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ABSTRACT 

Horn(G, H) is a polyhedral complex defined for any two undirected graphs 

G and H. This construction was introduced by Lov~sz to give lower 
bounds for chromatic numbers of graphs. In this paper we initiate the 

study of the topological properties of this class of complexes. 

We prove that  Horn(Kin, Kn) is homotopy equivalent to a wedge of 

(n - m)-dimensional spheres, and provide an enumeration formula for 

the number  of the spheres. As a corollary we prove that  if for some graph 
G, and integers m > 2 and k >_ - 1 ,  we have wk(Hom(Km,G)) ~ 0, then 

X(G) > k + m; here Z2-action is induced by the swapping of two vertices 

in Kin, and wl  is the first Stiefel-Whitney class corresponding to this 
action. 

Furthermore, we prove tha t  a fold in the first argument of Horn(G, H) 

induces a homotopy equivalence. It then follows that  Horn(F, Kn) is ho- 

motopy equivalent to a direct product of (n - 2)-dimensional spheres, 
while Horn(F, Kn) is homotopy equivalent to a wedge of spheres, where F 
is an arbi trary forest and T is its complement. 
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1. In t roduc t ion  

1.1. DEFINITION OF THE MAIN OBJECT. For any graph G, we denote the set of 

its vertices by V(G), and the set of its edges by E(G), E(G) C_ V(G) × V(G). All 

the graphs in this paper are undirected, so (x, y) E E(G) implies (y, x) E E(G). 
Unless otherwise specified, our graphs are finite and may contain loops. 

Definition 1.1: For two graphs G and H, a graph h o m o m o r p h i s m  from G 

to H is a map ¢: V(G) --+ V(H), such that if x, y E V(G) are connected by an 

edge, then ¢(x) and ¢(y) are also connected by an edge. 

We denote the set of all homomorphisms from G to H by Hom0(G, H). 

Definition 1.2: Horn(G, H) is a polyhedral complex whose cells are indexed by all 

functions ~: V(G) --+ 2 V(H) \ {0}, such that if (x, y) e E(G), then rl(X) × r/(y) C_ 

E(H). 
The closure of a cell r/consists of all cells indexed by ~: V(G) --+ 2 V(H) \ {0}, 

which satisfy O(v) C_ ~(v), for all v E V(G). 

The set of vertices of Horn(G, H) is precisely Homo(G, H). Since all cells of 

Horn(G, H) are products of simplices, the geometric realization of Horn(G, H) is 

defined in a straightforward fashion. 

On the intuitive level, one can think of each rl: V(G) ~ 2 V(H) \ {0}, satisfying 

the conditions of Definition 1.2, as associating non-empty lists of vertices of H 

to vertices of G with the condition on this collection of lists being that any 

choice of one vertex from each list will yield a graph homomorphism from G 

to H. 
A direct geometric construction of Horn(G, H) is as follows. Consider the 

partially ordered set PG,H of all rl as in Definition 1.2, with the partial order 
defined by (/ _< r/ if and only if ~)(v) C_ r/(v), for all v E V(G). Then the 

order complex A(PG,H ) is a barycentric subdivision of Horn(G, H). A cell T of 

Horn(G, H) corresponds to the union of all the simplices of A(PG,H) labeled by 

the chains with the maximal element T. 

In this paper we study properties of the complexes Hom(G, H). More specifi- 

cally, we compute the homotopy type of Horn(G, H) for several families of G and 

H and also derive some information about natural finite group actions on these 

complexes. 

1.2. HISTOaIC MOTIVATION. A particularly frequently studied special case 
of a graph homomorphism is that of a vertex coloring: for a graph G a vertex 

coloring of G with n colors is simply a graph homomorphism from G to Kn. 
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Here K,~ denotes an unlooped complete graph on n vertices, that is V(Kn)  = In], 

E(K~) = {(x,y)[x,y e [n],x • y}. 
Historically, one was especially interested in the question of existence of vertex 

colorings with a specified number of colors. From this point of view, the minimal 

possible number of colors in a vertex coloring is of special importance. It is called 

the chromatic number of the graph, and is denoted by ~((G). 

The Kneser conjecture was posed in 1955, see [16], and concerned chromatic 

numbers of a specific family of graphs, later called Kneser graphs. For n, k E Z, 

n _> 2, 1 < k < n/2, the Kneser graph Fk,n is the graph whose vertices are all 

k-subsets of In], and edges are all pairs of disjoint k-subsets; here 1 < k < n/2. 

In 1978 L. Lovtisz solved the Kneser conjecture by finding geometric obstruc- 

tions of Borsuk-Ulam type to the existence of graph colorings. 

THEOREM 1.3 (Kneser-Lov£sz, [16, 22]): X(Fk,n) ---- n -- 2k + 2. 

To show the inequality ~((Fk,n) _> n -- 2k + 2 Lov~sz associated a simplicial 

complex Af(G), called the neighborhood complex, to an arbitrary graph G, and 

then used the connectivity information of the topological space Af(G) to find 

obstructions to the colorability of G. 

THEOREM 1.4 (Lov~sz, [22]): Let G be a graph, such that Af(G) is k-connected 

for some k E Z, k >_ -1;  then x(G) >_ k + 3. 

The main topological tool which Lov~sz employed was the Borsuk-Ulam theo- 

rem. See also [1] for the extension to hypergraphs, which used the generalization 

of the Borsuk-Ulam theorem from [6]. 
We shall define the complex i f (G) in Section 4, where we shall also see that 

for any graph G the complex Af(G) is homotopy equivalent to ltom(K2, G). This 

fact leads one to consider the family of Horn complexes as a natural context in 

which to look for further obstructions to the existence of graph homomorphisms. 

Accordingly, Lov£sz has made the following conjecture, [23]. Let Cm be a 

cycle with m vertices: V(Cm) = Zm, E(Cm) = {(x,x + 1), (x + 1,x)ix • Zm}. 

CONJECTURE 1.5 (Lov~z): Let G be a graph, such that gom(C2r+l,G) is 

k-connected t'or some r, k • Z, r > 1, k _> -1;  then ~((G) _> k + 4. 

Our proof of Conjecture 1.5 was announced in [4]. The full version of the 

proof consists of 2 parts: the study of the important general properties of ttom 

complexes, appearing in this paper, and more detailed and specific spectral 

sequence calculations, appearing in [5]. However, the general study undertaken 

in this paper contains more than the results which we later use for our spectral 

sequence computations. 
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There was a more general conjecture, also due to Lov~sz. 

CONJECTURE 1.6 (Lov£sz): Let T, G be two graphs; then 

(1.1) x(G) >_ )¢(T) + connHom(T,G) + t. 

Here, conn X is the connectivity of the topological space X, i.e., the maximum 

k such that X is k-connected. Note that Conjecture 1.5 is the special case of 

the Conjecture 1.6 corresponding to T = C2r+1. 

Hoory and Linial, [15], gave a counterexample to the Conjecture 1.6. In 

their counterexample G = Ks, and T is a graph with 9 vertices and 22 edges. 

Furthermore, x(T) = 5, but Horn(T, G) is connected, showing that equation (1.1) 

is false in general. 

In this paper we show that Conjecture 1.6 is true for T -= Km (Lov£sz himself 

proved (1.1) for T = K2). More specifically, let Z2 act on Km for m _> 2, by 

swapping the vertices 1 and 2 and fixing the vertices 3 , . . . ,  m. Since the graph 

homomorphism flips an edge, it induces a free Z2-action on Horn(Kin, G), for an 

arbitrary graph G without loops. 
For a CW complex X on which Z2 acts freely let Wl(X) denote its first 

Stiefel-Whitney class; see [28]. As a corollary of our computations, we prove 

the following theorem. 

