
ISRAEL JOURNAL OF MATHEMATICS 152 (2006), 371-380 

DENSITY THEOREMS AND 
EXTREMAL HYPERGRAPH PROBLEMS 

BY 

V. RODL* 

Department of Mathematics and Computer Science, Emory University 
Atlanta, GA 30322, USA 

e-mail: rodl@mathcs.emory.edu 

AND 

M .  S C H A C H T * *  

Humboldt Universitiit zu Berlin, Institut fiir Informatik 
Unter den Linden 6, 10099 Berlin, Germany 

e-mail: sehacht@informatik.hu-berlin.de 

AND 

E .  T E N G A N  % 

Department of Mathematics and Computer Science, Emory University 
Atlanta, GA 30322, USA 

e-mail: etengan~mathcs.emory.edu 

AND 

N .  T O K U S H I G E  ~ 

College of Education, Ryukyu University 
Nishihara, Okinawa, 903-0213, Japan 

e-mail: hide# edu.u-ryukyu.ac.jp 

* Research was partially supported by NSF Grant DMS 0300529. 
** Research was partially supported by the Deutsche Forschungsgemeinschaft 

within the European graduate program 'Combinatorics, Geometry, and 
Computation' (No. GRK 588/2) and by grant SCHA 1263/1-1. 

t Research was supported by a scholarship from CAPES, Brazil. 
Research was supported by MEXT Grant-in-Aid for Scientific Research (B) 
16340027. 
Received September 2, 2004 

371 



372 V. RODL, M. SCHACHT, E. TENGAN AND N. TOKUSHIGE Isr. J. Math. 

A B S T R A C T  

We present alternative proofs of density versions of some combinatorial 
partition theorems originally obtained by E. Szemer6di, H. Furstenberg 
and Y. Katznelson. These proofs are based on an extremal hypergraph 
result which was recently obtained independently by W. T. Gowers and 
B. Nagle, V. R6dl, M. Schacht, J. Skokan by extending Szemer6di's 
regularity lemma to hypergraphs. 

1. I n t r o d u c t i o n  

In 1977, Furstenberg [2] gave an alternative proof of Szemer6di's celebrated 

theorem [13] regarding the upper density of sets containing no arithmetic pro- 

gression of fixed length (for other proofs of Szemer6di's theorem see also [7, 15]). 

Refining the techniques of this proof Furstenberg and Katznelson were later able 

to derive several other density versions of combinatorial partit ion theorems. The 

following, which can be viewed as a density version of Gallai-Witt 's  theorem, 

is one of them (see [3]). We denote by [ - N ;  N] the set { - N ,  - N  + 1 , . . . ,  N}. 

THEOREM 1: Let T be a finite subset of ~d, and let 6 > O. Then there exists 

a finite subset C o f ~  d such that anysubset  Y C C with [YI > 61CI contains a 

homothetic copy o fT ,  i.e., a set of the form y + AT for some y E I~ d and some 

e \ {0}. 
~-brthermore, i f  T C [- t ;  t] d for some positive integer t, then C = [ - N ;  N] d 

has the above property for every sufficiently large N = N ( t, d, 6). 

Note that  for d = 1, Theorem 1 implies Szemer6di's density theorem [13]. For 

a fixed d, the special case of the above result allows us to find a homothetic 

copy of a full-dimensional cube [ - t ;  t] d in a dense subset of a sufficiently large 

cube [ - N ;  N] d. Two other results in a similar vein, also due to Furstenberg and 

Katznelson [4], address the complementary case when the dimension is allowed 

to grow. 

THEOREM 2: Let Fq be the finite field with q elements. Then for every positive 

integer d and every 6 > 0, there exists Mo = Mo(q, d, 6) such that, for M > M0, 

any subset Y C F M with [Y[ > 6[FM[ = ~qM contains a d-dimensional affine 

subspace. 
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THEOREM 3: Let G be a finite abelian group, and let 5 > 0. Then there 
exists Mo -- Mo(G,5) such that if  M >_ Mo and Y is a subset of G M with 
IY[ > 5[GI M, then Y contains a coset of  a subgroup of  G M isomorphic to G. 

