  # satisfies the assumptions of Theorem 1.4 with E = 1(, and that  

f is a #-homeomorphism of H onto a Jordan domain. Then, by Theorem 1.4 

and in view of the fact that  f(IE) is a Jordan domain in C, it follows that  f has 

a homeomorphic extension on ]EtA 1(; however, f need not have a homeomorphic 

extension on ]HI = ]HI U 1( tA {ec} as illustrated in 4.1. 

Throughout  the paper, for a point a E 1( and r > 0, I -- I(a, r) denotes the 

interval ( a -  r,a + r), S = S(a,r)  = {(x,y) : ]x - a ]  < r, ]y[ < r} denotes the 

square centered at a with side of the length 2r, and S + = S+(a, r) = S N IHL 

2. Prel iminaries  

2.1. DEFORMATION OF THE COMPLEX DILATATION. Let # be a locally 

bounded complex-valued measurable function in 1E, and let g be an embedding 

of IS into C, and suppose that  g is locally quasiconformal. The d e f o r m a t i o n  
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g * # of # which is i n d u c e d  by  g is defined in g(]H D by 

A# - B 1 
(2.2) g ,  = o g (w) ,  • 

where A = Og and B = c~g are the complex partial derivatives of g. 

2.3. LEMMA: Let # and g be as in 2.1. Then 

(i) g * # is measurable and locally bounded in g(IH D. 

(ii) I f  h is a locally quasiconformal embedding of g(IHI) into C with complex 

dilatation ~h : g * ~t a.e. in g(H), then f = h o g is localIy quasiconformal with 

complex diIatation #f  = tt a.e. in ]HI. 

Proof: (i) The functions A, ,4, B, /~ and # are measurable in ]HI and hence so 

is (A# - B ) / ( A  - B#).  Now, g is locally quasiconformal, and thus preserves 

measurable sets. Consequently, g * # is measurable in g(H). Furthermore, since 

g is locally quasiconformal, and # is locally bounded, so is #g = B / A  and hence, 

by a simple estimate, it follows that  g • # is locally bounded in g(lHI). 

(ii) Since g and h are locally quasiconformal embeddings, so is f .  Therefore, 

for almost all z in H, g is differentiable at z and h at g(z), and at these points 

an application of the chain rule yields 

-4(#h o g) -- B 
(2.4) # f  : j~(~t  h o oq) "~- A" 

If we now set Ph : g */ t  and apply (2.4), we get # /  = # a.e. in H, as asserted. 

2.5. LEMMA: Let a be a point in ~, r > 0 and #(x ,y)  a locally bounded 

measurable function in the rectangle S + = S+(a,r).  I f  [#(x,y)[ --+ 1 a.e. uni- 

formly in S + as y --+ 0 +, x E (a - r, a + r), then there are measurable functions 

p(y): (0,r)  ~ IK~ and M: S + -~ ~, such that p(y) is a.e. positive and locally 

bounded away from 0 in (0, r), and p(y) --+ 0 a.e. in R+ as y ~ 0 +, and M 

satisfies 

1 
(2.6) -~<_M(x , y )<_C a.e. i n S +  

for some C > 1, and such that for a.e. (x ,y)  E S +, 

(2.7) 1 - I#(x, y)[ = p(y)M(x,  y). 

Proof: Recall that  by (1.1), there is a set A in S + with m2(A) = 0 such 

that  [#(x,y)[ ~ 1 as y ~ 0 +, (x ,y)  E S + \ A .  For x e E,  let A(x) = Af31(x),  
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where l(x) is the vertical line, which contains the point (x, 0). Then, by Fubini's 

theorem, ml (A(x)) = 0 for a.e. z E (a - r, a + r). 

Let xl be a point in (a - r ,  a+r) such that  I#(xl, Y)I < I for a.e. (Xl, y) E l(Xl), 

I#(xl, Y)I --+ 1 as y --+ 0 + and such that ml (A(xl))  = 0. Set p(y) = 1 - I # ( x l ,  Y)I- 

Then p is a measurable function in an interval (0, r). Clearly, p(y) -+ 0 a.e. in 

(0, r) as y --+ 0 +, and p is a.e. positive in (0, r). Then, p has a measurable 

extension on N, denoted again by p, which is positive a.e. in ]l~+. Furthermore, 

p is locally bounded in (0,r), since # is locally bounded in E 

For (x, y) E S +, set 
1 - l (x, 

M ( x , y )  - 1 -]p,(xi ,y)]  

Then the assertion of the Lemma follows by (1.2). 

