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ABSTRACT

In this short note we show that any smooth probability measure on the
boundary B(G) of a semisimple Lie group G is stationary for some prob-
ability measure on a lattice I. This generalizes a result of Furstenberg
about Poisson boundaries for semisimple Lie groups.

1. Introduction

Approximately 35 years ago Furstenberg introduced the notion of Poisson
boundary (B(G), ) for a given pair (G, ), where G is a group and p € P(G),
the set of probability measures (see [F1]). One of the properties of (B(G), ) is
that # is p-stationary. In this short note we describe how, by an appropriate
choice of the measure u, we can make measures # € P(G, 7) p-stationary.

Our approach is quite different from the approach of Furstenberg. In contrast
to his method, where he uses the fact that the measure on the boundary must be
an exit measure of some Brownian motion, we will use a very simple analytical
argument. In [F2] Furstenberg proved the following theorem.

THEOREM 1.1: Let I" be a lattice in a semisimple connected Lie group G. Let
io be an absolutely continuous measure on G given by dug = ¢odg, where
do(e) > 0 and ¢y is continuous and has compact support. Let vy € P(B(G))
with pio x vg = v9. Then there exists u € P(I') with p(y) > 0 for all v € T and
W* vy = Vg.

It is known that K acts transitively on B(G) ([F2]), where K is a maximal
compact subgroup of G. Therefore, the measure v in the above theorem is
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absolutely continuous with respect to Haar measure on K. With this in mind, we
will reprove the above theorem, without the assumption that v, is a stationary
measure for some absolutely continuous measure pg with respect to Haar on G.
In particular we will prove:

THEOREM 1.2: Let T be a lattice in a semisimple connected Lie group G. Let
B(G) be a G-space such that K acts transitively, where K is a maximal compact
subgroup of G. Let kg be the unique K-invariant measure on B(G). If m,m2
are two measures on B(G) equivalent to wk, then there exists p € P(T") such
that p(y) > 0 forall y € T and my = pxmy = 3 . p(y)7*m.

As a corollary we obtain Furstenberg’s Theorem without the assumptions
mentioned earlier.

Understanding which measures can arise as a Poisson boundary measure is
both desirable and difficult. In most cases, the only fact that we can state
about such a measure is that it is a stationary measure for some random walk or
Brownian motion. Theorem 1.2 is a first step (even though a small step) towards
understanding Poisson boundary measures. In particular, any measure that is
equivalent to the K-invariant measure can be a Poisson boundary measure. In
particular, the set of Poisson boundaries is a “very rich” set, being at least as
large as the set of continuous functions on B(G). (Actually, we believe the space
of Poisson boundaries is much bigger than the latter space, but this will be the
subject of a future paper.)

In the next section, we introduce the notion of a convolution for K-spaces. In
section 2, we prove a few propositions that explain how to make approximations
on transitive K-spaces and how to discretize them. The main result is Corollary
3.4. In section 4, we prove Theorem 4.2, which lies at the heart of this note.
This theorem is proved for arbitrary G-spaces for which K acts transitively. In
section 5, we prove Theorem 1.2, by just checking the conditions of Theorem
4.2

ACKNOWLEDGEMENTS: I would like to thank Alex Eskin for suggesting this
problem. Also, I am grateful to Chris Connell for reading this note and providing
commentary.

2. Convolution on X

Let X be a transitive K-space with K-invariant measure mx and K-invariant
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metric. For two functions f,g € L'(X) and a point p € X, we define

(o) (@) = /K F (k" p)g(kz)dmc (k),

where my is Haar measure on K. Also, for a measurable set U C K define

(Frp8) (@) = /U £k p)g(ke)dmc (K),

where my is Haar measure on K.
For a function f € L9, we denote L%-norm of f by || f||,.

