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ABSTRACT 

In th is  shor t  note  we show t h a t  any  s m o o t h  probabi l i ty  m e a s u r e  on the  

b o u n d a r y  B(G) of a semis imple  Lie group G is s t a t i ona ry  for some  prob- 

abil i ty m e a s u r e  on a lat t ice F. T h i s  general izes a resul t  of  Fur s t enbe rg  

a b o u t  Poisson boundar ies  for s emis imple  Lie groups.  

1. I n t r o d u c t i o n  

Approximately 35 years ago Furstenberg introduced the notion of Poisson 

boundary (B(G), ~r) for a given pair (G, #), where G is a group and # E P(G),  

the set of probability measures (see [F1]). One of the properties of (B(G),  TO) is 

that  ~r is #-stationary. In this short note we describe how, by an appropriate 

choice of the measure #, we can make measures 7r E P(G,  re) #-stationary. 

Our approach is quite different from the approach of Furstenberg. In contrast 

to his method, where he uses the fact that  the measure on the boundary must be 

an exit measure of some Brownian motion, we will use a very simple analytical 

argument. In IF2] Furstenberg proved the following theorem. 

THEOREM 1.1: Let F be a lattice in a semisimple connected Lie group G. Let 

#o be an absolutely continuous measure on C given by d#o = ¢odg, where 

¢0(e) > 0 and ¢o is continuous and has compact support. Let ~o E P (B(G ) )  

with #o * vo = ~o. Then there exists # E P(F) with #('y) > 0 for ali ~/ E F and 

#*Vo = ~o. 

It is known that  K acts transitively on B(G) ([F2]), where K is a maximal 

compact subgroup of G. Therefore, the measure Vo in the above theorem is 
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absolutely continuous with respect to Haar measure on K.  With this in mind, we 

will reprove the above theorem, without the assumption that  v0 is a stationary 

measure for some absolutely continuous measure #0 with respect to Haar on G. 

In particular we will prove: 

THEOREM 1.2: Let F be a lattice in a semisimple connected Lie group G. Let 

B(G) be a G-space such that K acts transitively, where K is a maximal compact 

subgroup of G. Let IrK be the unique K-invariant measure on B(G).  I f  7rl, 7r2 

are two measures on B(G) equivalent to 7ri~, then there exists # E P(F)  such 

that #(~,) > 0 for all 3, E F and zr2 = # * 7r I : Z T E F  ]~(~')~'71" 1 . 

As a corollary we obtain Furstenberg's Theorem without the assumptions 

mentioned earlier. 

Understanding which measures can arise as a Poisson boundary measure is 

both desirable and difficult. In most cases, the only fact that  we can state 

about  such a measure is that  it is a stationary measure for some random walk or 

Brownian motion. Theorem 1.2 is a first step (even though a small step) towards 

understanding Poisson boundary measures. In particular, any measure that  is 

equivalent to the K-invariant measure can be a Poisson boundary measure. In 

particular, the set of Poisson boundaries is a "very rich" set, being at least as 

large as the set of continuous functions on B(G).  (Actually, we believe the space 

of Poisson boundaries is much bigger than the latter space, but  this will be the 

subject of a future paper.) 

In the next section, we introduce the notion of a convolution for K-spaces. In 

section 2, we prove a few propositions that  explain how to make approximations 

on transitive K-spaces and how to discretize them. The main result is Corollary 

3.4. In section 4, we prove Theorem 4.2, which lies at the heart  of this note. 

This theorem is proved for arbi t rary G-spaces for which K acts transitively. In 

section 5, we prove Theorem 1.2, by just checking the conditions of Theorem 

4.2 

ACKNOWLEDGEMENTS: I would like to thank Alex Eskin for suggesting this 

problem. Also, I am grateful to Chris Connell for reading this note and providing 

commentary. 