THEOREM 1.7: Let G be a graph, and let m, k E Z, be such that m > 2, 

k > -1 .  Ifvz~(Hom(Km,G)) # O, then x(G) >_ k + m .  

Note that if a Z2-space X is k-connected, then there exists a Z~-map S~ +1 --+ 

X. The functoriality of Stiefel-Whitney classes and the fact that ~ + 1  k+l ( s o ) #  
0 imply that :v~ +1 (X) # 0. Therefore Theorem 1.7 implies Conjecture 1.6 for 

T =  Kin. 

1.3. PLAN OF THE PAPER. In Section 2 we define notations, describe the 

category of graphs and graph homomorphisms, and give several examples of 

Horn complexes. Furthermore, we list many simple, but fundamental properties 

of the Horn construction. 

In Section 3 we describe two results from topological combinatorics which 

we need for our arguments: a proposition from Discrete Morse theory, and 

a Quillen-type result. 
In Section 4 we see first that in general gom(K2, G) is homotopy equivalent 

to the neighborhood complex Af(G), implying in particular that Horn(K2, Kn) ~- 
S n-2. We observe that in fact Hom(K2, Kn) is a boundary complex of a polytope, 

on which the natural Zu-action on the first argument induces an antipodal 
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action. In subsection 4.3 we prove the central result of this section, namely 

we show that Hom(Km,Kn) is homotopy equivalent to a wedge of ( n -  m)- 

dimensional spheres, and provide an enumeration formula for the number of the 

spheres. As a corollary we derive Theorem 1.7. 

In Section 5 we prove that a fold in the first argument of Horn(G, H) in- 

duces a homotopy equivalence. As a corollary, we show for an arbitrary for- 

est F that Horn(F, Kn) is homotopy equivalent to a direct product of (n - 2)- 

dimensional spheres, while Horn(F, Kn) is homotopy equivalent to a wedge of 

spheres. For an arbitrary tree T with Z2-action we describe the Z2-homotopy 

type of Hom(T, Kn). 
To conclude the introduction, we refer the reader to a recent survey of the 

previous studies of other complexes related to graph colorings; see [25]. 

ACKNOWLEDGEMENTS: We would like to thank LAszl6 LovAsz for insightful 

discussions, Sonja Cuki5 for a remark, and the anonymous referee for useful 

suggestions which helped us to improve the presentation significantly. 

2. Basic facts about Horn complexes 

2 .1 .  TERMINOLOGY. o For a graph G we distinguish between looped and 

unlooped complements, namely we let Gt be the graph defined by 

V(-G l) = V(G), E(-G t) = (V(G) × V(G)) \ E(G), 

while G is the graph defined by 

m 

V(G) = V(G),E(G) = {(x,y) • V(G) × V(G)Ix ~ y,(x,y) ~t E(G)}. 

o For a graph G and S C_ V(G) we denote by G[S] the graph on the vertex 

set S induced by G, that is V(G[S]) = S, E(G[S]) = (S × S) rq E(G). For 

S C_ V(G) we set G - S to be the graph G[V(G) \ S]. For v • V(G) we shall 

sometimes simply write G - v instead of G - {v}. 

o For a graph G and A C_ V(G), let 

N(A) = {w e V(C)l(v,w ) • E(G),Vv • A} 

denote the set of all common neighbors of the vertices of A. In particular, 

N(O) = V(G), and N(v) := N({v}) is simply the set of all neighbors of v, with 

the convention being that v is its own neighbor if and only if (v, v) E E(G). If 

needed, we will also specify the graph by writing No (A). 
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o For two arbitrary graphs G and H we let G × H denote the direct product 

of G and H: 

V(G x H) 

= V(G) × V(H) ,E(G x H) 

= {((x,y),(Sc,fl))[x,5: • V(G),y, fl • V(H),(x,5:) • E(G),(y, fl) • E(H)}. 

o For two arbitrary graphs G and H we let G LI H denote the disjoint union 

of G and H. 

o For n • Z, n ___ 1, we let Ln denote the graph defined by V(Ln) = [hi, 

E(Ln) = {(x ,y)[Ix-  y[ = 1}. 

o Let L~ be the graph defined by V(~) = [2], E(~)  = {(1, 2), (2, 1), (1, 1)}. 

o For an arbitrary graph G, we let G ° denote the loop completion of G, that 

is v ( a  °) = V(C), E(G °) = E(G) U {(v,v)lv E v(a)} .  

o For a polyhedral complex K we let P(K)  denote its face poset, that is 

a partially ordered set of the faces ordered by inclusion. 

o For any finite category C (in particular a finite poset) we denote by A(C) 

the realization of the nerve of that category. 

o For a poset P we let Bd(P) denote the barycentric subdivision of P, that 

is the poset of all the chains in the given poset ordered by inclusion. For 

a polyhedral complex K we let Bd(K) denote the barycentric subdivision of 

K. Clearly, Bd(g)  = A(P(K)),  and T(A(P)) = Bd(P). 

o For any finite poset P, we let pop denote the finite poset which has the 

same set of elements as P, but the opposite partial order. Also, for any finite 

poset P, whenever a subset of the elements of P is considered as a poset, the 

partial order is taken to be induced from P. 

o Top is a category having topological spaces as objects, and continuous maps 

as morphisms. 

2.2. THE CATEGORY GRAPHS. It is an easy check that a composition of two 

graph homomorphisms is again a graph homomorphism. We denote a composi- 

tion of ¢ • Homo(G, H) and ¢ • Homo(H, K) by ~b o ¢ • Homo(G, K). 

Since the composition is associative and since for any graph G we have 

a unique identity homomorphism in Homo(G,G), we can define a category 

Graphs  as the one having graphs as objects, and graph homomorphisms as 

morphisms. 

One can check that the direct product of graphs is a categorical product in 

Graphs,  while the disjoint union of graphs is a categorical coproduct in Graphs.  
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Note that  with the above notations K~ is a graph consisting of one vertex and 

one loop; it is the terminal object of Graphs .  The empty graph is the initial 
object of G ra phs .  

2.3. EXAMPLES OF Horn COMPLEXES. To start with, we have various trivial 

cases: 

o Hom(K1,H) is a simplex with [V(H)I vertices; 

v 

Hom(L2, K3) Hom(L3, K3) Hom(L4, K3) 

Figure 2.1. Complexes of 3-colorings of strings. 

o Horn(H,/(1) = 0, unless E(H) = 0, in which case Horn(H, K1) is a point; 

o more generally, Hom(G,H) = 0 if x(G) > x(H);  

o Hom(K~, H) is a simplex with vertices indexed by the looped vertices of H; 

o Horn(H, K~) is a point, as mentioned above; 

o Horn(G, K °) is a direct product of IV(G)] simplices, each simplex having n 

vertices; 

o Horn(G,/(2) = 0 if G is not bipartite; it consists of 2 c points, if G bipartite 

and has c connected components; 

o Hom(C2rq-l ,C2p÷l) = ~ if and only if r < p; 

o Hom(C2r+l, C2r+1) is a disjoint union of 4r + 2 points, for r _> 1; 

o Som(C2r+l, C2r-1) is a disjoint union of two cycles, each of length 4r 2 - 1, 

f o r r  > 2; 

o Horn(C6, K3) consists of 6 isolated points, 6 solid cubes and 18 squares con- 

nected as shown on Figure 2.3. The left part of Figure 2.3 is incomplete for the 

purpose of visualizing; it shows the 6 points, 6 cubes and some of the squares. 