The proofs by Furstenberg and Katznelson of the above theorems rely on 

ergodic theory and do not yield any bounds on N and M0. The purpose of this 

note is to present proofs of these theorems based on an extremal hypergraph 

result (see Theorem 4 below). It is not known, however, whether a similar 

approach yields an alternative proof of the density version of the theorem of 

Hales and Jewett [8], which was established by Furstenberg and Katznelson [5]. 

For a set V and an integer k > 1, let (v) be the family of all k-element subsets 

of V. A subset 7-/(k) C_ (v) is a k-uniform hype rg raph  on the vertex set V. 

As usual, we refer to the k-element sets in the hypergraph 7/(k) as edges. We 

write K~ k) for a clique of order t, namely the complete k-uniform hypergraph 

on t vertices with (1) edges. 

THEOREM 4: Let t and k be fixed integers with t > k >_ 2. Suppose that a 

k-uniform hypergraph 7-I (k) on n vertices contains only o(n t) copies of K~ k) as a 

subhypergraph. Then one can delete o(n k) edges of T-I (k) to make it K~k)-free. 

We will al3o use the following immediate corollary of Theorem 4. 

COROLLARY 5: Let 7-l (k) be a k-uniform hypergraph on n vertices. Suppose 
that for each edge H of 7-I (k) there exists precisely one clique n.(k) in 7-[ (k) "~k+l  
which cont~ns H. Then IE(~(k))l -= o(n k) (where E(Tt (k)) denotes the edge 
set of the hypergraph 7-l(k) ). 

Proof." Since every edge of H(k) sits in precisely one copy of ~(k) the number ~ k + l ~  

of copies of ~(k) in 7/(k) is IE(7-l(k))l/(k + 1) < (~.)/(k + 1) = o(nk+l). By ~ k + l  
Theorem 4 (applied with t = k + 1), we can delete only o(n a) edges of 7/(k) in 

order to make it K~vf r ee .  On the other hand, we need to remove at least one 
edge per clique, that is, at least IE(7-l(k))l/(k + 1) edges. Therefore, IE(Tt(k))l = 

o(nk). | 

Theorem 4 is a consequence of the method independently developed by 

Cowers [6] and Nagle, RSdl, Schacht, and Skokan [9, 11]. This method is based 

on an extension of Szemer~di's regularity lemma [14] from graphs to k-uniform 

hypergraphs. The formal proof of Theorem 4 is given in [10] (see also [6] and 

[9] for the case t = k + 1). The proof of Theorem 4 is purely combinatorial 

and combined with the arguments below give the first quantitative proofs of the 

density theorems, Theorems 1-3. 
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The proof of Theorem 1 in the case d = 1 (i.e., Szemer~di's theorem) based on 

Corollary 5 was given by Frankl and RSdl [1]. The essential part of the reduction 

of Theorem 1 to Corollary 5 was already discovered by Solymosi in [12]. We 

present this proof in Section 2 (see also [6]). Our proof of Theorem 2 and 

Theorem 3 extends an idea from [1]. 

2. P r o o f  of  T h e o r e m  1 

In this section we present a proof of Theorem 1. We first prove the special case 

when the finite configuration T is a subset of the integer lattice (see Lemma 6 

below). The proof of Lemma 6 is based on Corollary 5. This reduction was first 

considered by Solymosi in [12]. 

LEMMA 6: For all positive integers t, d and every 5 > O, there exists No = 
No(t,d, 5) such that forN >_ No any subset Y C [ - N  ; N] d with IY[ > 5(2N+1) d 
contains a homothetic copy of f - t ;  t] d. 

