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ABSTRACT

We study the quantitative relationship between the cones of nonnegative
polynomials, cones of sums of squares and cones of sums of even powers
of linear forms. We derive bounds on the volumes (raised to the power
reciprocal to the ambient dimension) of compact sections of the three
cones. We show that the bounds are asymptotically exact if the degree
is fixed and number of variables tends to infinity. When the degree is
larger than two, it follows that there are significantly more nonnegative
polynomials than sums of squares and there are significantly more sums of
squares than sums of even powers of linear forms. Moreover, we quantify
the exact discrepancy between the cones; from our bounds it follows that
the discrepancy grows as the number of variables increases.

1. Introduction

The question of whether nonnegative polynomials admit some sum of squares
representation has been of much interest in real algebraic geometry. The in-
vestigation was begun by Hilbert, who identified all pairs (n,2k), with n the
number of variables and 2k the degree, where any nonnegative polynomial can
be written as a sum of squares of polynomials (sos). Hilbert’s theorem states
that this is the case if the polynomial p is univariate, p is of degree 2, or p is a
polynomial in two variables of degree 4. Moreover, in all other cases there exist
nonnegative polynomials that are not sos. Hilbert’s proof was nonconstructive
and he did not exhibit explicit polynomials with this property [18].
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The next step was Hilbert’s 17th problem which asked whether a nonnegative
polynomial is necessarily a sum of squares of rational functions. It was solved in
the affirmative by Artin, leading to the creation of Artin—Schreier theory of real
closed fields. However, this representation is not efficiently computable. One of
the reasons is that we may be forced to use rational functions with denominators
of a very large degree [15].

The first explicit nonnegative polynomials that are not sos were constructed
by Motzkin. Since then several more families of such polynomials have been
found, but overall the list of explicit examples is very short. All of the known
nonnegative polynomials that are not sos seem to lie either on the boundary of
the cone of nonnegative polynomials or close to it [5], [18].

In this paper we investigate the quantitative relationship between nonnegative
polynomials, sums of squares of polynomials and sums of even powers of linear
forms. We show that, for a fixed degree greater than 2, there are significantly
more nonnegative polynomials than sums of squares and there are significantly
more sums of squares than sums of even powers of linear forms. Moreover,
we derive tight asymptotic bounds on the size of these sets as the number of
variables grows. The bounds allow us to see the precise quantitative relationship
between these sets. It should be noted that our methods do not yield a way to
generate examples of nonnegative polynomials that are not sos.

These results can be viewed as a quantitative version of Hilbert’s theorem.
They also have some computational ramifications. It is NP-hard to decide
whether a polynomial is nonnegative [4]. Moreover, there are no practical al-
gorithms for this problem. However, semidefinite programming can be used
to decide whether a polynomial is sos, and testing for sos is practically efficient
{12]. It has been suggested therefore to substitute testing for nonnegativity with
testing for sos [13]. However, since there are much fewer sums of squares than
nonnegative polynomials, in general this does not work well.

We now introduce some notation to state our results precisely. Let P, o
be the vector space of homogeneous polynomials in n variables of degree 2k.
We observe that a nonnegative polynomial can be homogenized without losing
its nonnegativity and therefore we deal with the homogeneous case. The main
subject of this paper are the following three convex cones in P, o:

The cone of nonnegative polynomials Pos, o,

Pospor = {p € Ppaox| p(z) >0 forall z e R*}.
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The cone of sums of squares Sqp, 2k,

Snok ={P€ Poax|p= pr for some p; € P, 1}
i

The cone of sums of 2k-th powers of linear forms Lf,, oz,

Lfnok ={p€ Prok|p= Z lfk for some linear forms l; € P,1}.
i
The cones Posy 2k, Sqn,2x and Lfy, o are closed, full-dimensional convex cones
in P, gx. There is an obvious inclusion relationship,

Lfn a2k C Sqn2r C Posp ak.