2.8. LEMMA: Let a be a point in ~, U a neighborhood of a in C, and 0 

be a continuously differentiable function with bounded partial derivatives in 

U + = U C? IE such that [0(z)[ _< 0o < rr/2 for all Z E U +. Then 

(i) there is a square S = S(a,r) ,  r > O, S C U such that the equation 

(2.9) O~ O~ 0~ sin 0 - ~yy cos 0 = 0 

has a unique solution ~(x, y) in S +, which has a continuous extension on S + UI, 

I = I(a - r, a + r), satisfying the initial condition 

(2.10) ~ ( x , 0 ) = x ,  x E I ;  

(ii) the mapping 

{ (~(x,y), y), for (x,y) E S + 
(2.11) gl(x ,y)  = (x,0), for (x,y)  E I 

is an embedding of S + U I into C, which is a C 1-diffeomorphism of S + into IE 

and identity on I. 

Proof: Consider the differential equation 

dz 
(2.12) - m ( x , y ) : = - t a n O ,  x + i y E U  +. 

dy 

In view of the assumptions on 0, m(z ,  y) is continuously differentiable with 

bounded derivatives in U +, and hence has a continuous extension on U +, and 

the coefficient function m(x,  y) is Lipschitz in U + with respect to y. Therefore, 
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there exists 5o > 0 such that for every ~ E (a -- 50,a + 50), (2.12) has a unique 

solution x = ~(~, y), 0 _< y _< 50, which satisfies the initial condition 

(2.13) p(~,0) = ~. 

Since m(x,y) is bounded in U +, there exists 5 E (0,50) such that the mapping 

z = G(~), z = x + iy, ~ = ~ + i~ which is given by 

(2.14) ~ x = ~((,~?) 
l y = ~  

is well defined in the closed rectangle 

Q = {(~,~): I ~ -  a] _< 5,0 <_ ~ <_ 5}. 

Clearly G i l a -  5,a + 5] = id, and by the classical existence and uniqueness 

theorem for first order ordinary differential equations, G is an embedding of Q 

into C. Since m E C l, it follows that ~(~,~) and hence also G is continuously 

differentiable in Q = int Q, see [H, Theorem 3.1.2]. Furthermore, see [H, 3.1.16], 

0--~ = exp - (~(~, ~), s)ds > O, 

and thus the Jacobian Jv of G satisfies 

(2.15) Ja - O(x,y) _ Ox > 0, 
o(~,~) 0~ 

in Q. Therefore, G is a sense preserving homeomorphism in Q, and G(Q) c K 
Then, there exists r > 0 such that S+(a,r) C G(Q). 

Let gl = G -1 ]S+(a, r). Then gi is a sense preserving homeomorphism which 

is a diffeomorphism, and hence locally quasiconformal in S + (a, r), and gl maps 

S+(a,r) into Q. Furthermore, by (2.13), 

(2.16) gii(a - r,a + r) = id. 

Now, (2.14) and the fact that x = ~(~,y) is a solution of (2.12) imply 

(2.17) 0~ sin0 - 0~ Ox ~ cos 0 = O. 

Indeed, 

((x~z ~y~/ = ( ; ~  x ' / - l = Y ,  ( ;~ l m 1 - 1 =  (1/oX~ m~xe I " 

Hence, ~y/~x = m = tan 0, which yields (2.17). 
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2.18. LEMMA: Let rl > O, 11 = (a - r l , a  + r l )  and S1 = S(a, r l )  and let 

p be an a.e. positive measurable function in (0 , r l ) ,  such that p is a.e. locally 

bounded awayfrom 0 in (0 , r l )  and such that p(t) -~ 0 a.e. in (0, r l )  as t --+ 0 +. 

Then the mapping g2: S + U I1 ~ H U I1, which is detined by 

(2.19) g2(~, ~) = (~, R(~)), 

where 

/o (2.20) R(~) = p(t)dt 

is an embedding, is locally quasiconformal in $1 + and identity on I1. 