Proof: Suppose, on the contrary, that  there exists Y C f - N ;  N] a with [Y[ > 

5(2N + 1) 6 which contains no homothetic copy of [ - t ; t ]  a. Set k = (2t + 1) 6 - 1 

and W = Y x f - N ;  N] k-d. Then [W[ > 5(2N + 1) k. We shall show that  W 

contains no homothetic copy of a simplex S defined below, but this contradicts 

Corollary 5 as we will see. 

Denote the elements of f - t ;  t]d by eo, e l , . .  •, ek; without loss of generality, we 

may further assume that  e0 is the origin, and that el ,  e 2 , . . . ,  ed are the vectors 

of the standard basis: 

e o  = ( 0 , 0 , . . . , 0 ) ,  e ,  = ( 1 , 0 , . . . , 0 ) ,  e2  = ( 0 , 1 , . . . , 0 ) ,  . . . ,  ed  = ( 0 , 0 , . . . , 1 ) .  

For i = 0 , . . . ,  k - d, set (k - d)-tuples 

fo = (0 ,0 , . . . , 0 ) ,  f~ = (1 ,0 , . . . , 0 ) ,  . . . ,  fk-d = (0 ,0 , . . . , 1 ) .  

Let us define a k-dimensional simplex S C f- t ;  t] k with points {So,. . . ,  Sk} by 

(ei, f0) if i = 0 , . . . ,  d, 
s i =  (ei ,f i-d) i f i = d + l , . . . , k .  

Since Y contains no homothetic copy of f - t ;  t] d, W contains no homothetic copy 

of S. Let {F0, . . .  ,Fk} be the facets, i.e., ( k -  1)-dimensional faces, of S, and 

for i = 0 , . . . ,  k let V~ be the set of all hyperplanes in IR k which are parallel to 

Fi and intersect [-N;N] k. 
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Let us show that  IViI = O(N) for each i. A normal vector w = ( W l , . . .  , Wk) 

of a facet (which is an affine span of k vectors among So , . . . ,  Sk) is a non-zero 

solution of the system 

r i . w  = 0 ,  i = l , . . . , k - 1  

where each r~ is a difference of 2 distinct sj 's  and hence is an integer vector 

whose coordinates have absolute value less than 2t. 

Therefore, we may assume that  the wj are given, up to sign, by determinants 

of integer matrices whose entries are coordinates of ri 's. Hence lwj] does not 

exceed (k - 1)!(2t) k-I . Consequently, the hyperplanes of the form 

W "  ~ : Wl~  1 -~- W2~2 -{- " ' '  -~- Wk~k : b, 

where b is an integer and I b] _< k!(2t)k-lN, cover all the points ~ = (~1, . . . ,  ~k) E 

[ - N ; N ]  k. We conclude that  at most 2k!(2t)k-lN + 1 = O(N) hyperplanes 

parallel to the given facet are needed to cover all the points of I - N ;  N] k. 
Next, we are going to define a (k + 1)-partite k-uniform hypergraph 7-/(k) with 

vertex partit ion V0 U .-.  U Vk. Let H be a set of k vertices of ?_/(k) with the 

property IH M Vii _< 1 for all i. Then those k hyperplanes corresponding to H 

determine a point p E ~k. We put H in 7/(k) if and only if p E W. 

Each H E E(7/(k)) determines a point p E W. On the other hand, for each 

i = 0 , . . . ,  k, each point p E W determines a vertex v E Vi, which corresponds 

to a hyperplane parallel to F~ and passing through p. In this way, p determines 

the k + 1 vertices of a clique ~,.(k) in ?_/(k). ~ k + l  

Suppose that  k + 1 hyperplanes determined by a clique n.(k) do not meet "~k+l  

one point. Then these planes define a simplex homothetic to S in W, which 

is a contradiction. Thus every clique h.(k) must determine a point p E W. "~k+l  

This means that for every H E E(Tt (k)) there is precisely one clique K (k) k+l  
which contains H. This implies that  IE(7-/(k))] ---- (k + 1)]W[. Finally, we 

have IWI = o(N k) by Corollary 5. This contradicts our earlier assumption 

IWl > ~ ( 2 / +  1) k. I 

We now deduce Theorem 1 from Lemma 6. 