In order to compare the relative size of these cones, we take compact sections
of these cones with a hyperplane. Let L, 3 be the hyperplane of polynomials
of average 1 on the unit sphere S"~1:
/ pdo = 1},
Sn—l

where ¢ is the rotation invariant probability measure on S™7!. Let Pos;, o1,

Ly = {p € Py o

Sqy, 21, and Lf;, 5, be the sections of the respective cones with Ly o
Pos;, o, = Posnax N L2k, S 01 = S@n2k N L2k and Lf, o5 = Lfn,26 N L 2k

These convex bodies are compact full-dimensional sets in L, o.

For technical reasons we prefer to translate Pos o, S, ox and Lf, o by
subtracting (2 + --- + 22)* so that polynomials have average 0 on the unit
sphere S”71. We let Mn ok denote the hyperplane of polynomials of average 0
on S77L. Let Posn 2% Sqn o, and Lfn o1, be the respective translations:

Posnak = {p € Mool p+ (2} + - +22)* € Pos;, 5.},
Sqnok ={P € M| p+ (23 + - + 22)* € Sqp o1}
Lfpox ={p € Muok| p+ (& + -+ 22)* € Lf} 5.}

There is the following natural L? inner product in P, 2x:

(fr9) = /Sn_l fgdo.

We use Dy to denote the dimension of My, o, Su to denote the unit sphere in
My, 21 and By to denote the unit ball in M, ».
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We would like to measure the respective sizes of 135-/917,’2}@, ,’Szn’% and Efn’%.
For a compact convex set K, a good measure of size of K that takes into account
the effect of large dimensions is the volume of K raised to the power reciprocal
to the ambient dimension:

(Vol K)/ dim K

For example, homothetically expanding K by a constant factor leads to an
increase by the same factor in this normed volume.
We now state the main theorem of this paper:

THEOREM 1.1: There exist positive constants c¢i(k), ca(k),c3(k),ca(k), c5(k),
cs(k) dependent on k only, such that for any € > 0 and all n sufficiently large

1]3Vn 1/D
an/? S(%TOBSM’Wv " < epn”V2,
VO]§:] N\ 1/Dm
—k/2 n,2k < —k/2
esn 2 <( Vol By ) <em™,
Vol Lf , 5, \1/D

We observe that if the degree 2k is 2, then Hilbert’s theorem tells us that
all three convex bodies Posn 2k s Sqn o and Lfn o, are the same and indeed
Theorem 1.1 gives us the same asymptotic behavior of volumes. However, if the
degree is at least 4 then we see that the asymptotics are different and it follows
that there are significantly more nonnegative polynomials than sums of squares
and significantly more sums of squares than sums of even powers of linear forms.

Theorem 1.1 consists of six bounds and we would like to point out the re-
lationship between them. The lower bound for 13?)/5,1,% and the upper bound
for ‘%n,% are derived using similar techniques. For a generalization of these
techniques and applications to other convex objects we refer to [2]. The upper
bound for 13\0/37»,% is derived using a different approach, involving an analytic
inequality of Kellogg on the length of the gradient of a homogeneous polyno-
mial [9]. The cone of sums of powers of linear forms can be identified with the
dual cone of the cone of nonnegative polynomial. The lower bound for 17 n,2k 18
derived from the upper bound for }’5:)/371,2;9 using the Blaschke-Santalé inequal-
ity from convexity. The remaining bounds are also proved using duality and
convexity inequalities.

We will often omit the subscript n, 2k from Posy ox, My 2x and the like when
the subscript is clear from the context.
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The rest of the paper is structured as follows. In Section 2 we lay out some
results from convexity and representation theory that will be useful throughout
this paper. In Section 3 we give an informal outline of the proofs. In Section 4
we prove the bounds for nonnegative polynomials. In Section 5 we prove some
results that will help us derive bounds using duality. In Section 6 we prove the
bounds for sums of squares. In Section 7 we prove the bounds for sums of even
powers of linear forms.

2. Preliminaries

For a real Euclidean vector space V with the unit sphere Sy and a function
f:V = R, we use ||f||, to denote the L? norm of f:

i/p
= ([ 1Pan) " and flle = max @)L

For a convex body K with origin in its interior the gauge Gx of K, also
known as the norm of K, is a function that measures at a point v how much K
needs to be expanded to put v into it:

Gkg:V - R Gg(v) =minimal, X >0 such that v € K.