Proof" Since p is measurable and a.e. positive in (0, r l ) ,  g2 is injective, and 

hence an embedding in S +. Clearly, g2 is an ACL and hence g~ is a.e. dif- 

ferentiable in S + U J. Since p is locally bounded away from 0 in (0, r l ) ,  and 

#g: = (1 - p)/(1 + p) a.e. in S +, it follows that  g2 is locally quasiconformal in 

S +. Obviously, g2Ill = id. 

3. P r o o f  o f  t h e  m a i n  r e su l t s  

3.1. Proof  of Theorem 1.3: Let a, f and U be as in the theorem. Set O(z) = 

argp(z) /2 .  Then ~ satisfies the assumptions of Lemma 2.8. Let r > 0, S = 

S(a ,r ) ,  I = I (a ,r ) ,  and gl be as in Lemma 2.8. Then gl is identity on I 

and maps S + homeomorphically into H. By Lemma 2.5, there are measurable 

functions p: (0,r)  -+ I ~  and M: S + --+ E such that  for a.e. (x,y)  E S +, 

(3.2) ~(X, y)  = e iarg tt(x'Y)[1 -- p(y). M(x, y)] 

and such that  (2.6) and (2.7) hold. Next, choose r '  > 0 such that  S '+ C gl(S+),  

where S' = S(a , r ' )  and let I '  = S ' f3  ll~. Choose rl E (0,r ' )  such that  for 

$1 : S(a, rl),  + C gl(S') .  

Now, let A = cOgl/cgz, B = cog1~05 and 

(3.3) C = Ae ie - Be -ie. 

Then 

(3.4) 

1 1 
A = ~ [ ~ x + l - / ~ y ] ,  B = ~ [ ~ x - l + i ~ y ] ,  

Im C = ~x sin 0 - ~ cos 8, 
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and thus, in view of (2.9), C is real. 

By (3.3), ICI _> IAI -  IBI > 0, and since [AI 2 - I B I  2 = Jgl > 0, it follows that  

C ~ 0, and thus, by straightforward computations, 

(A B) Jgl j llcl_2>0 
(3.5) + = c 5  

Let pl = gl * tt be the deformation of the dilatation #, which is induced by 

gl. By setting in (2.2) the expression for p which is given in 3.2, one obtains 

that  a.e. in S + 

e2i°(1 - pM)A - B C - ei°pMA 
(3.6) ~1 = .~ _ e_2io( 1 _ pM)B o G = ~ + eiOpM~ o G. 

Since C # 0 and real and p(~) -+ 0 a.e. as ~ -+ 0, 

i o(p))] G (3.7) #1= [ C ( 1 - e i g \ C  + -~] p-b p" o 

holds a.e. for a smaller rectangle, which we denote again by S +, $1 = S(a, rl). 

Thus 

(3.8) #1(4) = 1 - p(v)MI(~) a.e. in $1, 

where, in view of (3.5), 

M~ = MJg, ]C[ -2 + o(p) 

is a real-valued measurable function, which satisfies 

1 
(3.9) n l  -~ ]Mll < R1 

for some R1 > 0. 

Next, let g2 be as in Lemma 2.18 and let P2 = g2 * Pl be the deformation 

of #1, which is induced by g21S +. Since pl is locally bounded in S + and g2 

is locally quasiconformal, it follows, by Lemma 2.3, that  #2 is measurable and 

locally bounded in g2 (S+). 

We now compute and estimate #2. Let A = (g2)¢ and B = (g2)~. Then 

1 p~) 1 p(~) 
A = ~ + - - _  and B -  2 2 

a.e. in S +. To obtain #2 we plug #1 = 1 - p(y)M1 (4) of (3.8), in (2.2), and get 

(1 + p)(1 - pM1) - 1 + p _ 2 - M1 inS+ 
# 2 ° g 2 =  l + p - ( 1 - p ) ( 1 - p M 1 )  2--+M1 +o(p), a.e. 
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as p --+ 0. In view of (3.9) and the fact that  p(~) -+ 0 a.e. as ~ -+ 0 +, there is 

r2 E (0 , r l )  such that  for $2 = S(a, r2),S + C g2(S+), and such that  I P21 ~ < 1 

in S +. Then a quasiconformal mapping ~ : S + --+ C with #~ = #2 a.e. in S + 

exists. 