Proof o( Theorem 1: Let ~ > 0 be given. Let T be a finite subset of ~d. 

Let r = r(T) be the Q-dimension of T,  i.e., the largest number of linearly 

independent vectors of T over Q. Choose r such vectors wa , . . . ,  ~r E sd so that  

T C ZWl + . . .  + Zwr. We define the map ¢: Z ~ --+ ~d 

( a l , . . . , a r )  ~-~ alwl + . . .  +arwr .  
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Since Wl, . . .  , 0.) r are linearly independent over Q, the map ¢ is injective. Now 

choose a positive integer t large enough so that ¢ -1 (T)  C [- t ;  t]r and define 

N = No(t ,r ,5)  by Lemma 6. Let C = ~b([-N;N]r);  if Y C C and IYI = 

I¢-1(Y)1 > 51C1 = 5(2N + 1) ~, then ¢ - 1 ( y )  contains a homothetie copy of 

I - t ;  t] r, say y '  + A[-t; t]r for some y '  E [ - N ;  N] r and some A > 0. Thus 

Y D ~P(y~ + A[-t; t] r) ---- ~p(y') + A¢([- t ;  t] r) D ¢(y ' )  + AT, as required. I I  

3. P r o o f  of  T h e o r e m  2 an d  T h e o r e m  3 

As we shall show at the end of this section, the following lemma, Lemma 7, 

is more general than Theorem 2 and Theorem 3. Its proof elaborates on a 

construction first considered by Frankl and RSdl [1, Proposition 2.3]. 

LEMMA 7: Let A be a finite, commutative ring with q elements. Then for 

every (f > 0, there exists Mo -- Mo(q,5) such that, for M > Mo, any subset 

Y C A M with ]Y] > ~]AMI = 5q M conta/ns a coset o / a n  isomorphic copy (as 

an A-module) o[ A. 

In other words, there exist r, u E A M such that r + ~(A) C_ Y ,  where 

~: A ~ A M, ~(a) = a u  for a E A, is an injection. 

Remark 8: We later only use Lemma 7 for a commutative ring A. We remark 

that commutativity of the ring A is not used in the proof below. In fact, the 

proof below works verbatim for an arbitrary finite non-commutative ring and 

left modules, as well. 

Proof  of  Lemma 7: Let q = IA I and let so = 0, a l  = 1, a2 , . . .  ,aq-1 be the 
elements of the ring A. Let V = A m and suppose Y is a subset of V which does 

not contain a coset of an isomorphic copy of A. We shall define a q-partite, q- 

uniform hypergraph 7-/(q) whose vertex partition classes V0, . . . ,  Vq-1 are disjoint 

copies of V. For v2 , . . .  ,Vq-1 E V and y E Y, let 

q-1 

H ( v 2 , . . .  ,Vq_, ,y)  = (h0, . . .  , ha - l )  e I I  Vi, 
i=0 

where 

Set 

(1) 

h i -- 

y + E - -jvj if i = 0, 
q--1 

y - l - ~ j = 2 ( O l j  - - 1 ) V j  i f / =  1, 
vi if i = 2 , 3 , . . . , q -  1. 

E ( ~  ( a ) ) = { H ( v 2 , . . . , v q _ l , y ) : v 2 , . . . , v q - l E V  a n d y E Y } .  
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(Since 7/(q) is q-partite and q-uniform we may view its edges as ordered q-tuples 

as defined above.) Clearly, 7/(q) has qlVI = qm+l vertices and qm(q-2)Iy I edges. 

Consequently, Lemma 7 follows from Claim 9 below. | 

CLAIM 9: Let ?-l(q) be the hypergraph defined in (1); then 

[E(~(q))l -- o(qm(q-1)), as ra -~ ec. 