2. C o n v o l u t i o n  o n  X 

Let X be a transitive K-space with K-invariant measure 7rg and K-invariant 
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metric. For two functions f ,  g E L 1 (X) and a point p E X,  we define 

(f*ng)(x) = / K  f(k- lp)g(kx)dmK(k) '  

where mE is Haar measure on K.  Also, for a measurable set U C K define 

(f*pg)[v(x) = Iv  f (k- lp)g(kx)dmK(k) '  

where mK is Haar measure on K.  

For a function f E Lq, we denote Lq-norm of f by [[f[[q. 

LEMMA 2.1: For a function ](x) • L 1 on X we have 

f x  f (kx)drK(x)  = :K f(kx)dmK(k)  = I x  f(x)dTrK(x)" 

The proof is just a simple application of the Fubini Theorem and is omitted. 

LEMMA 2.2: For every function f (x)  • L~(X) ,  and g(x) • LI(X),  we have 

II(/*pg) - (/*pg)luII1 <_ m~:(gc)llfll~llglll, 
Proof'. By the Fubini Theorem 

II(f*pg) - (f*pg)lulll = f x  fvc f(k-tp)g(kx)dmK(k)dTrK(x) 

= IIgll~ fro f(k-lp)dmK(k) 

<_ mg(UC)llf[Ioollglli. 
| This proves the lemma 

3. Prox imate  ident i t ies  and discret izat ion 

PROPOSITION 3.1: Let p be a point in X.  Let g(x) be a function such that 
fB~(p)c g(x)d~K(X) = tg(5). Then for all continuous functions f (x)  we have 

If(x) - (f *p g)(x) I < 2[]fli~tg(5) + [[gill d(m~_<~(lf(x) - f(Y)[) 

such that, for all n > N, we have IF(x) - ( f  * gn)(x)[ (_ e, independently of x. 

Proof." Let M = maxxex [F(x)[. Choose 5 such that  for all x,y  E X with 

d(x,y) < 5, IF(x) - F(y)I _< e. 
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Let A = {k 6 K: kx 6 B~(p)} = {k 6 K: k - l p  6 B~(x)} for all x 6 A. Now, 

]f(x) - ( f  *p g)(x)] =If (x)  - / K  f (k - lp)g(kx)dmg(k)]  

= [ / g ( f ( x )  - f (k - lp) )g(kx)dmK(k) l  

<-/g If(x) -- f (k - lp)Hg(kx) ldmg(k)  

= / A  If(x) -- f (k-lp)l[g(kx)]dmK(k) 

+ / A  c [/(x) -- f(k-lp)[[g(kx)[dmK(k) 

< / A  If(x) -- f(k-lP)]]g(kx)]dmK(k) 

+ 21If H°°/K XB~(p)C (kx)lg(kx)[dmK (k) 

_<)[gll, d(ma~x<~ If(x) -/(Y)I + 2llfllootg(5). 

This finishes the proof. | 

LEMMA 3.2 (Discretization): Let U C K and g(x) be a continuous function on 
X .  For every e > O, there exists kl , . . . , ks 6 U and eel , . . . ,  a s  ~ 0 such that for 
every f 6 L1 we have 

s 

I(f *p g)lu(x) - ~ a,g(k,x)l < Ell fill,  
i = 1  

with ~i~=1 a~ = fu f(k-ixo)dm(k) < Ilf[h. 

Proof: The function H(k ,x )  = g(kx) - g ( x )  is continuous. Therefore, 

H - l ( - e / 2 , c / 2 )  is a an open set of K × X. It is clear that  id × X 
6 H - l ( - l l n ,  1/n). 

Thus, there exists an open set W C K such that  

W x {x} C H - l ( - c / 2 ,  e/2) 

for all x 6 X. It is easy to observe that  if k, h e W we have 

Ig(hx) - g(kx)l <_ ]g(hx) - g(x)l + [g(kx) - g(x)l <_ e. 

Since K is compact we can choose finitely many h l , h ~ , . . . , h s  such that  

W h l , W h ~ , . . . , W h s  cover K.  Now in each Whi  such that  Whi  N U # 0 we 
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choose an element ki E U. Observe that  for ti E Wki  we have 

g(tix) - g(kix) = gn((tlh-~l)hix) - gn((kih-(1)(hix)) < e, 

because t lhi  -1, kih~ 1 E W.  
We can find a measurable disjoint partit ion V1, . . . ,  Vs of K such that  V/ C 

Wki  for all i E { 1 , . . . , s } .  