The right part shows the link of each of the 6 vertices, where two of the cubes 

touch. The closed star of such a vertex consists of 2 solid cubes and 3 squares. 
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Horn(C4,/(3) Hom(Cs,/(3) 

Figure 2.2. Complexes of 3-colorings of 4- and 5-cycles. 

Horn(C6,/(3) 

Figure 2.3. Complexes of 3-colorings of a 6-cycle. 

o Hom(Kn, Kn) is a disjoint union of n! points; 

o Hom(I<n-l ,Kn)  is the Cayley graph of 8n with the set of generators con- 

sisting of n - 1 transpositions {(a, n)la = 1 , . . . ,  n - 1}. Indeed, every vertex of 

Hom(Kn_l, Kn) is an injection e: [n - 1] -~ [n], which can be identified with a 

permutation of [n] by writing out the values of ~ and then writing the missing 

element of [n] in the last position. An edge is a changing of one arbitrary value 

of t, say t(a), to the missing value, which is precisely the same as acting with 

the transposition (a, n) on the corresponding permutation. 

o Horn(K2, K4) is the full 2-skeleton of the 3-cell depicted on Figure 2.4. 
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o Hom(C~,/(3) is homeomorphic to a disjoint union of two MSbius bands. The 

local structure of each M5bius band is shown on Figure 2.4. The middle cycle 

which is painted bold has length 21 in each band, and all visible squares on the 

picture are filled with 2-cells. 

o It is not difficult to count the number of connected components of 

Hom(Ct,/(3). Denote this number ct; the general formula is 

L(t + 1)/3], if 3Xt, 
ct = t/3 + 5, if 3It, 

for t _> 3. The crucial fact for deriving this formula for ct is to notice that  the 

connected components of Hom(Ct, K3) are indexed with the number of times Ct 
can wind around the triangle K3, with the sign encoding the direction. 

Remark 2.1: As the examples above show, for the considered values of m and 

n, the spaces Hom(Cm, Cn) are either empty or consist of several connected 

components, with each component either being a point, or homotopy equivalent 

to a circle. Recently, this fact has been proved for all values of m and n; see [12]. 

Hom(K2, K4) Hom(CT, K3) Horn(L3, L~) 

Figure 2.4. Further examples of Horn-complexes. 

o Let Vn,k denote the Stiefel manifold of all orthonormal k-frames in ]I~ n. 

Csorba, [10], has made the following conjecture: 

CONJECTURE 2.2 (Csorba): Horn(C5, Kn) is homeomorphic to Vn-l,2, for all 

n > l .  

The cases n = 1, 2 are tautological, as both spaces are empty. The example 

above verifies the case n = 3: Horn(C5,/(3) ~ S 1 I_I S1. Several cases, including 

n = 4, have been recently verified by Csorba and Lutz, [11]. 
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o Note that for an arbitrary G, Horn(G, 1.~) can be interpreted as a cubical cone 

over the independence complex of G; recall that the independence complex of G 

is the simplicial complex consisting of all independent sets of G. When saying 

cubical cone we mean the following construction: given an arbitrary simplicial 

complex A, add an extra vertex a, and for each simplex a E A with d vertices 

span a d-dimensional cube Kz with a being a vertex of K~ and a forming the 

link of a in K~. 

Note that Horn(G,/(3) is cubical for any graph G having no isolated vertices. 

By a theorem of Gromov, see [9], Itom(G, K3) allows metric with nonpositive 

curvature if and only if the link of every vertex is a flag complex (which means 

that each link is the clique complex of its 1-skeleton). 

For any ~ E Homo(G, H), we say that ~ has a cubical neighborhood if ~ does 

not belong to any simplex with more than 2 vertices. 

PROPOSITION 2.3: If ~ E Homo(G,H) has a cubical neighborhood, then 

lkHo~(G,U) ~ is a flag complex. 

Proof: Set L = lkHo~(a,H)T, i.e., the simplicial complex whose face poset is 

Horn(G, H)>~. For v E V(G), set 

Av(v) = I~( U ~(w)). 
wen(v) 

Since ~ has a cubical neighborhood, we have IA~(v)I E {1, 2}, for any v E V(G). 
Let M(~) C V(G) be the set of all vertices v with ]A~(v)] = 2. 

Clearly L has M(~) as the set of vertices. Furthermore, a C_ M(~), such 

that ]a I _> 2, is a simplex in L, if and only if, for any two a, b E a, and any 

x E A~(a), y E A~(b), we have (x,y) E E(H). Since this is a local condition 

depending only on the pair (a, b), we conclude that L is a flag complex. I 

It follows that the cubical complex Horn(G, K3) always allows a metric with 

nonpositive curvature. Moreover, for any ~ E Hom0(G, K3), the proof of Propo- 

sition 2.3 yields that lkHom(C,K3) ~ is the independence complex of G[M(T)]. 

2.4. GENERAL PROPERTIES OF Horn COMPLEXES. 

(1) For any two graphs G and H, Horn(G, H) is a regular CW complex. 

(2) Cells of Horn(G, H) are direct products of simplices. More specifically, 

each ~ as in Definition 1.2 is a product of IV(G)] simplices, having dimensions 

I~?(x)l - 1, for x E V(G). Thus dimy = ~xev(v)I~?(x)] - ]V(G)] .  
(3) For any three graphs G, H, and K, we have 

Hom(G H H, K) -- Itom(G, K) x Horn(H, K), 
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and, if G is connected, and G ~ K1, then also 

Horn(G, H H K ) =  Horn(G, H) H Horn(G, K), 

where the equality denotes isomorphism of polyhedral complexes. 

The first formula is obvious. To see the second one, note that for ~: V(G) -~ 
2 V(H)uy(g) \ {0}, and x, y E V(G), such that (x, y) E E(G), if ~(x) M V(H) ~ 0, 
then y(y) C_ V(H), which under assumptions on G implies that Uxey(G) y(x) c_ 

V(H). 
(4) ttora(H,-) is a covariant, while Horn(-, H) is a contravariant functor from 

Graphs  to Top. 

If ¢ E Homo(G, GI), then we shall denote the cellular maps induced by com- 
position as c s :  Horn(H, G) --+ Horn(H, G') and CH: Hom(G', H) --+ Horn(G, H). 

(5) The map induced by composition 

Horn(G, H) × Horn(H, K) ---+ Horn(G, K) 

is a topological map. 

(6) Obviously, it is difficult to decide in general whether Horn(G, Kn) is non- 

empty, let alone k-connected. It is certainly non-empty if the valency of each 

vertex is at most n - 1. The following fact is true in general. 

PROPOSITION 2.4: Let G be any graph. If the maximal valency of G is equal 

to d, then Hom(G, Kn ) is connected, for all n >_ d + 2. 

Proof'. Assume Horn(G, Kn) is not connected. Choose ¢, • E Homo(G, K,~), such 
that ~b and ¢ belong to different connected components, and ¢(v) = ¢(v) for the 

maximal possible number of vertices. Pick u, such that ¢(u) ~ ¢(u). If ¢(u) 

cannot be changed to ¢(u), that is, if T: V(G) --4 V(H), defined by T(X) = ¢(X) 
for x ~ u, ~-(u) = ¢(u), is not a graph homomorphism, then there exists a vertex 
w, such that (u, w) E E(G), and ¢(w) = ¢(u) ~t ¢(w). 

