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ABSTRACT 

We prove tha t  the Bohr radius K,~ of the n-dimensional polydisc in C n 

is up to an absolute constant > ~/l°s '~/1 °s log n.  This improves result a 

of Boas and Khavinson. 

1.  I n t r o d u c t i o n  

Let R C C ~ be a Reinhardt domain (i.e., a domain in C ~ such that  for u ,v  E C ~ 

with lUk[ <_ Ivk[,1 < k < n, we have that  u E R provided that  v E R). Recall 

that  the Bohr radius K ( R )  of R is the supremum over all r _> 0 such that  if 

[ ~ caz~[ _< 1 for all z E R, then ~ [caza[ _< 1 for all z E rR.  Bohr's power 

series theorem from [6] states that  

1 
(1.1) K(ll}) = 3'  

where D as usual denotes the open unit disc. By results of Aizenberg, Boas, 

Dineen, Khavinson and Wimoney (see [1], [2], [3], [12]) for all 1 <_ p _< oc and 

all n, 

1 1  1 1 c logn 1 - - ~  
(1.2) c ( n ) - ~  <_K(Be~)<_ ( n ) ' " 
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where c > 0 denotes a constant independent of p, n. So far, all known non-trivial 

upper estimates for multi-dimensional Bohr radii use probabilistic methods, and 

the log-term in (1.2) is a consequence of these methods. Boas in [2, p. 329] 

conjectures that  presumably this logarithmic factor, an artifact of the proof, 
should not really be present (see also [2, section 7, problem 1] and the discussion 

in [3]). Contrary to this commonly held opinion, the main result of this paper 

shows that  the log-term in the dimension n at least up to a term log log n 

necessarily appears. 

THEOREM 1.1: There is a constant c > 0 such that for each 1 <_ p <_ oo and 

all n, 
l ( l ogn / log logn)  1 ~i.~,2) <_ K(Be~). 
C \  n 

Let us give a brief idea of what might have been Bohr's original motivation 

for his power series theorem (1.1). It is well known that  the domain of conver- 
a 1 gence of a Dirichlet series ~ n ~-;, s E C is characterized by three half planes 

{Re s > a} C {Re s > u} C {Re s > c} in C; {Re s > c} defines the largest half 

plane on which the Dirichlet series converges, {Re s > u} the largest half plane 

such that  the series converges uniformly on each strictly smaller half plane, and 

finally {Re s > a} the largest half plane where the Dirichlet series even converges 

absolutely. Bohr in [5] did an intensive study of the number 

S : :  sup a - u .  
E a ~  

When he finished his article he did not know a single example ~ an-~ for 

which u ~ a; note that,  in contrast to this, it is relatively easy to show that  

sup a - e -- 1. 

In a rather ingenious fashion Bohr translated the problem of finding the pre- 

cise value of S into a problem formulated entirely in terms of power series in 

infinitely many variables. His main trick was to consider the following one-to- 

one correspondence between Dirichlet series and power series in infinitely many 

variables: 

1 
(1.3) E an-~ ~'* Z caz~' where an = c~ if n = P~; 

n aEN(oI'~} 

here, p stands for the sequence Pl _< P2 _< "'" of prime numbers. With this 

translation at hand Bohr in [5] managed to show that  S < 1/2, and he appar- 

ently proved his power series theorem (a result in only one variable) while trying 

to show that  this upper estimate for S is best possible. It seems that  Bohr was 
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aware of the fact that  an optimal multi-dimensional version of (1.1) would have 

led him to an optimal estimate for S. 

Based on the identification from (1.3) together with a polynomial version of a 

well-known result of Littlewood, Toeplitz in [16] obtained that  1/4 < S < 1/2, 

and finally Bohnenblust and Hille in [12] completed this approach of Toeplitz 

by proving that  S in fact equals 1/2. 

Within their study of absolute bases in spaces of holomorphic functions on 

infinite-dimensional spaces, Dineen and Timoney in [12] renewed the interest in 

multi-dimensional Bohr radii. They proved that  for each ~ > 0, 

K(B~E) <_ c(c) , n E N 

(a result slightly weaker than the one cited in (1.2)). This in [13] allowed them 

to reprove the Bohr-Bohnenblust-Hille result S = 1/2 with a proof which might 

be very close to what Bohr himself originally had in mind. 

2. Pre l iminar i e s  

We use standard notations and notions from Banach space theory, as presented, 

e.g., in [15] and [8]. All considered Banach spaces are assumed to be complex. 

As usual ~ ,  1 _< p < cc and n E N, stands for C n together with the p-norm 

IIZNP :--~ (Ek=l IZklP) i/p (with the obvious modification whenever p = oc). 