Now consider the function 

s 

E g ( k i X )  / v  ~ f ( k - l x o ) d m K ( k )  • 
i=l AU 

Now compare this sum to ( f  *p g)Iu(x). 

s 

I/uf(k-lp)g(kx)dmK(k) - i~lg(kiX)/viAuf(k-lp)dmK(k) 

= ~ fv, A. I(g(kx) - g(k,x))llS(k-~p)ldmK(k) 
i----1 

s 

< ~ fv,  clf(kx)ldmK(k) < clf(X)ll. 
i----1 NU 

Set ai  = fv, nu f ( k - l x o ) d m K ( k )  • It is clear that  

8 

EO~i : /U f(k-lx°)dmK(k) ~- /Kf(k-lx°)dmK(k) : Iif[]l" 
i=1 

COROLLARY 3.3: Let f be a positive function on X with infxEx f (x )  --- a > O. 
Assume that g is a continuous positive function. Then for all C < 1 there exist 

k l , . . .  ,ks and a~ , . . .  ,a '  s such that for all x E X ,  

8 

c(f  *p g)lv(x) < ~ ~g(k:) < (f *~ g)lv(x). 
i 

Proof: Assume that  ( f  *p g)(x) _> b > 0 for all x. Set 

1 - C  b 

1 + C Ilfl[1 ' 

so that  by Lemma 3.2 we have a l , . . . ,  as and k l , . . . ,  ks E U such that  

8 l__Cb 
I(: *p g)lu(x) - ~ .  ~g(k~x)l < i - 7 - d  " 

z 
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In other words, 

s 1 - C  b 2 
~ a ~ g ( k ~ x )  < ~ + f ( x )  < ] - 7 ~ f ( x ) ,  

i 

and 
8 1 - 2C 

C b > f ( x )  5-" aig(kix) > f ( x )  
1 + C - 1 + C" 

i 

Setting ai = (1 + C)ai /2  we obtain the corollary. 

If 0 = ( f  *p g)[u(x) = fu  f ( k - l p ) g ( k x ) d m K ( k )  >- a f v  g(kx)dmg(k) ,  then 
rag(U) ---- 0 as g is positive. Therefore, ( f  ,p g)lu(x) = 0 for all x. In this case, 

the corollary is obvious. | 

COROLLARY 3.4: Let f and g be continuous positive functions with infzex f ( x )  

= a > O. Assume that 

R = R( f ,  g, 5) = 2]lflloota(5 ) + Ilglll d(ma~<_~ If(x) -- f(Y)l 

for some 5 >_ O. Fix U C K.  Then there exist kl , . . . , ks E U and al , . . . , as > 0 

such that 
8 

E aig(kix) ~_ f(x),  
i=1 

and 

$ 

II/(x) - ~ aig(kix)llx <_ 
i=1 

n(a + Ilflll) + a(mK(U c) + ( 1  - C) )llflloollglll 
R + a  

In particular, 

Proof: 

that 

s 2R f 1 R~amK(UC)llfllodlglll. IIf(x)- ~-~a~g(kix)lll ~ ~--~all II + 
i=1 

By Corollary 3.3 there exist a ~ , . . . , a s  I >_ 0 and k l , . . . ,  ks E K such 

8 

c(f ,pg)l~(x)  < ~aig(k~x) < ( f ,p  g)l~(x) < (f ,~  g)(x). 
i=1 

By Proposition 3.1, we have 

( f  *p g)(x) <__ f ( x )  + R <_ (1 + R / a ) f ( x ) .  