LEMMA 2.1: For a function f(z) € L* on X we have

/Xf(ka:)dm((x) =/Kf(kz)dm1((k) =/Xf($)d7l‘1(($)-

The proof is just a simple application of the Fubini Theorem and is omitted.

LEMMA 2.2: For every function f(z) € L*(X), and ¢(z) € L'(X), we have

(f*pg) — (fp@)lulls < mx (UM flleoliglls-
Proof: By the Fubini Theorem

1(49) = (rpallolh = [ [0 pratha)dms (kyan(a)
= [ ] 16 naaramic@ramici)

= llgll / f (k™ p)dm (k)
UC
< mic U fllollgll.

This proves the lemma 1

3. Proximate identities and discretization

PROPOSITION 3.1: Let p be a point in X. Let g(x) be a function such that
f Bs(p)° g(x)dr i (x) = t4(8). Then for all continuous functions f(x) we have

|7(2) = (f *p 9) ()| < 2 fllooty(d) + llgll: max (|f(z) - f(y)])

d(z,y}<é

such that, for all n > N, we have |F(z) — (f * g»)(z)| < €, independently of z.

Proof: Let M = max,ex |F(z)|. Choose § such that for all z,y € X with
d(z,y) <6, |[F(z) - F(y) < e
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Let A={k€ K:kz € Bs(p)} = {k € K: k~'p € B;s(z)} for all z € A. Now,
()~ (f % 9)(@)] =If() - /K £ (6™ p)g k) dme (k)
- /K (F(2) = F(k~p))g(ke)dmsc (k)
< /K 1F(@) - FO )] g(ke) dm ()
- /A 1F(@) - Fp)llg(ka) dm (k)
+ / F(@) — £ p)llg(ha)ldmuc (k)
Ac
< / (@) — F( D) g(ke) dmc ()
A

+ 2 flloo /K x5 oy (K2)| g (k) drm g (K)
<llglh max 1£() - F@)] + 2] flloote (6)-

d(y,z)<é

This finishes the proof. ]

LEMMA 3.2 (Discretization): Let U C K and g(z) be a continuous function on
X. For every € > 0, there exists k1,...,ks € U and o, ..., > 0 such that for
every f € L' we have

(% 9)lu(2) = 3_ciglkia)| < elifl,

with 30, ai = [;; f(k™ ao)dm(k) < ||£ll1.

Proof: The function H(k,z) = g(kz) — g(x) is continuous. Therefore,
H '(—¢/2,¢/2) is a an open set of K x X. It is clear that id x X
€ H™1(-1/n,1/n).

Thus, there exists an open set W C K such that

W x {2} C H'(—¢/2,¢/2)
for all x € X. It is easy to observe that if k£, A~ € W we have
lg(hz) — g(kz)| < |g(hz) — g(x)| + |g(kz) — g(z)| < e

Since K is compact we can choose finitely many hi, h2,...,hs such that
Why,Wha,...,Wh, cover K. Now in each Wh; such that Wh; N U # 0 we
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choose an element k; € U. Observe that for t; € Wk; we have
g(t:iz) — g(kix) = gn((t1h] Yhiz) — gn((k:h; ') (hiz)) <,

because t1 h; k h
We can find a measurable disjoint partition Vi,...,V; of K such that V; C

Wk; for alli € {1,...,s}.
Now consider the function

Zg (kiz) / flk™ zo)dmg (k).

\Aaty

Now compare this sum to (f *, g)|v(z).

f | 1 pgtha)amsc i Zg(kx / £ p)dmc (k)

nU

=30 . 0t - ka6 ity

<Z / el £ (ka) dmc (k) < el f @)

v,nUu

Set o; = fV,nU f(k~zo)dmg (k). It is clear that
;Oti = /Uf(k‘lxo)de(k) < /Kf(k‘lzo)dmx(k) = 1Ifll. .