Recall that  the Banach-Mazur distance of two n-dimensional Banach spaces 

X and Y is given by d(X,Y)  := infllRIIIIR-111, the infimum taken over all 

linear bijections R: X --+ Y (see [17]). A Schauder basis (Xn) of a Banach 

space X is said to be unconditional if there is a constant c _> 1 such that  

[IE~n=l laktxkIl < cfIEkn_lakxkll for all n and cq, . . . ,c~n e C. In this case, 

the best constant c is denoted by X((xn)) and called the unconditional basis 

constant of (xn). Moreover, the infimum over all possible constants X(Xn) is the 

unconditional basis constant x(X) of X. 

See [8], [11], and [14] for all needed background on polynomials and symmet- 

ric tensor products. If X = (C ~, II " I]) is a Banach space and m E N, then 

P(~X)  stands for the Banaeh space of all m-homogeneous polynomials p(z) = 
~l~l=mCc~Zc~,z C C n, together with the norm Hp]]~(mz) := supllzll_< 1 ]p(z)l. 
The unconditional basis constant of all monomials z ~, ]a] = m, is denoted by 

Xmon(p(mx)). 

Sometimes it will be more convenient to think in terms of tensor products 

instead of spaces of polynomials. We write ®~X for the ruth full injective 
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tensor product, and ®~'sX for the mth symmetric injective tensor product. 

Recall that ®m'sx  can be realized as the range of the symmetrization operator 

1 s: ® ~ x  ~ ®~x,  s(®yk):= ~ ~ ®y~(k), 
aEH,~ 

where IIm stands for the group of all permutations of {1,. . . ,  m}. For z E @m'sx 

we have 

m m 
(2.1) Ilzll~ < IIzll~ < -~., IIzll~ 

(see, e.g., [14, p. 167]). If ek, 1 <_ k <_ n, denotes the standard basis in C n, 

then the monomials ei =e i l  N . . .  N ei,,, where i = ( i l , . - . , im)  E M ( m ,  n) := 

{1, . . . ,  n} m, form a (linear) basis of ®reX, and its unconditional basis constant 

with respect to the injective norm c is denoted by Xmon(NemX). Analogously, all 

S(eil ® . . . ® e i , ) ,  (ix,-.-,im) E J ( m , n )  := {(i l , - . . , im) E M ( m , n )  l i l  <_... < 
m~8 im}, form a basis of ®'~'~X, and clearly Xmon(®~ ) stands for its unconditional 

basis constant with respect to ¢s- 

Finally, we recall that for X = (C n, I1" II) the following isometric equality 
holds: 

(2.2) ®m'sx*~ = p ( m x ) ,  x* N . . .  Nx*  ~ [z ~ x*(z)m]; 

here, X* denotes the dual of X (see again, e.g., [14, p. 168] or [11]). 

3. The  p roof  of T h e o r e m  1.1 

The proof of Theorem 1.1 is based on the following basic link between the 
study of multi-dimensional Bohr radii and local Banach space theory from [9, 

Theorem 2.2]: For each Banach space X = (C ~, I1" II) for which the ek's form a 

1-unconditional basis (i.e., X(ek) = 1) we have 

(3.1) 
1 ) 

3SUPm Xmon(7~(mX))l/m <- K(BN) _< min , supra Xmon(7~(mX))l/m ; 

note that this result is an abstract extension of Bohr's power series theorem 

from (1.1). 
The following three lemmata concentrate on upper estimates for the uncon- 

ditional basis constants Xmon(7~(mx)) (with "good" constants in the degree m 

and the dimension n). The first one improves part of [9, 6.1]. 
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LEMMA 3.1: Let X = (C a, II" ]l) be a Banach space such that the ek's form a 
1-unconditional basis. Then for each m 

m m  mq-1 n m-1  Xmon(p(mz)) <_ ---~. 2 d(Z, g 1 ) . 

Equivalently, we have by (2.2) and duality that 

m,s m m  om+ld{~( pn ~m-1 
(3.2) Xmon(®~. X))  < ~ . , _  - , - , ~ o o ,  • 

Proof'. Take (aj) E C J(m'n) • For the proof of (3.2) we have to show that 

l~jlSej) ~ _< --~T. 2m+ld(X,f~o) m-1 ~ ajS(ej) ~ . 

J(m,n) J(m,n) 

From [7, pp. 134, 136] we know that 

(3.3) Xmon(@?X) <~ 2 m + l x ( ® e m x  ) 

and 

(3.4) x(®mx)  < d(X, gn)m-~. 