Vol. 152, 2006 STATIONARITY OF SPHERICAL MEASURES 

So Eis=l a~g(k~x) -< (1 + R/aft(x). Observe that  

277 

(1 + f ( x ) -  ~ a:g(kix) 
i = l  1 

_<11(1 + ~-) ](x) - (f.p g)(/)lli + II(f*, g)(x) - (f *p gllv(x)lli 
8 

+ II(Y*, gllv(x) - ~ ~g(k~x)lll 
i = l  

_< (~-Ilflll + R) + m~:(V~)llfll~llglll + (1-  C)ll(f .~ gilpin1 

-<R + ~llfll~ + (mr(,(g~) + (1 - C))llfll~llalll. 
a 

a I Setting c~i = ~-gc~ i and observing that  a -< Hflll, we obtain the first estimate. 

Set 6' = 2mK(U c) and use that  a _< If fill. This gives us the second estimate. 
| 

4 .  M a i n  t h e o r e m  

LEMMA 4.1: Let G be a connected semisimple Lie group. F is a lattice in G 
and K is a maximal compact subgroup. Let mK be the Haar measure on K. 
For an open set U define 

fv(g) -- mg{h E K: g - l h rA  UF ~ 0}. 

Then, for any sequence g~ E G such that g~-i -4 oo in G/K, we have 

lim fu(gi) = ma/r(U/P), 
i--+ ~ 

where ma/r is the G-invariant measure on G/F. 

Proo~ Observe that  fv(g) = fK Xu/r(g-lhF)dmg(h) and 

(U/F) = / a / r  Xv/r (gr)dma/r (gr). mG/F 

The result easily follows from the equidistribution result proved in [EM] 

because 

/K Xu/r(gi-l hF)dmg(h) --+ ma/r(U/r) 

as gi ~ c~. The lemma follows. I 
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THEOREM 4.2: Let G be a semisimple Lie group, and X be a G-space on which 

K acts transitively. Let 7rK be a K-invariant measure on X.  Assume that for 

each g E G, 
a(g, x) - dg,~rK (x) 

dTr K 

is a positive continuous function. Assume that there exists a sequence gi such 

that (gi).TrK = 5p for some p E X .  Let F be a lattice in G. Assume that 

{f.r(x)}.rer is a set of functions such that there exists D > 0 with the property 

that 

n -1 ~_ f.r(x) ~ D, 

for all ~ E F. Then for all positive continuous functions F on X ,  there exist 

A~ > 0 so that we have F(x)  = ~ e r  A~f'r (x)a(% x) in L 1 (X, 7rK) with Ae >_ O. 

Moreover, ff F is co-compact, we can find A~ > 0 such that the convergence is 

uniform. 

Proo?: Recall that  a(g, x) is a K-invariant co-cycle, i.e. 

a(gh, x) = a(g, hx)a(h, x) 

and a(k, x) = 1 for all k E K.  For any U C G we define 

E(U) = {h ~ K: g~hr n u r  # 0} c K. 

Set C(U) = maxgev ,xex(a(g ,x ) ,a(g- l ,x ) )  + 1. (Recall that  a(g - l , x )  = 
o~(g,g--lx)--l.) 

Fix a sequence of open bounded subsets Un C G (not necessary distinct) such 

that  limn~oo mG/r(Un/F) = 1 and En°°__i X / C ( U n )  2 : 00. (In the co-compact 

case we set U C G to be a bounded open set such that  U/F  = G/F. )  

Now we will construct a sequence {Ln(x)} of positive continuous functions 

such that  

Ln(x) = F(x) - E c~f~(x)a('y,x) 
"~EF 

with c~ >_ 0 and only finitely many of them are positive and 

lira IILnlll = 0. 
n--~oG 

(In the co-compact case limn-+c¢ Ln(x) = 0 uniformly.) It is clear that  this will 

prove the theorem. 

Set Lo = F.  Assume that  we have constructed Ln(x). Let us describe Ln+l. 

Let an = infxex(Ln(x)).  
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It is clear that IILnlloo <_ IIFIl~ = M. Set 5n > 0 to be a number such that 

maxd(x,y)<_~n ILn(x) - Ln(y)l <_ an/4. 
Since (gi).~rK --+ 5p, there exists In such that for all i > In we have 

(g~).rK(B(p, Sn)) >_ 1 -  an/SM, 

i.e., 

t~ (a(gi, x)) < an/SM 

for all i > In. 

