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ABSTRACT 

We construct a 2-generated profinite group which is just-infinite and not 
positively generated. 

Since a profinite group G has a natural compact topology, it has also a Haar 

measure, which is determined uniquely by the algebraic structure of G. We 

normalize this measure so that  G has measure 1, and it becomes a probability 

space. This allows us to define, for any positive integer k, ProbG(k) as the 

measure of the subset { (g l , . . . ,  gk) E G k [ g l , . . . ,  gk topologically generate G}. 

A profinite group G is p o s i t i v e l y  f in i te ly  g e n e r a t e d  (PFG) if for some k, the 
probability Proba(k)  that  k random elements generate G is positive. 

Mann [6] proved that finitely generated prosoluble groups are PFG,  as are the 

profinite completions of SL(d, Z) for d _> 3. A stronger result has been proved 

in [2], where it is shown that if G is a finitely generated profinite group and 

there is a finite group which is not obtained as a quotient of an open subgroup 

of G, then G is PFG. Other examples of PFG groups occur in Bhattacharjee's 

work [1]. 

However, a free non-abelian profinite group is not PFG. Indeed, Kantor and 

Lubotzky proved that the direct product I-In Al t (n )  n!/s, equipped with the prod- 

uct topology, is a finitely generated profinite group which is not PFG [5]. This 
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infinite direct product has as an epimorphic image the group I-In Alt(n), which 

is infinite and PFG (see [5], Proposition 14). In a recent meeting ("Groups 

and Probability", Budapest, June 30 - July 4, 2003) Pyber asked whether any 

profinite group which is not PFG behaves in this way and proposed the follow- 

ing conjecture: a finitely generated profinite group which is not PFG admits an 

infinite epimorphic image which is PFG. In this paper we give a counterexample 

to this conjecture; indeed, we construct a profinite group G which is 2-generated, 

non-PFG and just-infinite (i.e., any proper epimorphic image of G is finite). 

Before starting with the construction of our example, we find it useful to 

recall a definition. 

Definition 1 (see [4]): Let L be a finite monolithic primitive group and let M 

be its unique minimal normal subgroup. For each positive integer k, let L k be 

the k-fold product of L. The c rown-based  power  of L of size k is the subgroup 

Lk of L k defined by 

Lk = {(/1,... ,lk) E L k Ill - . . .  - / k  modM}.  

Clearly, soc(Lk) = M k, Lk/SOC(Lk) ~- L / M  and the quotient group of Lk 

over any minimal normal subgroup is isomorphic to Lk-1, for k > 1. Moreover, 

it can be easily proved that Lk has the following property: 

LEMMA 2: Any normal subgroup of Lk either contains or is contained in 

soc(Lk). 

We shall construct a sequence {X~ }ieN of finite groups, satisfying the following 

properties: 

(1) Xi is a crown-based power of a monolithic primitive group with nonabelian 

socle; 

(2) Xi+l/ soc(Xi+l) TM Xi; 
(3) Xi can be generated by 2 elements. 

In the sequel we will denote by d(X) the smallest cardinality of a generating 

set of the group X. Before describing our construction we need to claim the 

following result: 

PROPOSITION 3: There exists an absolute constant "~ with the following prop- 

erty. Suppose that L is a finite monolithic primitive group and M = soc L ~ S n 

with S a nonabelian simple group. If  d (L /M)  <_ 2, then d(Lt) = 2 for any 

t <_ "/lsP/nl outs l .  

Proof: This is just a particular case of [3], Proposition 10. | 
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Now we can construct recursively our groups Xi. We start by setting X1 = 

Alt(5). Assume that  Xj has been defined for 1 _< j _< i and let mi = ]Xil. We 

think of Xi as a regular permutation group of degree mi and we take the wreath 

product Gi = Alt(mi) I Xi; note that  Gi is a monolithic primitive group and 

soc(Gi) ~ (Alt(m~)) mi. Let 

we define Xi+l = (G~)t~, i.e., Xi+l is the crown-based power of G~ of size ti. By 

construction soc(Xi+l) -- ((Alt(mi))m~) t~ and Xi+l/soc(Xi+l) ~ Gi/soc(Gi) 

~ Xi. Moreover, by Proposition 3, d(Xi+l) = 2. 