Since the valency of w is at most n - 2, we can change ¢(w) to something 

else, without changing the number of vertices on which ¢ and ¢ coincide. Once 

this is done for each such neighbor of u, we can change ¢(u) to ¢(u), thereby 

increasing the number of vertices on which ¢ and ¢ coincide, hence obtaining a 

contradiction to the choice of ¢ and ¢. I 

This result motivates the following conjecture. 
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CONJECTURE 2.5: Let G be any graph. If  the maximal valency of G is equal 

to d, then Horn(G, Kn) is k-connected, for all integers k >_ -1 ,  n > d + k + 2. 

Proposition 2.4 corresponds to the case k = 0; the case k = - 1  is obviously 

true since the graph of maximal valency d can be colored with d + 1 colors. 

3. Tools  f r o m  topological combinatorics 

3.1. DISCRETE MORSE THEORY. For a poset P with the covering relation 

~-, we define a partial matching on P to be a set S C P, and an injective map 

p: S --+ P \ S ,  such that  p(x) ~- x, for all x E S. The elements of P \  (SUp(S ) )  

are called critical. 

The next proposition is a special case, which will be sufficient for our purposes, 

of a more general result proved by R. Forman; see [14]. 

PROPOSITION 3.1: Let A be a regular CW complex and A' a subcomplex of 

A. Then the following are equivalent: 

(a) there is a sequence of collapses leading from A to A'; 

(b) there is a partial matching # on 7~(A) with the set of critical cells being 

IP(A'), such that there is no sequence x l , . . . ,  xt E P(A)  \ P(A') ,  t >_ 2, 

such that #(xl)  ~- x2,p(x2) ~- x3 , . . .  ,p(x~) ~- xl (such matching is called 

acyclic). 

Proof." See [18, Proposition 5.4]. I 

Proposition 3.1 is a part of the Discrete Morse theory; [3, 14, 17, 18] are just 

some of the references where it has been studied and used. 

3.2. A QUILLEN-TYPE RESULT. In this subsection we prove a Quillen-type 

result which, given a poset map ¢ satisfying certain conditions, provides us with 

some topological information about the induced simplicial map A(¢). 

PROPOSITION 3.2: Let ¢: P --+ Q be a map of finite posers. Consider a list of 

possible conditions on ¢. 

Condition (A). For every q E Q, A(¢ -1 (q)) is contractible. 

Condition (B). For every p E P and q E Q with p E ¢-1 (Q>_q) the poser 

¢-1 (q) N P<;  has a maximal element. In this case we denote this maximal 

element by max(p, q). 

Condition (B°V). Let CoP: pop _+ QOV be the poser map induced by ¢. We 

require that ¢ °p satisfies Condition B. In this case we denote the minimal 
element of ¢ -1 (q) M P>_p by min(p, q). 
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Then 

(1) If  ¢ satisfies (A) and either (B) or (B°P), then A(¢) is a homotopy 
equivalence. 

(2) If  ¢ satisfies (B) and (B°P), and Q is connected, then for any q, q' E 
Q we have A(¢- l (q ) )  _~ A(¢-X(q')). Furthermore, we have a fibration 

homotopy long exact sequence: 

(3.1) - "  ---+ 7ri(A(¢-l(q))) ~ 7ri(A(P)) ~ ~r~(A(Q)) --+ . . . .  

Proof." Consider the poset map Bd¢: BdP --+ BdQ, which maps p 6 BdP,  

p = (ai > .-. > at) to { ¢ ( a l ) , . . . ,  ¢(at)}.  Since ¢ is order-preserving, the last 
set is totally ordered, and thus can be interpreted as a chain in Q. 

We set ¢-1(7  ) := [.Jti= 1 ¢ - l ( a i )  and view it as a subposet of P.  Note that  

(3.2) (Bd¢) -1 (BdQ<~) = Bd(¢ -1 (7)). 

First we show (1). Because of the symmetry, we restrict our consideration to 

the case when ¢ satisfies conditions (A) and (B°P). By Quillen's theorem A, see 

[26, p. 85], it is enough to show that  A((Bd¢)-I (BdQ<~))  is contractible for 

any 7 E BdQ. By (3.2), it is enough to show that A(¢ -1 (7)) is contractible for 

any 7 E BdQ. We use induction on the length of the chain 7 = (al > . . .  > at). 
When t = 1, this is precisely condition (A), so we assume that t _> 2. 

Define ~: ¢ - i ( 7  ) -+ ¢ - l ( a l )  , by ~(p) = min(p, a i ) ,  for p 6 ¢-1(7).  This is 

well-defined since ¢(p) _< a l .  Note that 
(1) ~2 = ~, since ~I¢-1(~1) = id; 

(2) ~(p) _> p, by the definition of min(p, a l) ;  

(3) ~ is order-preserving. Indeed, take p,p' 6 ¢-1(7  ), such that  p > p'. Then, 

on one hand ~(p) _> p > p', on the other hand ¢(~(p)) = a i ,  hence, by the 

definition of min(p', a l ) ,  we have ~(p) _> ~(p'). 

This means that  ~ is a closure map, hence A(~) is homotopy equivalence; see 

[7, Corollary 10.12]. It follows by induction that  A(¢ -1(7)) is contractible for 

any 7 6 BdQ. 

Next we prove (2). Let 7, 7 6 BdQ, such that 7 > 7. We want to show that 

the inclusion map i: ¢-1 (~) ~ ¢-1 (7) induces a homotopy equivalence of the 

order complexes. Set 7' = 7 n Q_>minh. Then min~ = min7' ,  max7  = max7' ,  

and 7 >__ ~'- 

Consider the sequence of inclusion maps ¢ - l ( m a x  7) • ¢-1(7,)  ~ ¢-1 (7), 

and let ~: ¢-1 (7) --+ ¢-1 (max 7) be the map defined above. By the argument for 

part (1) we know that  pairs (il, ~) and (i2 oil ,  ~) induce homotopy equivalences 
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of the order complexes. It follows that the pair (i2, ~) also induces a homotopy 

equivalence, since 

A(i2) o A(~) = A(i2) o A(il o~) = A(i 2 oi l)  o A(~) _ id 

and 

A(~) o A(i2) :- A(i~ o ~) o A(is) ---- A(il) o A(~ ois) = A(il) o A(~) _~ id. 

By a symmetric argument the inclusion map j2: ¢-1(~) ¢_+ ¢-1(7, ) induces 

a homotopy equivalence as well. Composing, we get that A(i): A(¢-1(~)) 

A(¢ -1 (7)) is a homotopy equivalence. 

In the special case 7 = (q > qt) we get that 

A(¢-l(q))  _ A(¢-1(7)) _ A(¢-l(q ')) .  

Hence, since Q is connected as a poset, we get A(¢-l(q))  ~_ A(¢-1 (q')) for any 

q, q' E Q. 
Finally, the existence of the fibration homotopy long exact sequence (3.1) 

follows from (3.2) and Quillen's Theorem B; see [26, p. 89]. | 

Remark 3.3: We shall not use Proposition 3.2 (2) in this paper. We have 

proved it here as a result which is interesting on its own right and might be 

useful for other computations. A more general version of Proposition 3.2 (1) 

was proved in [2]; see also [27]. 

4. Complexes  of  h o m o m o r p h i s m s  f rom complete graphs 

4.1. THE NEIGHBORHOOD COMPLEX AND Hom(K2,G). We are now ready to 

define the neighborhood complex Af(G) and show that it is homotopy equivalent 

to Horn(Ks, G). The natural advantage to working with the polyhedral complex 

Horn(K2, G) instead of the simplicial complex A/'(G) is that Horn(Ks, G) possesses 

a natural free cellular Zs-action induced from the swapping Z2-action on/(2.  