Define 

wn = {h K:  gjohrnVnr # 0}. 

(In the co-compact case, Wn = K.) By Lemma 4.1 there exists jn > In such 

that m g ( W n )  = fv,~(gj,~) ~_ mG/r(Vn/r) - 1 / n .  

Apply Corollary 3.4 to the functions Ln(X) and a(gj~, x). We have 

an < an R(Ln,a(g, "),(in) ~ 2[[F[[c~Z~. + T ~) I VI 

By Corollary 3.4, there exists a sequence of k~n), • . . ,  k (n)s~ E Wn and c~ n), . . . , ,.s~'~(n) 
> 0 such that 

and 

8 n  ('~) 
ci (~(gj~,kix) < Ln(x), 

i=l 

Ln(x) sn kix) 1 ~ ~-" c(n) a(~ - z _ ,  ,YJ , < I I L n l l l  + mK(WC)M. 
i=l 

(In the co-compact case, again we have 

an a..._~n < an 
R(Ln, a(g,'),tin) ~_ 211FIl~-~-- ~ + 4 - -2" 

Now by Proposition 3.1, I Ln(x) - (Ln*p a(gj~, "))(x)l _< an/2. This implies that 

Ln(x)/2 <_ (Ln *p e(gjn, "))(x) _< 2Ln(x). Now we apply Corollary 3.3 to the 
functions Ln(x) and a(gj~,x) and C ½, to obtain a sequence k~ n), . k (n) * • , 8 n  E 

Wn and c~ n), ,~(n) ...,~sn > 0 such that 

8 n  

(Ln *p a(gjn, "))(x) < E cln)a(gJ~' kix) < (Ln *p a(gj~, "))(x). 
i=1 

Dividing by 2 and renaming c! , we obtain Ln(x)/4 -< E~=I cln)a(gJ,,, kix) 
<__ Ln(x).) 
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Since k} n) E Wn, we have that  there exists 3} n) E F and - (n) ~4 E U,~ such that  
gJ. k}n) ~ (n)A (n) 

= "~i "Yi " 

So we have 

=a(ui  "74 ki , k i x )=  ~ i ,Y~ J vYi , J. a(gj,~, k4x) (~) (n) -1 c~{u (n) A (n)x~a/^ (n) x~ 

Here we have that  

So set 

1 a(gj., kix) 
< < c ( v . ) .  

Ln+l(x) = Ln(x) 

Now it is easy to see that  

1 8n 

DC(Un) E c4f'r(x)a('~}n)'x)" 
i=1 

1 8n 

Ln(x) D2C(Un)2 Ec ln )L(x )a (g j , , ,  kix) >_ L.+l(x) 
i=1 

and 
8n 

L,~+l(x) > L n ( x ) -  Ec~n)  f.y(xla(gj,~,k4x) >_ O. 
i=1 

Now it is clear that  Ln+l is a positive continuous function. Also 

[ s± 
1 n)a(gj., kix) IILn+llll <__ L.(x) D C(Vn)2 cl 

i = 1  ,, 1 

L.(x)  
<_ Ln(x) D2C(Un) 2 z 

1 ~ (n) kix) 1 + D2C- (Un)2 L n ( x ) -  4=1 ci a(gj,,, 

<(1  - 2 2mK(WC)M 
_ 3D2C(Un) 2) [[Ln][1 + 3D2C(U.) 2 • 

(In the co-compact case, 

c i a(gj,,, kix) Ln+l(X) = Ln(x) - E48~=1 (n) 
D2C(U) 2 <_ Ln(x) (1 

1 
4D2C(U)2)" 

This proves that  l i m n - ~  Ln(x) = 0 uniformly.) 