COROLLARY 3.3: Let f be a positive function on X with inf e x f(z) =a > 0.
Assume that g is a continuous positive function. Then for all C < 1 there exist
ki,...,ks and of,...,q) such that for all z € X,

C(f *p Dlu(z) < Z ajglkiz) < (f % Qlu(z).

Proof: Assume that (f %, g)(z) > b > 0 for all z. Set

_1-C b
1+ CIfl

so that by Lemma 3.2 we have a,...,a; and k;,...,k; € U such that

|(f *p 9)lu () ngk@ ,<1+C
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In other words,

Zazg(k D)< Jrgh+ @) < T (@),

and

Zalgwx > (@) - b2 FO) s

Setting a; = (1 + C)a;/2 we obtain the corollary.

0= (f % g)lu(e) = [, f(k~'p)g(ka)dmi (k) > a [, g(kz)dmk (k), then
mg(U) =0 as g is positive. Therefore, (f %, 9)]u(z) = 0 for all . In this case,
the corollary is obvious. |

COROLLARY 3.4: Let f and g be continuous positive functions with infz¢c x f(x)
= a > 0. Assume that

R = R(f,9,8) = 21 flloot(6) + {lglls B If () - f(y)l

for some é > 0. Fix U C K. Then there exist k;,...,k; € U and oy,...,03 > 0
such that

S aiglkix) < f(a),
=1

and

1£0) ~ 3 gl < T I + albmacl) + 0 = Ol

In particular,

15@) - Y asahilh < il + 5o (Ul

=1
Proof: By Corollary 3.3 there exist a},...,as/ > 0 and k;,...,k; € K such
that

C(fp 9lu(z <Zazg(kx < (F % 9)lu(@) < (f %5 9)(@).

i=1

By Proposition 3.1, we have

(f % 9)(z) < f(2) + R< (1 + R/a)f(2)
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So ¥i_, ajg(kiz) < (1+ R/a)f(z). Observe that
|1+ 21 - S etate

<L+ 2) £@) = (2o @+ 1F 2.0)(&) — ( 5 Dl ()

1

+ 110 % 9)lu(z) = D diglki)lh
i=1

< (25l + B) + e @ flleclglh + (1 = OYICF % 9ol
SR+ \fll + (mie(U) + (1 = O ol

Setting a; = g% and observing that a < [|f||:, we obtain the first estimate.
Set C' = 2mg(U°) and use that @ < ||f]|1- This gives us the second estimate.
|

4. Main theorem

LEMMA 4.1: Let G be a connected semisimple Lie group. T is a lattice in G
and K is a maximal compact subgroup. Let mg be the Haar measure on K.
For an open set U define

fu(g) =mi{h € K: g"'hT NUT # §}.
Then, for any sequence g; € G such that g; ! 50in@ /K, we have
lim fy(g:) = mg/pr(U/T),
12— 00
where mg/r is the G-invariant measure on G/T.

Proof: Observe that fy(g) = [, xu/r(g~"hT)dmk(h) and
men @/ = [ xurelahdmar(oD),

The result easily follows from the equidistribution result proved in [EM]
because

/K xuyr(g7 D) dm (k) — mee(U/T)

as g; — 0o. The lemma follows. 1
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THEOREM 4.2: Let G be a semisimple Lie group, and X be a G-space on which
K acts transitively. Let mx be a K-invariant measure on X. Assume that for
each g € G, J

9xTK

prmC)
is a positive continuous function. Assume that there exists a sequence g; such
that (g;)«mx = 0, for some p € X. Let T' be a lattice in G. Assume that
{f+(x)}er is a set of functions such that there exists D > 0 with the property
that

a(g,z) =

D—l S f'Y(x) S D7
for all v € I'. Then for all positive continuous functions F' on X, there exist
Ay > 0 so that we have F(x) = 3. cp M fy(2)a(y, %) in LN(X, mx) with Ay > 0.
Moreover, if ' is co-compact, we can find A, > 0 such that the convergence is
uniform.