Definition 4.1: For an arbitrary graph G the simplicial complex Af(G) is defined 

as follows: its vertices are all non-isolated vertices of G, and its simplices all the 

subsets of V(G) which have a common neighbor. 

In other words, the maximal simplices of Af(G) are N(v), for v E V(G). 
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PROPOSITION 4.2: Hom(K2,G) is homotopy equivalent to Af ( G). 

299 

Proo~ Let P = 7~(Hom(K2,G)) and Q = P(Af(G)). Consider ¢: P -+ Q 
mapping the element y: {1,2} -+ 2 V(G) \ 0 to ~(1) c_ V(G). Clearly, the 

vertices in y(1) have all the vertices in ~/(2) as their neighbors, hence, since 

~(2) ~ 0, ¢ is well-defined. Let us show that ¢ induces homotopy equivalence 

A(¢): A(P) -+ A(Q). 

First, let A E Q. We see that ¢-1(A) is the set of all pairs (A,B), A , B  C 
V(G), such that for all x E A, and y E B, we have (x,y) E E(G). Clearly, 
¢-1(A) has a maximal element (A,N(A)), so A(¢-I(A)) is a cone, hence 

contractible. 

Second, let us check the Condition (B) of Proposition 3.2. Let A e Q and 

(C,D) E P, such that ¢(C,D) = C _~ A. Clearly H(A) _~ H(C) _~ D ¢ 0. 
Then ¢-1(A) N P<_(C,D) = {(A,B)IB C_ D , B  ¢ 0}. This poset has a maximal 

element (A, D), since D C N(A). In the notations of Proposition 3.2 we have 

(A, D) = max((C, D), A). 

Since Conditions (A) and (B) are satisfied, A(¢) is a homotopy equivalence 

by Proposition 3.2. This shows that Bd(Hom(K2, G)) ~ Bd(Af(G)), hence the 

result. | 

As Proposition 4.2 shows, the original complexes Af(G) correspond to K2- 

type obstructions to colorability. The Lov£sz' idea behind his Conjecture 1.5 
was that the next natural class of obstructions should come from the maps from 

odd cycles C2r+1 to our graph. 

4.2. Horn(K2, Kn) AS A BOUNDARY COMPLEX OF A POLYTOPE. Let Mn denote 
the Minkowski sum 

[-1/2, 1/2] n + [ ( - 1 / 2 , - 1 / 2 , . . . , - 1 / 2 ) ,  (1/2, 1/2, . . . ,  1/2)], 

where [-1/2, 1/2] n denotes the cube in ~n with vertices all points whose coor- 

dinates have the absolute value 1/2. Mn is a zonotope in R n. Its dual, M*, 

is the polytope associated to the hyperplane arrangement A = {A1,. . . ,  ,4n+l } 

defined by 
{(x~ = 0), for 1 < i < n; 

Ai = ( ~ j n  l xj = O), f o r i = n + l .  

In the proof of the next proposition we identify each cell ~: V(K2) 

2 V(g=) \ {0} with the ordered pair (A, B) of non-empty subsets of In], by taking 

A = ~(1) and B = ~(2). 
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Ma Horn(K2, K4) 

Figure 4.1. Complex of 4-colorings of an edge and its dual. 

PROPOSITION 4.3: Horn(K2, Kn+ l ) is isomorphic as a cell complex to the bound- 

ary complex of M*. The Z~-action on Hom(K~, Kn+l),  induced by the flip action 

of Z2 on K2, corresponds under this isomorphism to the central symmetry. 

Proof'. Set P = P(Hom(K2, Kn+l)) °p. We shall see that P is isomorphic to the 

face poset of M~, which we denote by Q = 9C(Mn). We shall denote the future 

isomorphism by p. 

First, note that  faces of the cube [ -1 /2 ,  1/2] n are encoded by n-tuples of 1/2, 

- 1 / 2 ,  and *, where • denotes the coordinate where the value can be chosen 

arbitrarily from the interval [ -1 /2 ,  1/2]. For an arbitrary n-tuple x, we let 

supp(x) C_ In] denote the set of the indices of coordinates which are either non- 

zero, or are denoted with a *. Additionally, for an arbitrary number k, we let 

supp(x, k) C_ In] denote the set of the indices of the coordinates which are equal 

to k (in particular, they cannot be denoted with a *). 

Vertices of Mn are labeled by all n-tuples of 1, - 1 ,  and 0, such that 1 and 

- 1  are not present simultaneously, and not all the coordinates are equal to 0, 

that is v is a vertex of Mn if and only if v E {0,1} n, or v E {0 , -1}  n, and 

v ¢ (0 , . . . ,  0). These vertices correspond to atoms in P as follows: 

(supp(v), [n + 1] \ supp(v)), if v E {0, 1}n; 
v ( p ~ (In + 1] \ supp(v),supp(v)),  if v E {0 , -1}  n. 

Clearly, restricted to atoms, p is a bijection. 

Those faces of Mn which are contained in the closed star of (1 , . . . ,  1) can be 

indexed by f E {0, 1, ,}n, where ] supp(f ,  1)1 >_ 1. Symmetrically, those faces of 

Mn which are contained in the closed star of ( - 1 , . . . ,  - 1 )  can be indexed by 
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f E {0,-1,*}n,  where [ supp(f , -1)]  > 1. For these faces p can be defined as 

follows: 

<.> ~ (supp(f, 1), supp(], 0) U {n + 1}), if f E S t ( I , . . . ,  1); S 
t (supp(f, 0) U {n + 1},supp(f , -1)) ,  if ] E S t ( - 1 , . . . , - 1 ) .  

Finally, we consider the faces of Mn which are not in 

S t ( I , . . . , 1 )  u S t ( - 1 , . . . , - 1 ) .  

Each such face is a convex hull of the union of two faces, f U ],  such that 

f E S t ( l , . . . , 1 ) ,  ] E S t ( - 1 , . . . , - 1 ) ,  with the condition that supp(f,0) = 

supp( ] , -1 ) ,  supp(f, 1) = supp(],0). The element of P associated to such 

a face under p is (supp(], 1), supp(], 0)) = (supp(], 0), supp(], -1)) .  

It is an easy exercise to check that p defines a poset isomorphism between P 

and Q, which in turn induces the required cell complex isomorphism. 

Finally, a brief scanning through the definition of p in different cases reveals 

that p is equivariant with respect to the described Z2-actions on both sides. 

Hence the last part of the proposition follows. I 

The cellular map ¢, defined in Proposition 4.2, is in this case going from the 

boundary of an (n - 2)-dimensional polytope M n to the boundary of an (n - 2)- 

dimensional simplex. It would be interesting to see whether it has interesting 

additional properties in the context of zonotopes and also to find out what other 

graphs G provide a connection to polytopes. 

Remark 4.4: Hom(Km, Kn) can be viewed as a deleted product of simplices; 

see [24]. In this context it is well-known, probably due to van Kampen, that for 

m = 2 it is a boundary of a polytope. 

4.3. THE HOMOTOPY TYPE OF Hom(Km,Kn). We can still get fairly detailed 

information about the topology of the spaces of homomorphisms between 

complete graphs in general. 

PROPOSITION 4.5: Horn(Kin, Kn) is homotopy equivalent to a wedge of (n - m)- 
dimensional spheres. 