Let V = g~-i o g~-i (S+) and let J = ~ N ~. Then J = I2 where /2  = I(a, r2). 
Also, by Lemma 2.3, for a.e. z E V, 

Hence, there exists a conformal mapping h of ~ o g2 o gl (V) = ~(S  +) onto f(V). 
The cluster set of f on J is the same as the cluster set of h o ~ o n / 2 .  The 

latter meets C since h o ~ is quasiconformal. It thus follows that  the cluster set 

of f on ~ meets C, and therefore f(IHI) ~ C, and (i) follows. 

Suppose now that  f(lI~ is a Jordan domain. Then f (V) is a Jordan domain, 

and since h o ~ is quasiconformal, it has a homeomorphic extension on S + U J. 

Now g1111 = g2112 = id, hence f = (h o ~) o (g2 o gl) has a homeomorphic 

extension on U A J. 

The same argument can be applied to any other point in U N II~, from which 

we can conclude that  if f(]HI) is a Jordan domain, then f has a homeomorphic 

extension on ]HI t3 (U N ll~), and thus (ii) follows. 

3.2. Proof of Theorem 1.4: Let E,  # and f be as in the theorem. If E = 0, then 

f is quasiconformal in H,  and the assertion follows by the classical qc theory. 

Suppose that  E ¢ 0. Then E is a countable union of disjoint open intervals 

I. Fix one of these intervals, say I. Then, by Theorem 1.3, every point in I 

has an interval, which is contained in I where f extends homeomorphically, and 

since f(H) is a Jordan domain, f has a homeomorphic extension on IHI U I, and 

consequently on H U E. 

We now show that  f has a continuous extension on [-lI \ E.  Let b be a point 

in (~t3 { ~ } )  \ E. Since C, and hence f(H~, is compact, the cluster set of f at b 

is not non-empty. It suffices to show that  it is non-degenerate. Suppose that  it 

r in ~lI which tend to is not non-degenerate. Then there are sequences xn and x n 

b such that  f(x,  0 and f(x~) tend to different limits, say w and w', respectively. 

Let K and K' be disjoint arcs in f (H) ,  the first one containing all points f(xn) 
and the other one all f(X~n) and such that  each of these two arcs lies in f(]E) 

except for its end point, which is w and w ~ respectively. Now choose a domain 

D with D C IHI U {b}, which contains f - l (K)  U f - l (K ' ) ,  and such that  the 

family F of all paths in D which join f - 1  (K) and ] - 1  (K')  has infinite modulus, 

M(F)  = oo. The path family f (F)  is a subfamily of all paths joining K and K ~ 
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in C, and the latter has finite modulus, since K and K '  are disjoint continua. 

Therefore the modulus M(f (F) )  of f (F)  is finite, which is impossible since f is 

quasiconformal in D and M(F) = c~. 

Suppose now that  J is a non-degenerate component of I~ U {(x~} \ E. Choose 

a domain D, D C ]Hi such that  J C OD A ~. Since f is quasiconformal in D, 

and f (J)  is a free boundary arc in f (D) ,  it follows that  f has a homeomorphic 

extension on the union of H and the interior (in the R topology) of J, and thus 

(in view of the existence of a continuous extension at each boundary point) on 

H U J .  

Recalling that  f(D) is a Jordan domain, we obtain that  f has a homeomorphic 

extension on IHI. 

4. E x a m p l e s  

4.1. In the following example, f and # satisfy the conditions of Theorem 

1.3 with E = IK Here f maps IHI homeomorphically onto itself, and it has a 

homeomorphic extension onto ]HI [3 ~, as asserted in the theorem, but not onto 

IHI. More precisely, here/(1HI t3 ~) = IHI t3 ~ U {c~}, and the cluster set of f at 

c~ is the closed ray [-c~, 0]. 

The mapping ] in this example is defined by 

f(x,  y) = e x+2iarc tany2 ,  

Then the complex dilatation of f is given by 

and 

y > 0 .  

y2 _ 4y + 1 
- 

y2+4y+l 

4y 
1 - t t t  I = l - t t - y 2 + 4 y + l .  