Proof: First we verify that  

(2) I/-/1 n H21 <_ q - 2 for any distinct edges H1, H~ E E(~-L (q)). 

For that  let H1 = H(v2 , . . .  , V q - l , Y l )  and / /2  = H( w2 , . . .  ,Wq-l,Y2) be a pair 

of distinct edges in 7/(q). It is easy to see that  if they intersect in q - 1 points, 

we must have vi = wi, 2 < i < q - 1, and Yl -- Y2, which implies//1 =/-/2. 

Let ~-(q) be the q-uniform hypergraph on 2q vertices ao , . . . ,  aq-1, bo, . . . ,  bq-1 
and q edges Fi = {ao, . . .  , a i - l ,b i ,a i+l , . . .  ,aq-1} for i -- 0 , . . .  ,q - 1. We shall 

show that  7-/(q) contains only "few" copies of 9V(q) (see (14)). 

Suppose that  a o , . . . ,  aq-1, b 0 , . . . ,  bq-1 are the vertices of some bY(q) in 7-/(q), 

with ai, bi E V~. 

We first consider F0 = { b 0 , a l , . . .  ,aq-1}. There are v2 , . . .  ,vq-1 E V and 

y~ E Y such that  F0 = {bo, a l , . . . , a q _ l }  -- H ( v 2 , . . . , v q _ l , y l )  and conse- 

quently 

q--1 

(3) bo = y '  + Z o~jvj, 
j----2 

q--1 

(4) al = y '  + ~--~(c U - 1)vj, 
j----2 

(5) a~---vi for i ---- 2 , . . . , q - 1 .  

Next, we consider F1 = {ao ,b l , a2 , . . .  ,aq-1}. Since Fo A F1 -- ( a2 , . . .  ,aq-1} 

• , y ' )  for some y"  E Y such that  by (5) we have F1 = H(v2, . . ,vq_ l  

q--1 

(6) ao --- y"  + Z ajv j ,  
j=2 

q-1 

(7) bl  = y"  + Z ( a j  - 1)vj. 
j----2 
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Similarly, for 2 < i < q -  1, we infer that  Fi = {ao, . . .  , a i - l , b i , a i + l , . . .  ,aq-1} 

---- H ( v 2 , . . .  , V i - l , W i , V i + l , . . .  , V q - l , Y i )  for some wi • V and Yi • Y such that  

q-1 

(8) ao : Yi ~- O~i(Wi -- vi )  -b E ~ j v j ,  
j=2 

q-1 

(9) al = Yi + (ai - 1)(wi - vi) + E ( a j  - 1)vj, 
j=2 

(10) bi = wi. 

From (6) and (8) we infer that  for 2 < i < q - 1 we have 

(11) Y" = Yi + a i (wi  - vi) ~ y"  - Yi = a i ( w i  - vi). 

Moreover, comparing (4) and (9) yields 

(12) Y' = Yi + (ai - 1)(wi - vi) ¢=~ y '  - Yi = (ai  - 1)(wi - vi) 

for 2 < i < q - 1. Equations (11) and (12) for 2 < i < q - 1 give 

(13) a i (y '  - Yi) = (ai - 1)(y" - Yi) ~ Yi  = a i ( y '  - y")  + y" .  

Note that  the last equation also holds for i = 0, 1 with Yo = Y" and Yl = Y~, 

since ao = 0 and al  = 1. We also observe that  due to (3), (6), and ao ~ bo we 

have y '  ¢ y" .  