Moreover, we will use the fact (see [7, p. 124]) that  

1 
(3.5) S(ej)  - card[j] Z ei, j E J(m,n); 

recall that  [3"] denotes the equivalence class in M(m, n) defined by the equiva- 

lence relation: j ,~ i: ~ there is a permutation a of { 1 , . . . , m }  such that 

j(k) = i(a(k)), 1 < k < m. 
a~ Define (~) E C M(m'n) by ~i := card[j]' i E [j], j E J(m, n). Then we get 

l~jlS(@ ~ laJlca-d[j] c~ 
jeJ(m,n) jEJ(m,n) ie .,~) 

jEJ(m,n) i~M( ..... ) 
~EiJ] 

iEM(m,n) 

iEM(m,n) 
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(3<-3)2~÷1x(®2 x) ~M~I~,~, 

(a.~) E 
~-- 2m+ld(X'en)m-1 Z ajS(ej) 

jEJ(m,n) 

_ mm2m+ld X ~n 
?77,, jEJ(m,n) ¢'~ 

the conclusion. | 

The proof of the following alternative estimate for Xmon(~'(mx)) combines 

techniques from [5, Satz III], [3, Theorem 2, 3] and [10]. 

LEMMA 3.2: Let X = (C n, II " ]1) be a Banach space such that the ek's form a 

1-unconditional basis. Then for each m 
r n ,  

_ 
)~mon('~(mx)) < X m o n ( P ( o o ) )  --~ 1 + , 

c > 0 an absolute constant. 

Proof: Let us start with the proof of the first inequality: For r l , . . . ,  r~ > 0 it 

can be shown easily that  

Xmon(~9(m~n (rl , . . .  ,rn)) ~_ X m o n ( ~ 9 ( m ~ ) ) ,  

where g ~ ( r l , . . . ,  r~) stands for C ~ together with the norm 

Ilzll := sup z__k , z E C~; 
l < k < n  'rk 

clearly, if I~l~l= m c~z ~1 <_ 1, z • Be~(~ ..... ~ ) ,  then 

I ~ < 1, z Be~, cara z a E 
t~1='~ 

and hence 

p ~  Ic~lz~ I <__ ~o.(~(~e~)), z • Be~(rl Tn)" 
I I~l--m 

Now since the ek's form a 1-unconditional basis of X ,  we have 

Bx = U Bed(r1 ..... r~), 
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where the union is taken over all rl, . . . ,rn for which Be~(~ ..... ~)  C Bx.  

Therefore, for each choice of coefficients ca, ]c~] = m we see that 

E ]caIza <- sup )~m°"(P(~e~(rl'''"rn))) sup I E caz~ s u p  
zEBx a =m rl,... ,r~>O zEBx [~[=m 

<_Xmon(p(m~n)) s u p  E CaZa' 
zEBx lal=m 

which gives our first conclusion. Let us prove the second inequality: Take an 

m-homogeneous polynomial ~iai=m c~za such that 

E c~z~ <_ 1. 
]ai=m p(m~) 

An easy calculation using Stirling's formula shows that 

( n + m -  1) ( n )  m 
(3.6) E 1 = \  n - 1  -<cm l + m  ' 

where c > 0 is an absolute constant. Hence by the Canchy-Schwarz inequality 

icol_< E icol ÷ 
lal=m P ( ' ~ )  iai=m lai=m 

By orthonormahility of the monomials z a, ]a I = m in L2(Tn, A), Tn the n- 
dimensional Torus [H = 1] n C C n and A the nth product measure of the 

normalized Lebesgue measure on the sphere []z] = 1], we obtain 

2 \½ 

ial=m la]=-~ 

and hence 
m 

z j o zo 
I~l=m P(me~o) 

finishes the proof, i 

For X = ~ and 1 _< p _< 2 this estimate can be improved. 

LEMMA 3.3: F o r l  <_p<_ c~ andn, m, 

rt - ~  Xmon(.p(m~p)) ~ cm[(l_b ~ )  1 ..... ~p2) ] m, 
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c > 0 an absolute  constant .  

Proof: 

Isr. J. Math. 