Proof: We use induction on m and on n - m. The base is provided by the 

cases Horn(K1, Kn), which is a simplex with n vertices, hence contractible, and 

Hom(Kn, Kn), which consists of n! points, that is a wedge of n! - 1 spheres of 
dimension 0. We assume now that m > 2 and n > m + 1. 
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For i E fro], let A~ be the subcomplex of Hom(Km, Ks) defined by 

Ai = {~: [m] --+ 2 [n] \ {0}In ¢ ~(j), for j e [m],j ~ i}. 

Since any two vertices of Km are connected by an edge, n cannot be in 

r~(il) fq q(i2), for il ~ i2. This implies that [.jm A~ = Hom(Km,Kn). i=1 
Clearly, for any i ~ j ,  i, j E [m], we have 

Ai fq Aj = {~: [m] -~ 2 [s] \ {0}In ~ o(k), for all k e [m]}, 

so Ai fq Aj is isomorphic to Hom(Km, Kn- 1 ), hence, by induction, it is ( n -  m -  2)- 

connected. 

We shall now see that each A~ is (n - m - 1)-connected. Since all A~'s are 

isomorphic to each other, it is enough to consider A1. Let us describe a partial 

matching on P(A1). For r ]E 79(A1), such that n ~ ~(1), we set #(~) := 9, 

defined by 
(~ (1 )  t2 {n}, for i = 1; 

~(i) = ~(i), for i = 2 , 3 , . . . , m .  

Obviously, this is an acyclic matching and the critical cells form a subcomplex 

C_ A defined by: 0 e A if and only if ~(1) = {n}. Thus A = Horn(Kin-I, Ks-l). 
Since, by Proposition 3.1, A is homotopy equivalent to A1, and A is ( n -  m -  1)- 

connected by the induction assumption, we conclude that Ai is (n - m - 1)- 
connected for any i. 

It follows from [7, Theorem 10.6(ii)] that Horn(Kin,Ks) is (n-m-1)-connected. 
Since the dimension of Horn(Kin, Ks) is n - m, it follows from [7, (9.19)] that 

Hom(Km, Ks) is homotopy equivalent to a wedge of spheres. II 

One can use the construction in the proof of Proposition 4.5 to count the 

number of the spheres in the wedge. Let us say that Hom(K,~, Kn) is homotopy 

equivalent to a wedge of f(m, n) spheres. Let S ( - , - )  denote the Stirling num- 

bers of the second kind, and SFk(X) = ~s>k S(n, k)x s denote the generating 

function for these numbers. It is well-known that 

S F k ( x )  = x ~ l ( 1  - x) (1  - 2 x ) . . .  (1 - k x ) .  

For m _> 1, let Fro(x) = ~ n > l  f(m,n) xs be the generating function for the 

number of the spheres. Clearly, Fl(x) = 0, and F2(x) = x2/(1 - x). 

PROPOSITION 4.6: The numbers f(m,n) satisfy the following recurrence 
relation: 

(4.1) f ( m ,  n )  = m f ( m  - 1, n - 1) + ( m  - 1 ) f ( , n ,  n - 1) 
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for n > m _> 2, with the boundary values f (n ,  n) = n! - 1, f(1,  n) = 0 for n _ 1, 

and f ( m ,  n) = 0 for m > n. 

The generating function Fro(x) is given by the equation 

(4.2) Fm(x) = (m!.  x .  SFm-I (x )  - xm)/(1 + X). 

As a consequence, the following non-recursive formulae axe valid: 

(4.3) 
n 

f (m ,  n) = ( -1)  re+n+1 + m!(-1)  n Z ( - 1 ) k S ( k  - 1, m - 1), 
k----m 

and 

m--1 

k=l k + l  

for n > m > l. 

Proof." Let x(m, n) denote the non-reduced Euler characteristics of the com- 

plexes Hom(Km,Kn), and, for i = 1 , . . .  ,m, let Ai be as in the proof of Propo- 

sition 4.5. Since Hom(Km, Kn) = [Jim I Ai, Ai N Aj = ttom(Km, Kn- i ) ,  for all 

i ~ j ,  and Ai "' Horn(Kin-i, Kn-1),  for i E [m], by simple inclusion-exclusion 

counting we conclude that  

(4.5) )l(m, n) = m x ( m  - 1, n - 1) - (m - 1)x(m, n - 1), 

for n > ra _> 2, additionally )t(n,n) = n!, X(1,n) = 1, for n _> 1. Since 

x(m,  n) = 1 + ( - -1)m-nf(m,  n), a simple computation shows the validity of the 

relation (4.1). 

For m _> 1, let Gin(x) = ~-~n>l x(m, n)x n. Multiplying each side of equation 

(4.5) by x n and summing over all n yields 

Cm(x)  = m - x .  c m - l ( x )  - ( m -  1 ) . x .  a m ( x ) ,  

implying 
m x  

Gm(z)  - G m - l ( x ) ,  
1 + (m - 1)x 

for m _ 1, and hence, since Go(x) = 1/(1 - x), we get 

m !  • x m 
a m ( l )  = 

(4.6) (1 - x)(1 +x)(1  + 2x) . . . (1  + ( m -  1)x) 

= m!.  x .  ( -1)  m-1.  S F m _ l ( - x ) / ( 1  - x), 
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for m _> 0. By multiplying the i d e n t i t y / ( m ,  n) = ( -1 )m+n(x(m,  n) - 1) with 

x n and summing over all n > m, we get 

Fro(x) = ( - 1 ) m G m ( - X )  - xm/(1  + x) 

(4.7) 
= (m!.  x .  SFm-I (X)  - xm)/ (1  + x). 

Formula (4.3) follows from comparing the coefficients in (4.2). 

To prove (4.4), we see that  it fits the boundary values and satisfies the re- 

currence relation (4.1). Verifying (4.1) is straightforward, as is checking (4.4) 

for m = 1 and m = 2. Finally, (4.4) is seen for n = m _> 2 by expanding the 

expression (e x - 1) '~. e -x by the binomial theorem and comparing the coefficient 

of x n on both sides of the expansion. | 

In particular, we have f (2 ,n )  = 1, for n > 2, f (3 ,n)  = 2 n - 3, for n > 3, 

f(4,  n) = 3 n - 4 . 2  n + 6 ,  for n >_ 4, f (5 ,n )  = 4 n - 5 . 3  n +  10-2 n -  10, for n > 5. 

We are now ready to prove the result announced in the beginning of this 

paper. 

Proof  of Theorem 1.7: If the graph G is (k + m -  1)-colorable, then there exists 

a homomorphism ¢: G --+ Kk+m-1. It induces a Z2-equivariant map 

cK.~: Horn(Kin, G) -+ Hom(Km, Kk+m-1 ). 

By Proposition 4.5 the space Hom(Km,Kk+m-1) is homotopy equivalent to 

a wedge of (k-1)-spheres, hence, by dimensional reasons, w k (Hom(Km,Kk+m_l)) 
= 0. Since the Stiefel-Whitney classes are functorial, the existence of the map 

¢~,n implies that  Wl k (Horn(Kin, G)) = 0, which is a contradiction to the assump- 

tion of the theorem. | 

5. C o m p l e x e s  of  h o m o m o r p h i s m s  f r o m  fores ts  a n d  the i r  c o m p l e m e n t s  

to  c o m p l e t e  g raphs  

5 .1 .  T H E  MINOR NEIGHBOR REDUCTION AND ITS CONSEQUENCES. The n e x t  

proposition, coupled with Propositions 4.3 and 4.5, will be our workhorse for 

computing concrete examples. 