Proof: Recall that a(g,z) is a K-invariant co-cycle, i.e.
a(gh,z) = a(g, hx)alh,z)
and a(k,z) = 1for all k € K. For any U C G we define
E(U)={he K: g;hNUT # 0} C K.

Set C(U) = maxgevzex(a(g,z),a(g™!,z)) + 1. (Recall that a(¢~t,z) =
a(g,g7'z)7h)

Fix a sequence of open bounded subsets U, C G (not necessary distinct) such
that limn e Mg r(Un/T) =1 and Y 77 1/C(Uy)? = co. (In the co-compact
case we set U C G to be a bounded open set such that U/T" = G/TI".)

Now we will construct a sequence {L,(z)} of positive continuous functions
such that

Ln(z) = F(z) = > _ ey fr(@)ey, )
v€T

with ¢, > 0 and only finitely many of them are positive and
lim ||L,]y =0.
n—00

(In the co-compact case limy, o Ln(z) = 0 uniformly.) It is clear that this will
prove the theorem.

Set Lo = F. Assume that we have constructed L,(z). Let us describe Ly ;.
Let a, = infyex(Ln(2)).
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It is clear that ||Ly||loo < ||Fllec = M. Set 8, > 0 to be a number such that

MaXy(z,y)<s, [Ln(z) = La(y)] < an/4.
Since (g;)«7TK — 0p, there exists I, such that for all ¢ > I, we have

(9:)«Tx (B(p,6n)) > 1 - an/8M,

ie.,
ts, (a(gi,7)) < an/8M

for all: > I,.
Define
W, ={h € K: g;, AL NU,T # 0}.

(In the co-compact case, W, = K.) By Lemma 4.1 there exists j, > I, such

that mg (Wh) = fu,(9;.) > mg/r(Un/T) — 1/n.
Apply Corollary 3.4 to the functions L,(z) and a(g;, ,z). We have

a, Gn _ Gy

By Corollary 3.4, there exists a sequence of k%"), .o k™ € W, and c§”’, L eim
> 0 such that \

> éMa(gj, kiz) < La(a),

=1

and
8n

Lo(z) =) Malgj, , kiz)

=1

2 2
< Sl + 3 (WM

1
(In the co-compact case, again we have

a a a
R(Ln,a(9,),80) < 2 Fllog s + 52 < 2.
Now by Proposition 3.1, |L,(x) — (Ln*pa(g;,,-)){z)| < an/2. This implies that
Ln(%)/2 < (Ln %p (gj,,))(z) < 2Ly(z). Now we apply Corollary 3.3 to the

functions Ly (z) and o(g;,,z) and C = 1, to obtain a sequence kg"), e (") €
W, and c§"), cgf) > 0 such that
(Ln *p a(gjn, ) (@
e ) < 3" d¥algs k) < (Lo sy algs, Do)

i=1

Dividing by 2 and renaming c( ), we obtain L,(z)/4 < Y07 ¢ 5") a(gj, , kix)

< Lu(z).)
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Since k( n) € W,, we have that there exists 'yl ) €l and u E U, such that

g KV = uy(".

So we have
gjr ki) = a(u{"VMET kiz) = a(ul™ 4V z)a(r™ 7).
Here we have that

1 <a(gjn,kac)
C(Un) a('y(") )

< C(U,).

So set, \
Luar(@) = Lu(z) - % > af(@als ™ ).

Now it is easy to see that

L) - 355 zzc% )G, ki) 2 Lni1(2)

and
Sn
Lpti1(z) > Lp(z) — chn)f.,(x)a(gjn,kiz) >0
i=1

Now it is clear that L,y is a positive continuous function. Also

|Lnsalls <||Lnz) - D—a%—— Zc‘"’am,k 9,
Lnle) - DT(;'L((I_JJ?L—)E“
]—)ﬁ— Zc( ") gjn,kx
<(1- 3oy onlh + SpsceT
(In the co-compact case,
o) = Lote) - BRSO 1oy L)

This proves that limp—c0 Ly () = 0 uniformly.)
Now we need the following lemma.
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LEMMA 4.3: Let 0 < 6, <1 for all n and lim,,_, €, = 0. Let {an}32, be a
sequence of non-negative numbers such that

ant1 < (1 = 0p)an + dnen.
If limp 00 [Tpq (1 — 6) = O, then limy_,o0 an = 0.