2.1. THE ACTION OF THE ORTHOGONAL GROUP ON P,s;. The special
orthogonal group SO(n) acts on P, 5 by rotating the coordinates,

A€ 80(n) sends f€ Pyar to Af=f(A™'2).

We observe that the cones Posy 2k, Sqn 2 and Lfy, op are invariant under this
action and so is M, o, the hyperplane of polynomlals of average 0 on the unit
sphere S"~!. Therefore, the sections Posn 2%, Sqn o and Lfn o are fixed by
SO(n) as well.

Let A be the Laplace differential operator:

02 0?
A=zt T
A form f such that
Alf) =

is called harmonic. We will need the fact that the irreducible components of
this representation are subspaces H, o for 0 <! < k, which have the following
form:

Hpoi = {f € Paak| f = (&% 4 --- + 22)*~'h where h € P, 2 is harmonic}.
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For v € R™, the functional

Aot Mpok — R, A (f) = f(v),
is linear and therefore there exists a form ¢, € M such that

Ao(f) = (qu, f)-

There are explicit descriptions of the polynomials ¢,; under a suitable nor-
malization they are the so-called Gegenbauer or ultraspherical polynomials. We
will only need the property that for v € S~ 1,

llgllz = VD

For more details on this representation of SO(n) see [20].

2.2. THE BLASCHKE-SANTALO INEQUALITY. Here we introduce an inequal-
ity from convexity that allows us to interpolate between volume bounds for a
convex body and its polar. Let K be a full-dimensional convex body in R™ with
the origin in its interior and let {,) be an inner product. We will use K° to
denote the polar of K,

K°={zeR"|(z,y) <lforally € K}.

Now suppose that a point z is in the interior of K and let K#* be the polar of
K when 2 is translated to the origin:

K:={zeR'|(z—2y—2)<1lforallyeK}.

The point z at which the volume of K* is minimal is unique and it is called the
Santal6 point of K. Moreover, the following inequality on volumes of K and

K* holds:
Vol K Vol K*

———
(VolB)?2 —
where B is the unit ball of (,) and z is the Santal6 point of K. This is known
as the Blaschke-Santal6 inequality [10].

3. Outline of proofs

Since many of the following proofs are technical we would like to first give an
informal outline.

We begin with the description of the proofs for the cone of nonnegative poly-
nomials. We observe that 1/5’\(;5%2;c is the convex body of forms of integral 0 on
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S™~1 such that the minimum of the forms on the unit sphere S”~! is at least
-1,
Posy o5 = {f € My ai] f(z) > —1for all z € S"7}.

Let By, be the unit ball of L* norm in M, g,
Boo = {f € Mp o} |f(z)] < Lforall z € S" 1}
It follows that
By = 13\0_/3,1,% n —ﬁ;sn,zk and therefore By, C F;sn,gk.

However, using the Blaschke-Santalé inequality and a theorem of Rogers and
Shephard [11] we can show that, conversely,

( Vol Bs, )1/DM

—— >1/4.
Vol Posy, 25

Therefore, it suffices to derive upper and lower bounds for the volume of B,.
For the lower bound we reduce the proof to bounding the average L* norm

/ [l

where Sy is the unit sphere in M), o and p is the rotation invariant probability

of a polynomial in My, o1,

measure on Sy. The key idea is to estimate ||f||oo using L?? norms for some
large p. An inequality of Barvinok [1] is used to see that taking p = n suffices
for || f]|2p to be within a constant factor of || f||eo. The proof is completed with
some further estimates.

The techniques used for the proof of the upper bound are quite different. Let
V f be the gradient of f € P, o,

af af
Vf= (ﬂﬁ‘;)

and let {Vf, Vf) be the following polynomial giving the squared length of the

199 () s (2L

oz,
The key to the proof is the following theorem of Kellogg [9] which tells us that
for homogeneous polynomials the maximum length of the gradient on the unit

gradient of f,

sphere S™~1 is equal to the maximum absolute value of the polynomial on $™~!
multiplied by the degree of the polynomial:

IV £,V F)llo = 462 f1]%.
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We define a different inner product on P, g which we call the gradient inner
product,
1
=— do.
(9l = gz [ (V1.Vo)do
We denote the norm of f in the gradient metric by ||f||¢ and the unit ball of
the gradient metric in M, oy, by Bg. We observe that

1
111 = g3z [ (V£ da

and hence it follows that
[1fllc <l|fllc and therefore By, C Bg.