We have an epimorphism ¢i+1#: Xi+l -+ Xi ~ Xi+l/soc(Xi+l), and, for any 

j > i, the composition map Cji = Cja-1 " "  ¢i+1,i is an epimorphism Xj ~ 

Xi. So {Xi, Cji} is a projective system and we may consider the inverse limit 

G = l~ieN Xi. For any i • N, there is a continuous epimorphism 7ri: G ~ 

Xi; let Ni = ker~ri. We have that  Ni+l < N~ and {Ni}ieN is a fundamental 

system of open neighborhoods of the identity in G. More precisely NjN~+I = 

soc(G/Ni+l), hence, by Lemma 2, a normal subgroup of G which contains N~+I 

either contains or is contained in Ni. This implies: 

LEMMA 4: If  N is a nontrivial dosed normal subgroup of G, then there exists 

i • N such that Ni <_ N. In particular, G is a just-infinite profinite group. 

Proof: Let N be a nontrivial closed normal subgroup of G; by the observation 

above, for any i E N, the normal subgroup NN~+I either contains or is contained 

in Ni; in the first case NN~+I = NNi, in the second N _< Ni. Since N is closed, 

it must be N = NicNNN~. There exists i E N such that  N ~ Ni, otherwise 

N <__ [~icNNi = 1. Let j = min{i • N [ N ~ Ni}. For any k_> j ,  we have 

NNk+I = NNk hence N = ~ieN NN~ = NNj,  and this implies Nj ~_ N. | 

As d(G/Ni) = d(Xi) = 2 for any i • N, we deduce that  G is a 2-generated 

profinite group. However, we claim that  G is not a PFG group. In order to 

prove this fact let us recall that  Mann and Shalev proved that  PFG groups can 

be characterized by the behaviour of the function #n(G) which is defined as the 

number of closed maximal subgroups of G with index n. 

THEOREM 5 (Mann and Shalev [7] Theorem 4): A finitely generated profinite 

group G is P F G  if  and only if G has polynomial maximal subgroup growth, 

i.e., there exists a constant c such that for all n, the number #n(G) is at most 
n c , 
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LEMMA 6: The group G is not PFG. 

Proo£" By construction, G/Ni+, ~- Xi+l = (Gi)t~ with Gi = Alt(mi) I Xi. 

Moreover, soc(Xi+l) = U1 x . . .  x Ut,, where each Uj is a minimal normal 

subgroup of Xi+l and is isomorphic to (Alt(mi)) m'. For any j E {1 , . . . ,  ti} let 

YJ = 1-Ikcj Uk: this is a normal subgroup of Xi+l and Xi+I/Yj ~ Gi. If we 

think of Alt(mi) as a permutation group of degree mi and we consider Xi as a 

regular permutation group of degree mi, the wreath product Gi = Alt(mi) I Xi 
mrni. with the product action is a primitive permutation group of degree i , this 

implies that  for any j E {1 , . . . ,  ti}, the group Xi+l contains a maximal subgroup 

= mi and corexi+l(Mj) = Yj. Hence #tuTti (G) > My such that  [Xi+l  : Ujl m i 
~tm'~i (Xi+I) _~ ti. By Theorem 5, if G is PFG, then there exists a constant c 

such that  for any i E N, 

1 = t, < ( a )  < 
mi2mi+ 1 J -- _ 

Since limi-+oo mi = oo this is impossible. This proves that  G is not PFG. | 

We conclude this short paper with some remarks. The group 

G = l-I(Alt(n)) n!/s 
n 

admits crown-based powers with nonabelian socle as epimorphic images; further- 

more, these crown-based powers may be taken of arbitrarily large size. Indeed 

if k _> 5, then k <_ k!/8 and (Alt(k))k = (Alt(k)) k is an epimorphic image of G. 

In the same way let G be the just-infinite group constructed in this paper; for 

any positive integer k there exists i such that  k _< ti and G has a factor group 

isomorphic to the crown-based power (Gi)k of the primitive group Gi of size 

k. We conjecture that  any finitely generated profinite group which is not PFG 

behaves in a similar way; more precisely our conjecture is: i] a finitely gener- 

ated profinite group G is not PFG, then for any positive integer k there exists a 

primitive monolithic group L with nonabelian socle, such that the crown-based 

power Lk is an epimorphic image of G. 
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