PROPOSITION 5.1: I f  G and H are graphs and u and v are distinct vertices of G, 

such that N(v) C_ N(u), then the inclusion i: G - v  ~ G, resp. the homomorphism 

¢: G -~ G - v mapping v to u and fixing other vertices, induce homotopy 
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equivalences ill: Hom(G,H) --+ Hom(G - v,H),  resp. (~H: Hom(G - v,H) --+ 
Horn(G, H). 

Proof." Let us apply Proposition 3.2 (1) for the cellular map ill: Hom(G, H) --+ 

Hom(G - v, H). Take ~/•  ~°(Hom(G - v, H)),  ~/: V(G) \ {v} -+ 2 v(H) \ {0}. We 

have 

P(( iH)-I (~))  = {7 • "P(ilom(e,H))lT-(w ) = ~(w), for w # v,w • V(G)}. 

An element in P((iH) -1 (r~)) is determined by its value on v. Take 

• 

such that  

= 2 # 
y~(v) ~ ( ~ )  

Clearly, T is the maximal element of 7)((ig)-l(~)), hence A(P((iH)-I(~/))) is 

contractible, so Condition (A) is satisfied. 

Let us now check Condition (B). Take 

7- 6 ~°(Hom(G,H)), U 6 P(Hom(G - v,H)),  

such that  for any x 6 V(G) \ {v} we have r(x) D_ ~?(x). The set 

~O((iH)-I  (r])) CI 7)(Horn(G, U))<r 

consists of all v 6 "P(Hom(G, H)), such that  for any x 6 V(G) we have 7(x) D_ 
v(x), and for any x • V(G) \ {v} we have y(x) = ~,(x). Thus, it has a maximal 

element defined by 

Sy(x) ,  for x # v ,x  • V(G); 
v(x)  

7(x), f o r x = v .  

Conditions (A) and (B) being satisfied, we now get that  Bd(iH), hence also 

i l l ,  is a homotopy equivalence. 

To see that  Cg is also a homotopy equivalence note first that  in  o CH = 

idHom(G-v,H). Let j be the homotopy inverse of ill; then 

CH o i g  ~-- j o iH o q)H o iH ---- j o iH ~-- idl~om(G,H) - | 

If G is a graph, and u, v 6 V(G), u # v, such that  N(v) C_ N(u), then we say 

that  G reduces to G - v. We shall also say that  u dominates v, or that  v is 
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dominated by u. If in addition N(v) ~ N(u), we say that  u strongly dominates 
v. We call u and v equivalent if N(v) = N(u). The strong domination defines a 

partial order P(G) on the set of equivalence classes. We call a graph irreducible 
if it does not reduce to any subgraph. 

We note a simple, but useful property of the vertex domination: if u, v E S C 

V(G), u ~ v, and u dominates v in G, then u dominates v in G[S]. If u strongly 

dominates v in G, it is not true in general that  u strongly dominates v in G[S]. 
As the example of the tree already shows, the minimal subgraph of G to which 

it reduces is not unique. However, the following weaker version of uniqueness is 

true. 

PROPOSITION 5.2: Let G be a graph and S, S' C_ V(G), such that G reduces 
both to G[S] and to G[S'], and both G[S] and G[S'] are irreducible. Then G[S] 
is isomorphic to G[S']. 

Proof: We prove the statement by induction on the number of vertices in G. 

If IV(G)I = 1, then S = S' = V(G), so the result is trivially true. Assume now 

that  IV(G)I > 2. 

Choose M C_ V(G) containing exactly one vertex from each maximal equiva- 

lence class in P(G), and no other vertices. If M = V(G), then G is irreducible, 

so we can assume that  M ~ V(G). Let us show that  there exists S _ M, such 

that  G reduces to G[S], and G[S] is isomorphic to G[S]. 

Assume that  no such S exists. Consider all the reduction sequences 

(Vl, . . . ,vly(a)l- lSl)  leading from G to a graph isomorphic to G[S]. Set 

{~i}ieI := M ~ {~1, . . . ,  Oly(c)l-lSl}, and choose the sequence which minimizes 

~iei(IV(G)l - i ) .  Denote this sequence by (Wl, . . . ,  Wiy(G)l_lsl). 

Set 

:= V(G)\{Wl,. . . ,wlv(G)I_ISI} and {wi}iel := MN{Wl,...,wIv(G)I_ISl}. 

If each vertex of G[S] is either in SV) M or is dominated in G[S] by some vertex 

in S n M, then, since G[S] is irreducible, we conclude that  S C_C_ M, yielding 

a contradiction. 

Thus we may pick the smallest i, such that  there exists v E S \ M ,  which is not 

dominated by any vertex of M \ {Wl , . . . ,  wi} in Gi = G - {Wl , . . . ,  wi}. By the 

choice of M, and what is said above, we have i E [IV(G)[ - [SI]. Clearly, since v 

was dominated by some vertex of M\{wl , . . . ,  wi} in Gi_l = G -  {Wl,. • •, wi-1 }, 

we have that  wi E M, and wi is the only vertex of M \ {wl, . . . ,wi} which 

dominates v in Gi-1. In particular, wi itself is not dominated by any other 

vertex of M \ {wl , . . .  ,w~} in Gi-1. 



Vol. 152, 2 0 0 6  COMPLEXES OF GRAPH HOMOMORPHISMS 307 

By the choice of i, every vertex in G~-l,  which is not in M \ {wl , . . .  ,wi},  

is dominated by some vertex in M \ {wl , . . . ,w i} ,  hence wi is not strongly 

dominated by any other vertex. Since G~-I --+ G~-I - {wi} = Gi is a legal 

reduction, there must exist a vertex w equivalent to wi in Gi-1. We have 

w ~t M, since either w = v, or w dominates v. 

Consider a graph isomorphism ~o: G~-I -~ Gi-1, which swaps the vertices wi 

and w, and fixes every other vertex. It is easy to see that  

(Wl, . . . , w~-l,  So(wi), So(wi÷l ), . . . , ~(wlv(O)l_lSl)) 

is a legal reduction sequence leading from G to G[S], such that  G[S] is isomor- 

phic to G[S]. 

Furthermore, since removal of w~ E M was either replaced by or swapped with 

the removal of w ~ M, the invariant, which we minimized over the sequences, is 

actually smaller for this sequence than for ( w l , . . . , W i y ( a ) H s l ) .  This is again 

a contradiction. 

Finally, consider the case S , S  p C_ M.  Since IMI < IV(G)I, we can use the 

induction assumption to prove the theorem, as long as we can show that  G[M] 

reduces to G[S] and to G[S']. By the argument above, we can choose S so 

that,  if (Wl,. . . ,Wiy(a)l_lSl) is the reduction sequence leading to G[S], and 

{wi}iei  = M N { w l , . . .  ,WIy(a)l_lsl}, then, for any i = 1 , . . . ,  I V ( G ) I -  ISI, every 

vertex in V (G) \ {Wl, • • •, wi } is dominated by some vertex from M \ {Wl, • • •, wi } 

in G - {Wl , . . . ,  w~}. It is then immediate that  { w i l , . . . ,  wit } is the reduction 

sequence from G[M] to G[S], where I = { i l , . . . ,  it}, il < . . .  < it. 

Indeed, for any i E I ,  wi is dominated by some vertex in G - {Wl , . . . ,  wi-1}, 

hence it is dominated by some vertex from M \ {Wl, . . . ,w~_l}  in 

G - {Wl , . . . ,wi -1} .  It follows that  w~ is dominated by some vertex in 

G[M \ {wjl j E I , j  < i}], allowing one to reduce the latter graph to 

G[M \ {wjl j e I , j  <_ i}]. | 

For future reference we explicitly state the following consequence of 

Proposition 5.1. 