Take an m-homogeneous polynomial p(z )  = ~]b j=m c , z  ~ with 

IE caz~ <_1. 

bl=m ~ ( ~ )  

Then for all multi-indices a with [al = m we have 

(3.7) [ca[ < ~ < e m/p 
- -  - -  \ 0 / ! /  ' 

here the second inequality is obvious and the first one follows from an apparently 

standard "Cauchy estimate" - -  for the sake of completeness we repeat the short 

argument: For each r E Be$ with rk > 0 we know that 

/ z  ,zl,z  ca (27ri) n d = ~  ~1=~ z ~ z t  . . .  z n 

(see, e.g., [11, p. 145]); therefore Ic~] <_ 1 / r  m, and hence (3.7) is a consequence 

of 
1 ,zol: 

zEB~ 

(see again, e.g., [11, p. 43]). Now by HSlder's inequality for z E C ~ , 

L r. icolzo z ( ) lzol 
In =m I~l=m 

1 1 

< e m/'  1 z l l p , . . . ,  Iznlp) ~ 
I - -  I = 

(3<~_ i + ~ Iz~l ~ T 

= e 'VPc m/W (1 + n )  7 Uzn~" 
m /  

Thus for each p, m, n, 

Xmon(p(me;)) < era~Pc m/#  (1 + n__) 
- -  m /  ' 

which together with Lemma 3.2 yields the conclusion. | 

We are now prepared to give a proof of Theorem 1.1. 
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Proof:  Define for n • N 

A LOGARITHMIC LOWER BOUND 

e(n) := supg  • N I e e < n}. 

25 

Then it can be shown easily that  there is c > 0 such that  for all n 

1 log n log n 
- -  < ~ ( n )  < 

c loglogn - - Cloglogn" 

Hence, it suffices to check that  for 1 <_ p _< oc and each n 

1 1 

ck  n / 

or, by (3.1), equivalently 

(__~n)) 1 1 mini-p,2) 
sUpXmon(p(mgp°))  -~ < C 
m 

c > 0 an absolute constant. 

Fix p, m and n. Consider first the case e(n) _< m. Then by Lemma 3.3 (clearly 

also ~(n) S n), 

( ~ ) 1  1 
Xmon(p(m~;)) 1/m _~ c 1 + min(-p,2) 

1 1 : 
< c~,1 + 

t ( n )  ] 

( _ ~ ) 1  1 min'~lo,2 ) 
_< 2c 

If e(n) > m, then we have that  n Ut(n) <_ n 1/m, and by definition ~(n) _< n U*(=) . 

Recall tha t  

(3.8) d(gp,g~)  _~ n 1 min~p.2, 

(see, e.g., [17, p. 280]). Hence we conclude from Lemma 3.1 that  

Xmon(~(m~;)) 1/m ~_ 4ed(g;, ~ ) 1 - 1 / m  

1 1 1 
= 4 e n  - I 1 (ni /m) - ~  

1 
< 4 en  1-  min(-p,2) 
- -  1 1 (nl/~(n)) - ~  

1 
<_ 4e n 1 

This completes the proof of Theorem 1.1. | 
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4. B o h r  radi i  ve r sus  B a n a c h - M a z u r  d i s t ances  

It was conjectured in [9] that there is a constant c > 0 such that for all Banach 

spaces X = (C n, I1" II) for which the ek's form a 1-unconditional basis, 

1 1 1 
< K ( B x )  < cd(X, t D ;  c d(X,~r~) 

it was proved that for a rich class of n-dimensional spaces X the upper part of 

this conjecture holds up to a log-term in the dimension n (e.g., whenever the 

Euclidean ball is contained in B x ) .  Theorem 1.1 now shows that the logarithmic 

factor is not superfluous--the upper part of the conjecture does not hold for the 

g 's. 
On the other hand, (3.1) combined with Lemma 3.1 confirms the lower part 

for all X. 

COROLLARY 4.1: Let X = (C n , II" H) be a Banach space such that the ek's form 

a 1-unconditional basis. Then 

1 1 
< K(Bx). 4e d(X,  £r~) 

Apart from the better constant, this is a proper extension of Aizenberg's 

result from [1]: 
1 

3~/~ -< K(Bq,) .  

We finish with the following remark which, in the context of unconditional- 

ity, quantifies the "gap" between symmetric injective tensor products and full 

injective tensor products of £~'s. 

Remark 1: There is a constant c > 0 such that the following estimates hold 

for each 1 <_ p _< co and n: 

1 (  n ~ .... {-~'~) su ,®m,sg,~,l/m ( n ) ..... ~,,.2) 
(1) c \ l o - ~ ]  -< mPXm°n/ ~., p) <_ c l ogn / l og logn  

1 1 1 
(2) - n  ..... (p,2) < sUp Xmon(®mgp)l/m < cnm~x(v,2). 

C rn 

Clearly, (1) is a reformulation of Theorem 1.1 with the help of (3.1). The 

upper estimate in (2) is an immediate consequence of (3.3), (3.4) and (3.8), for 

the lower estimate analyzes the probabilistic argument given for [7, (5.4)]. 

In both remarks the unconditional basis constant of the monomials can be 

replaced by the unconditional basis constant itself. 
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