The usual L? inner product gives us

1= [ fam

The relationship between the gradient metric and the L? metric can be calcu-
lated precisely by using the fact that both metrics are SO(n)-invariant. There-
fore, these metrics are multiples of each other in the irreducible subspaces of the
SO(n) representation and the multiplication factors can be calculated directly
using the Stokes’ formula [6]. Hence we obtain an upper bound for the volume
of By in terms of the volume of By, the unit ball of the L? metric in M, o.

The proof of the upper bound for the cone of sums of squares is quite similar
to the proof of the lower bound for the cone of nonnegative polynomials. We
define the following norm on P, sy,

— 2
Mlla = e 1454},

where Sp, , is the unit sphere in P, ;. Using inequalities from convexity we can
reduce the proof to bounding the average || f}|sq-
To every form f € P, 2r we can associate a quadratic form Hy on Py, g; by
letting
Hy(g) = (f,g) for g € Pus.
It follows that
[ fllsq = {1 Hfl]oo-

Now we can estimate ||H||o by high L?? norms of Hy and the proof is finished
using similar ideas to the proof for the case of nonnegative polynomials.
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For the remainder of the proofs we will need to consider yet another metric on
Py 2. To aform f € Py 4,

f: Z Caxil...x;"’
a=(i1,...,in)
we formally associate the differential operator Dy:

o g
Dr= 2 cpmaE

a:(’i],...,i")

We define the following metric on P, 25, which we call the differential metric:

(f,9)a = Ds(g).

It is not hard to check that this indeed defines a symmetric positive definite
bilinear form, which is invariant under the action of SO(n). The relationship
between the differential metric and the integral metric can be calculated pre-
cisely.

For the proof of the lower bound for the cone of sums of squares we show that
the dual cone Sq of Sqn 21 With respect to the differential metric is contained
in Sqy 2k. We use this to derive a lower bound on the volume of §(}m2 x Dy using
the Blaschke—-Santalé inequality.

It can be shown that the cone of sums of 2k-th powers of linear forms Lf,, o
is dual to Posy 2y in the differential metric. The proofs of the bounds for the
sums of even powers of linear forms follow from the bounds derived for 13"’03”7%
and the Blaschke—Santal6 inequality.

4. Nonnegative polynomials

In this section we prove the bounds for nonnegative polynomials. Here is the
precise statement of the bounds:

THEOREM 4.1: There are the following bounds on the volume of 1/5(:9",%:

1 ap (Volf?‘o’sn,%)l/DM< ( 2k2 )1/2
24k + 2 —\ VolBy - \224+n

4.1. ProoF oF THE LOWER BOUND. We begin by observing that I/D\an,gk is
a convex body in M, o, with origin in its interior and the boundary of P\O/Snlgk
consists of polynomials with minimum —1 on the unit sphere S"~1. Therefore,
the gauge Gp of I%En,gk is given by

Gp(f) =] min f(v)|.

veSn—1
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By using integration in polar coordinates in M, o5 we obtain the following ex-
pression for the volume of Pos, 24,

Vol Posy g1 \1/Pm B by, 1/Dy
(411) (T()I—BM_> = ( o GP d,U, ,

where i is the rotation invariant probability measure on Sys. The relationship
(4.1.1) holds for any convex body with origin in its interior [14, p. 91].
We interpret the right hand side of (4.1.1) as ||Gp'||p,,, and by Hélder’s
inequality
IGE by 2 11GH -
Thus,

> [ Gp'dp.

Vol Pos 2K\ 1/ Pum
( Sn 2k) 8

Vol By,
By applying Jensen’s inequality [8, p. 150], with convex function y = 1/z it
follows that,

-1
G;ldu > ( Gpdu) .

Sm Sm

Hence we see that

Vol Posp, ok \ 1/ D . -
— TThER > .
( Vol By ) - (/SM |m1nfldu)
Clearly, for all f € Py, o
|| fllco > | min f|.