Therefore 1 - Ip(x, Y)I = P(Y) " M(x, y), where 

1 
p(y )=4y  and M ( x , y ) -  y2 + 4 y +  l 

Then condition (a) holds at every point x E ]R with C = 1 in (1.2). Also 

arg # = 0, and thus conditions (b) and (c) hold too. 

4.2. In the following example f is a #-homeomorphism in IHI with # satisfying 

conditions (a) and (b) in Theorem 1.3, but not condition (c). In this example 

f maps H onto C. 
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The mapping f in this example is defined by 

f ( x , y )  = x + i l ogy ,  y > 0 .  

and 

where 

Then the complex dilatation of f is given by 

p ( x , y )  - y - 1 
y + l '  

1 - 1 # 1 -  2y _ p(y) . M ( x , y )  
y + l  

1 
p(y) = 2y, M ( x , y )  = Y +--------~, and a rg#(x ,y)  --+ n as y -+ 0 +. 

Thus (a) and (b) hold, and (c) fails. 

4.3. In the following example f is a #-homeomorphism in ]HI with a complex 

dilatation # satisfying conditions (a) and (b) in Theorem 1.3, but not condition 

(c). Here f maps ]HI onto itself, but f has no injective, and hence no homeomor- 

phic extension on ]HI U ~. 

The mapping f in this example is defined by 

f ( x , y ) = x y + i y ,  y > O .  

Then 

where 

- l + y + i x  
# ( x , y ) -  l + y - i x  ' 

1 - I ~ I  ~ 4~ 1 
1 - I~I = 1 + I.------~ = (~ + 1)~ + x~ " 1 + I~I 

- -  - p ( y )  . M ( x , y )  

4y 1 
p(y) = 4y and M ( x , y )  = (y + l) 2 + x 2 . 1 + 1 # 1 .  

Note that # satisfies conditions (a) and (b) in Theorem 1.3, and #(x,y)  --+ - 1  

as y ~ 0 +, and thus condition (c) fails. Here for every x E IL f ( x ,  y) --+ 0 as 

y - ~ 0  +. 

4.4. In the following example f is a #-homeomorphism in ]HI with # satisfying 

conditions (b) and (c) in Theorem 1.3, but not condition (a). Here f maps 

IHI onto itself, but f has no limit at x = 0, and hence has no homeomorphic 

extension on H U II~. 
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The mapping f in this example is defined as follows. For y > 0, let f (x ,  y) = 
u(x, y) + iy 2, where for x _> 0 

x / y  if x <_ y/2, 
u(x,y)  = x / y +  ~ ( x / y -  1/2) 2 if y/2 < x < 3y/2, 

1 + x -  y if x > 3y/2, 

and for y > 0 and x < 0 
y) = y) .  

By checking the values of u(x, y) and its partial derivatives at each of the five 

sectors which are defined by Ix I < y/2, y /2  < Ix I < 3y/2 and lxl > 3y/2 and 

their limits at points on the lines Ix] = y/2 and Ix] = 3y/2, y > 0, it is not hard 

to verify that  f is a Cl-homeomorphism in H. 

One can compute argp(z) and Oarg#(z)/Oy in IHI (say with the aid of a tool 

like MAPLE) and verify that  there is r > 0 such that  conditions (b) and (c) 

hold in each of the rectangles S+(x , r ) , x  c ~. 

Obviously, for x E I~, [#(x,y)l ~ 1 as y ~ 0 +. Simple computations show 

that  near every point x > 0 in I~, and therefore near every point x < 0 in R, 

8y 
1 - [#(x,y)l 2 -- (1 + 2y) 2 + 1" 

Hence, near each of these points 

1-1#(x , y ) [  = O(y), as y --~ O +. 

By similar computations one obtains that  for points (x, y) in the middle sector 

Ixl < y / 2 ,  
8y 4 

1 - [# (x , y ) [  2 = x2 + y2( 1 + 2y2) 2, 

and thus 

1 = as y 0 + 

in the middle sector. Therefore, condition (a) fails at the point 0. Note that  

condition (a) holds near every other point in I~. 

As noted above, f maps H onto itself. Clearly, the cluster set of f at 0 is the 

line segment Ixl _< 1, y = 0. Hence f has no homeomorphic extension on H U I~. 
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