COROLLARY 5.3: Let G be a graph, and S C_ V (G), such that G reduces to G[S]. 

Assume S is F-invariant for some F C_ Aut(G). Then the inclusion i: G[S] ~ G 

induces a F-invariant homotopy equivalence ill: Horn(G, H)  -+ ttom(G[S], H) for 

an arbitrary graph H. 

Note also that  Proposition 5.1 cannot be generalized to encompass arbitrary 

graph homomorphisms ¢ of G onto H,  where H is a subgraph of G, and ¢ 
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is identity on H. As an example in subsection 2.3 showed, Hom(C6,K3) 

Horn(K2, K3) despite the existence of the folding map of C6 onto K2. 

5.2. THE HOMOTOPY TYPE OF Hom(F, Kn) AND Hom(F, Kn). Next, we use 

Proposition 5.1 to compute homotopy types of the complexes of maps from finite 

forests to complete graphs. 

PROPOSITION 5.4: I f  T is a tree with at least one edge, then the map 

iK~: Hom(T, Kn) -~ Hom(K2,Kn) induced by any inclusion i: K2 ¢-4 T is a 

homotopy equivalence, in particular Horn(T, Ks)  ~- S n-2. As a consequence, i f  

F is a forest, and T1,. . . ,  Tk are all its connected components consisting of at 

least 2 vertices, then Horn(F, K~) _~ rL=lk S~_2 

Proo£ Let T be a tree with k vertices, k >_ 2. Note the general fact, that if v 

is a leaf of a tree, u is the vertex adjacent to v, and w ~ v is a vertex adjacent 

to u, then N(w) _D N(v) = {u}, hence T reduces to T - v. 

Let us now number the vertices Vl,.. .  ,Vk so that for any i E [k - 1], vi is 

a leaf in T - {vi+l , . . . ,  Vk }. By the previous observation 

T --+ T - {vk} --+ T - {Vk- l ,vk}  --+"" --+ T - {v3, . . .  ,Vk} = T[{vl,v2}] = Ke 

is a valid reduction sequence. Thus the first part of the statement follows by 

Proposition 5.1. 
That Hom(T, Kn) ~ S '~-2 follows from Proposition 4.3. Finally, the formula 

for the homotopy type of Horn(F, Kn) follows from (3) in subsection 2.4. | 

Let S~ denote the n-dimensional sphere equipped with the antipodal action 

of Z2; in the same way, S~ denotes the n-dimensional sphere equipped with the 

trivial action of Z2. 

Given two spaces X and Y with Z2-action, we let X -~g2 Y denote the Z2- 

equivariant homotopy equivalence. 

PROPOSITION 5.5: Let T be a tree with at least one edge and a Z2-action 

determined by an invertible graph homomorphism 7: T ~ T. I f 7  flips an edge 

in T, then ttom(T, Kn) -~z2 Sa n-2, otherwise Horn(T, Kn) -~z2 S~ -2. 

Proof: Assume "y flips an edge, that is there exist a,b E V(G), such that 

(a, b) E E(G),  ~(a) = b, and 7(b) = a. By Corollary 5.3 the inclusion map 

i: T[{a, b}] ~ T induces a Z2-equivariant homotopy equivalence Horn(T, Kn) ~z2 

Horn(K2, Kn), where the last space has the natural Z2-action induced by the 
n--2  flipping Z2-action on K2. By Proposition 4.3 we get Horn(T, Kn) ~-z2 Sa • 
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Assume now, there is no edge flipped by 7. Since T is a contractible finite CW 

complex (the topology is generated by fixing homeomorphisms between edges 

of T and a standard unit interval) it follows from [8, p. 257] that  7 must have a 

fixed point. Denote this point by x. Clearly, either x is a vertex of T or x is the 

middle-point of some edge e 6 E[G]. In the latter case, if the edge is not fixed 

pointwise, then it is flipped, which contradicts our assumptions on 7- 

Thus we found a vertex v E V(G) fixed by 7. If there exists e = (a, b) 6 E(G), 

such that  7(a) = a, 7(5) = b, then i: T[{a, b}] ~ T induces a Z2-equivariant 

homotopy equivalence Horn(T, Kn) ~z~ Horn(K2, K~), where the Z2-action on the 

~ S~-2 last space is the trivial one. It follows that  Horn(T, Kn) -z2 

Finally, consider the case when there is no edge in T which is fixed by 7 

pointwise. Let u be any vertex of T adjacent to v, and let w = 7(u) # u. 

Since the set {u,w,v} is 7-invariant, we see by Corollary 5.3 that  the inclu- 

sion map i: T[{u,w,v}] ~-~ T induces a Z2-equivariant homotopy equivalence 

ill: Horn(T, Kn) ~ Som(T[{u,w, v}], Kn) = Horn(L3, Kn), where the Z2-action 

on the last space is induced from the Z2-action on L3 which swaps u and w. 

Let ¢: L3 -+ Ks be any of the two elements of Homo(L3, Ks). Clearly, ¢ 

is Z2-equivariant with the Z2-action on K2 being trivial. This shows that  

ell: nom(L3; Kn) "~ Hom(K2,Kn) ~-z2 S~ -2 is a Zz-equivariant homotopy 

equivalence, which finishes the proof. | 

Since taking the unlooped complement reverses neighbor set inclusions, we 

see that  G reduces if and only if G reduces. The next proposition describes 

what happens if G is a forest. 

PROPOSITION 5.6: If  F is ~ forest, then Horn(F, Kn) "~ Horn(Kin, Kn), where m 

is the maxima/cardina/ i ty  of an independent set in F.  

Proof: We use induction on the number of edges in F.  If E(F) = 0, then 

F = KjV(F)j, the maximal cardinality of an independent set in F is IV(F)I, and 

the statement is obvious. So assume IE(F)I _> 1. 

Let v 6 V(F) be an arbitrary leaf, and let u e V(F) be the vertex adjacent to 

v. We have NT(u ) C V(F) \ {u, v} = NT(v ). Hence F reduces to F - u. Clearly, 

F - u = F - u, so by combining the induction assumption with Proposition 5.1 

we get Hom(F, Kn) "~ Som(K,~,Kn), where ~t is the maximal cardinality of 

an independent set in F - u. 

Let I be an independent set in F of maximal cardinality. Either u or v must 

be in I,  since otherwise IU {v} is independent, and larger than I. If u 6 I,  then 

(I \ {u }) tJ {v} is also an independent set in F of maximal cardinality. Either way, 
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we have an independent set J in F of maximal cardinality containing v. Since 

any independent set in F - u is also independent in F,  and J is independent in 

F - u, we can conclude that  m = ~ ,  hence the result. | 

It follows from Proposition 4.5 that  Horn(F, Kn) is homotopy equivalent to 

a wedge of (n - m)-dimensional spheres. 

6. N o t e s  added in proof  

After the appearance of the initial series of papers, [4, 5], and this paper, there 

has been a lot of further research activities pertaining to }iota-complexes. We 

refer the reader to the recent survey [21]. 

We update here on a few concrete developments which have taken place by 

the time of publication of this article. 

• Conjecture 2.5 has been proved; see [13]. 

• Proposition 4.2 has been strengthened. It has been proved that  Hora(K2, G) 

and A/'(G) have the same simple homotopy type. See [20] for the proof, 

and a description of an explicit formal deformation. 

• Proposition 5.1 has been strengthened. It has been proved that  the folds 

are admissible on both sides of the Horn(-,-) ,  and that  one can replace 

the homotopy equivalences by formal deformations; see [19] for an explicit 

construction. 
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