Now let 

Airreg -- {a E A: ab = 0 for some b E A, b ~ 0} 

be the set of zero-divisors in A and set s = [Airregl. Since 1 • Airreg, 8 < 

q. If u = y '  - y "  ¢ Airmeg, tl~en ~: A '--+ A M given by ~(a)  = a u  is an 

injective A-module homomorphism, and hence (13) implies y"  + ~(A) C_C_ Y, 

which contradicts our assumption on Y. Hence if ?4 (q) contains some ~(q)  = 

{F0,. •. ,  Fq-1 }, there exist v 2 , . . . ,  Vq_l e V and y ' ,  y "  • Y with y ' - y "  • Airmeg 

such that  (3)-(10) hold. Conversely, given such quantities, at most one $-(q) 

is determined: from (4) and (6), we find ao and al;  subtracting (9) from (8), 

we obtain a0 - al = w~ - vi + ~2<y<q-1 vj ,  whence the wi's are determined. 

Finally, (8) determines the yi's. Hence the number #{gV(q) C 7/(q) } of copies of 

:P(q) in 7/(q) is bounded by the number of tuples ( v 2 , . . . ,  Vq_l, y~, y")  satisfying 

the above conditions, and therefore 

(14) #{~'(q) C 7-L (q) } ~ qm(q-2) × [y[  × 8m : o(qmq), 
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where the last assertion used IYI < IV I = IAml = qm and s < q. 

Let 7-/(q-l) be the (q - 1)-th shadow of 7-/(q) 

7-/(q-l) = {H': IH'I = q - 1 and H '  C g for some H E E(7/(q))}. 

Due to (2), for any set Q ofq vertices spanning a clique K~ q-l) in 7/(q-l) the fol- 

lowing holds: either Q is an edge in ~(q) or Q c V(~(q))  for some copy of 5r(q) 

in 7-/(q). Therefore, due to the definition of 7{ (q) in (1) and (14), the number of 
cliques K~ q-l) in 7/(q-l) is bounded by IE(7-l(q))l +o(q mq) = IYIq m(q-2) +o(qmq). 

Since IYI < qm and IV(7-l(q-1))l = IV(~(q))] = qm+l, we infer that  the number 

of copies of K~ q-l) in 7-/(q-l) is o(q mq) which is o(q (m+l)q) = o(IV(7-l(q-1))lq ). 

Hence, Theorem 4 (applied to 7-/(q-l) with n = IV(Tt(q-~))l = qm+l, t = q, 

and k = q -  1) yields that  it suffices to delete at most o(IV(7-/(q-1))t ~-1) = 

o(q (m+l)(q-1)) = o(q m(q-1)) edges from 7-/(q-l) to make it clique free. But due 

to (2) each deleted edge destroys at most one copy of K~ q-l) in 7-/(q-l) origi- 

nating from an edge of 7-/(q) and, therefore, }E(7/(q))l = o(q m(q-~)) as claimed. 
| 

In the rest of this paper we derive Theorem 2 and Theorem 3 from Lemma 7. 

d Proof  of  Theorem 2: Consider the ring A = Fq • . . .  ® Fq = (~=1 Fq. Then 

A m "~ F~q d as an Fq-vector space, and a submodule of A m isomorphic to A is 

a d-dimensional subspace of F~q d. Therefore, Lemma 7 implies Theorem 2 for 

every sufficiently large M - 0 (mod d). 

In general, if M = md+r ,  0 < r < d, Fq M is the disjoint union of IF M I/IFmqqdl = 

qr copies of F~qd; therefore one of these translates, say V, intersects Y in more 

than 6qM/qr = (bqmd elements and hence Y fq V (thus Y) will contain a d- 

dimensional subspace. | 

Finally, we close this paper with the proof of Theorem 3. 

Proof of  Theorem 3: Since G is abelian, we may write 

G ~- ZipS'  × . . .  × ZlpT" 

where Pi are (not necessarily distinct) primes and ei are positive integers. Using 

this isomorphism, we want to view G as the additive group of the ring A = 

z / p T '  x . . .  x 

Then A m and G m are isomorphic abelian groups. Similarly, a submodule A 

of A m is isomorphic to G, also as an abelian group. The theorem then follows 

from Lemma 7. | 
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