Now we need the following lemma. 
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a oo  LEMMA 4.3: Let 0 <_ 5n <_ 1 for all n and limn-~oo en = O. Let { n}n=l  be a 

sequence of non-negative numbers such that 

an+l <_ (1 - 8n)an + 5nen. 

n 1 Iflimn-~oo l-lk=l( - 5k) = 0, then l i m n - ~  an = O. 

Proof." For e > 0, there exists N such that  for all n > N,  en _< e. Let 

a n  -~ b n  -}- e ,  so we have 

bn+l -t- c <_ (1 - 5n)(bn + e) + 5nen <_ (1 -- 5n)bn + e, 

for all n > N. This shows that  bn+l <_ (1 - 5 n )b n -  So we conclude that  

l i m n - ~  bn --- 0 and thus 0 < limn-+oo an <_ ~. However, taking e ~ 0 proves the 

lemma. | 

So to obtain limn-+o~ I[Ln[[1 = 0 it suffices to have 

I I  1 3C(Un) 2 = O, 
i=1 

which is equivalent to ~ i=1  1/C(Un) 2 = ec and 

lim m k ( W  c) < lim mv/r ( (Un/F)  c) + 1/n = O. 
n --+ oo n --+ oo 

This finishes the proof of Theorem 4.2. | 

COROLLARY 4.4: Let zrl , 7r2 be two probability measures on X such that ~ ( x )  

is a positive continuous function for i = 1, 2. Then there exists # E P(F)  such 

that # ,  7rl = 7r2. 

Proof." The equation # * 71-1 : 71" 2 is equivalent to 

dTr2 drx ( d Z r l ) - 1  

d (X) = 
~EF 

where convergence is in the L 1 (X, ~rK)-norm. This proves the corollary. | 

Example: One of the consequences of Theorem 4.2 happens in the case of 

n = 2 and G = PSL(2, II~). In this case, G / P  can be identified with the circle 

S 1 and can be viewed as the boundary of the 2-dimensional disk G / K .  The 
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K-invariant measure is just the Lebesgue measure m o n  S 1 , and the Radon- 

Nikodym derivative of this measure with respect to the transformation g E G 

is just the Poisson kernel at the point go, where o = [K] is the origin. 

In this case, we obtain that every positive continuous function can be repre- 

sented as a sum with positive coefficients of Poisson kernels at the points 70, 

where ~/E F for a lattice F in PSL(2, li~) (i.e., F = PSL(2, Z)). It was known by 

the results of F. Bonsall (see [B] or [R]) that any L 1 function can be approx- 

imated by a sum of Poisson kernels (in particular, in the case of PSL(2, Z)). 

However, his result does not imply that the coefficients are positive for a posi- 

tive continuous function. So Theorem 4.2 is an improvement of this result in the 

cases of lattices. I should note that W. Hayman and T. Lyons [HL] and later 

F. Bonsall and D. Walsh [BW] have improved Bonsall's result and have shown 

that every continuous (lower semi-continuous) function can be approximated 

uniformly as a sum of Poisson kernels if and only if 

dg*m 1-1 dg*m 

gEF 

for all i e S 1 (this is in the case of PSL(2, R)). 

However, this condition fails even for PSL(2, Z). In the special case of a co- 

compact lattice F in PSL(2, R), our result does follow from the work of W. Hay- 

man and T. Lyons as the above sum diverges at every point. 

Even though Theorem 4.2 (in case n = 2) is not as general as the framework 

considered by the authors mentioned above, it does provide a unifying scheme 

for higher dimensions and work of Bonsall (as well as Walsh, Lyons, Hayman), 

in which every point (or almost every point) on the boundary is non-tangentially 

dense.* 

5. P r o o f  of  T h e o r e m  1.2 

We just need to verify the conditions of Theorem 4.2 for B(G). It is known 
that for any measure, ~r E P(B(G)), we have 5B(G) C Gr. For the proof of 
continuity of the Radon-Nikodym derivatives, see Lemma 5.6 of IF1]. However, 
this can be observed from the smoothness of the action by G on the manifold 
representing the homogeneous space G. 

* These cases are considered in [CM]. 
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