Proof: For ¢ > 0, there exists N such that for all n > N, ¢, < e. Let
an = by + €, s0 we have

bpy1 +€<(1—6,)(bn +€) +6nen < (1=38,)bn +¢,

for all n > N. This shows that b,41 < {1 — 6,)b,. So we conclude that
limy, 00 b, = 0 and thus 0 < lim,_, o @, < €. However, taking ¢ — 0 proves the
lemma. |

So to obtain lim, 0 ||Ly|l1 = 0 it suffices to have

o0

I1 (1 s57) =©

=1
which is equivalent to 3.5, 1/C(U,)? = oo and

lim my(W5) < lim mg/pr((Us,/T)) +1/n=0.
n—00

n—00

This finishes the proof of Theorem 4.2. |
COROLLARY 4.4: Let m;, 72 be two probability measures on X such that E‘i—:’-}i{—(x)
is a positive continuous function for i = 1,2. Then there exists 1 € P{T') such

that Mx T = 9.

Proof: The equation g m = 73 is equivalent to

dms _ dm dm -1
e = L 02)(Gret@) a2,
where convergence is in the L!(X, 7 )-norm. This proves the corollary. |

Example: One of the consequences of Theorem 4.2 happens in the case of
n =2 and G = PSL(2,R). In this case, G/P can be identified with the circle
S! and can be viewed as the boundary of the 2-dimensional disk G/K. The
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K-invariant measure is just the Lebesgue measure m on $!, and the Radon-
Nikodym derivative of this measure with respect to the transformation g € G
is just the Poisson kernel at the point go, where o = [K] is the origin.

In this case, we obtain that every positive continuous function can be repre-
sented as a sum with positive coefficients of Poisson kernels at the points ~yo,
where v € T for a lattice I" in PSL(2,R) (i.e., [' = PSL(2,Z)). It was known by
the results of F. Bonsall (see [B] or [R]) that any L! function can be approx-
imated by a sum of Poisson kernels (in particular, in the case of PSL(2,Z)).
However, his result does not imply that the coefficients are positive for a posi-
tive continuous function. So Theorem 4.2 is an improvement of this result in the
cases of lattices. I should note that W. Hayman and T. Lyons [HL] and later
F. Bonsall and D. Walsh [BW) have improved Bonsall’s result and have shown
that every continuous (lower semi-continuous) function can be approximated
uniformly as a sum of Poisson kernels if and only if

S o=

for all ¢ € S* (this is in the case of PSL(2, R)).

However, this condition fails even for PSL(2,Z). In the special case of a co-
compact lattice I" in PSL(2, R), our result does follow from the work of W. Hay-
man and T. Lyons as the above sum diverges at every point.

Even though Theorem 4.2 (in case n = 2) is not as general as the framework
considered by the authors mentioned above, it does provide a unifying scheme
for higher dimensions and work of Bonsall (as well as Walsh, Lyons, Hayman),
in which every point (or almost every point) on the boundary is non-tangentially
dense.*

5. Proof of Theorem 1.2

We just need to verify the conditions of Theorem 4.2 for B(G). It is known
that for any measure, 7 € P(B(G)), we have dp(g) C Gn. For the proof of
continuity of the Radon-Nikodym derivatives, see Lemma 5.6 of [F1]. However,
this can be observed from the smoothness of the action by G on the manifold
representing the homogeneous space G.

* These cases are considered in [CM].
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