Vol Posy, a5 \ 1/ Do -
—_—— > .
(o)™ = ([ 1t

The proof of the lower bound of Theorem 4.1 is now completed by the following
estimate.

Therefore,

THEOREM 4.2: Let Sy be the unit sphere in My, o, and let u be the rotation
invariant probability measure on Sp;. Then the following inequality for the
average L* norm over Sy holds:

/S 1 loodit < 2/20 (2% £ 1).

Proof: It was shown by Barvinok in [1] that for all f € P, o,

n+n— 1/2n
(TS Gty B 1T
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It is not hard to see that

_ 1/2n
(Qk";cz 1) < 2ok 1.

Therefore, it suffices to estimate the average L*™ norm, which we denote by A:

A= [ Ufllenda
SMm

Applying Hélder’s inequality we observe that

A= /SM (/Sn—l fzn(x)do)l/%du < (LM /Sn-l fzn(x)dadu) 1/2".

By interchanging the order of integration we obtain

1/2n
(42.1) A< ( / / f2”(a:)dpda> .
Sn—l SM
We now note that by symmetry of My, ok,
| @
Sm

is the same for all z € S™~1. Therefore, we see that in (4.2.1) the outer integral
is redundant and thus

1/2n
(4.2.2) A< (/ f2"(v)du> , where v is any vector in §™!.
Sum

We recall from Section 2 that for v € S™~1 there exists a form ¢, in M such
that

(f @) = f(v) forall fe M and |lgy|l2=+vDum.

Rewriting (4.2.2) we see that

1/2n
(42.3) As( [ <f,qv>2“dp) ‘

We observe that

ng_ 2L+ 3T(3Dm)
(o= ar RS
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since this is the integral on the sphere of 2n-th power of a linear form for which
the formula is standard; see, for example, [1]. We substitute this into (4.2.3) to
obtain

I'(n+ %)F(%DM))I/%

A< ((Dw)r VAT(L Dy + 1)

Since

( L(3Dum) )1/2"< 2 and (F(n+1/2))1/2n<n1/2
T(3Dum +n) - VT

g 1

Dy

we see that
A< (2n)'2

The theorem now follows. [ |

4.2. PROOF OF THE UPPER BOUND. We begln by noting that the orlgm is
the only point in M, ox fixed by SO(n). Let Pos® be the polar of Posn ok In
Mn,?kv

Pos® = {f € My | (f,9) < 1for all g € Posy i}

Since 13:;3”,2;6 is fixed by the action of SO(n) and the Santal6 point of a convex
body is unique, it follows that the origin is the Santalé point of Posnor. We
now use Blaschke-Santalé inequality, which applied to Pos, ok gives us

(Vol Posy, a1,) (Vol Pos) < (Vol By)?.
Therefore, it would suffice to show that

(V0113557>)1/DM 1<2k2+n)1/2
ST 2\ )

(4.2.4) Vol By 2k?

Let By be the unit ball of the L>® metric in My, o1,
Boo = {f € Mn,2k| “f”oo < 1}'
We observe that By, is clearly the intersection of ﬁvosnyzk with —-13\(;;%2]92
By = 13;%,2/9 n —Is&n,zk.
By taking polars it follows that

B2, = ConvexHull{ Pos°, —Pos°} C Pos® & (—Pos°),
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where & denotes Minkowski addition. By the theorem of Rogers and Shephard,
((11] p. 78), it follows that

Vol BS, < <2DM> Vol Pos®.

Dy
Since 5D
( DA”;) < 4Pm,
we obtain o
(e

Combining with (4.2.4) we see that we have reduced the proof of the lower
bound of Theorem 4.1 to showing that

Vol BS \1/Dum 2k 4+ n\1/2
2. 20 >l —
(425) Gz = ()
For a form f we use Vf to denote the gradient of f:
_(9f of
e ()

We also define a different Euclidean metric on P, o; which we call the gradient
metric:

1
(9)o = gz [_ (VF Vahder

We denote the unit ball in this metric by Bg and the norm of f by ||f||c. For
f € Pyax let {(Vf,Vf) be the following polynomial:

(V£,Vf) = (g—xfl)z+-~+ (%)2.

It was shown by Kellogg in [9] that

V£,V )loo = 467|112

It clearly follows that
1fllo 2 Il flle,

and therefore
B, C Bg.

Polarity reverses inclusion and thus we see that

2
B C B, and VolBg = (V\‘;(l)l—%’”),
G
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since Bg is an ellipsoid. Hence we see that
(Vol Bjs)?
VolBg

Thus (4.2.5) and consequently the upper bound of Theorem 4.1 will follow from
the following lemma.

Vol BS, >

LEMMA 4.3: D ) 2
(VolBM) M > (2k +n) .
Vol Bg 2k?
Proof: 1t will suffice to show that for all f € M, ok,
2k2 + n
(4.3.1) (fi e > —55—(f f)-

By the invariance of both inner products under the action of SO(n), it is enough
to prove (4.3.1) in the irreducible components of the representation. From
Section 2, we know that the irreducible components are H, o; for 0 <1 < k,
which have the following form:

Hoo={f€Prokl f = (ac% +-- 4+ x%)k_‘h where h € P, 2 is harmonic}.

First let f be a harmonic form of degree 2d in n variables. It is not hard to
show using Stokes’ formula that

(f’ >~ d (.f’ > G

see [6] p. 488.
Now suppose that f = (z? + --- + 22)*~%h, where & is a harmonic form of
degree 2d < 2k. It is easy to check that

(1o = Tinme + S L.
Since h is harmonic we know that
(i =" hy and (f, ) = (b, .
Thus

2 n—
1.1y = HHA D0

Since f € My, o we know that 1 < d < k. The minimum clearly occurs when
d =1 and we see that

2
(0o > ZE G ).

The lemma now follows. [ |
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5. The differential metric

Before we proceed with the proofs for sums of squares and sums of powers of
linear forms, we will need some preparatory results that involve switching to a
different Euclidean metric on P, 2.

To a form f € P, o,

— E 1 i
f feed Ca$1 ...x’"tl,
a:(ily---yin)

we formally associate the differential operator Dy:

o din
Df= > —

Ca—r
) ozt Oz

a=(1'1,...,i,.

We define the following metric on P, ok, which we call the differential metric:

It is not hard to check that this indeed defines a symmetric positive definite
bilinear form, which is invariant under the action of SO(n). For a point v € $™~!
we will use v2* to denote the polynomial

v?F = (v 4 -+ vazn) .
We also define an important linear operator T: Ppox — P, 2k, which to a
form f € P, o), associates a weighted average of forms v?* with the weight f(v):

7(f)= [ fo)doto)

We take our definition for T from [3]; it can be shown that this operator was
first introduced in a very different form by Reznick in [17]. The operator T acts
as a switch between our standard L? metric and the differential metric in the
following sense:

LEMMA 5.1: The following identity relating the operator T and the two metrics
holds,

(Tf,9)a = (2K)X(f, 9)-

Proof: We observe that

Thga=1 [

Sn

| fkdr),g)a = [ (0 ghado(w)

Sn—1
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Since
(v, g)a = (2k)!g(v),
it follows that
Tra)e= 0! [ f)adot) = QDTG 8
Let L be a full-dimensional cone in P, o such that (z2 + - -+ = ) is in the

interior of L and f gn—1 fdo > 0 for all non-zero f in L. We define L as the set
of all forms f in M, o) such that f + (z% +--- + 22)* lies in L,

L={fe M| f+ @+ +22)k €L}

We let L* be the dual cone of L in the L? metric and L7 be the dual cone of L
in the differential metric:

L*={f € Py okl (f,g) >0forall g € L},
Ly ={f € Ppakl (f,g)a >0forall ge L}.

We observe that (z? + - -+ z2)* is in the interior of both L* and L} and also
i) gn—1 fdo > 0 for all non-zero f in both of the dual cones. Therefore, we can
similarly define L* and L* as sets of all forms f in M such that f+(z2+---+22)*
lies in the respective cone.

LEMMA 5.2: Let L be a full-dimensional cone in P, 3, such that (3 +-- '+x%)k
is the interior of L and f gn—1 fdo > 0 for all f in L. Then there is the following
relationship between the volumes of L* and L},

k! Vol L*\1/Dum k! o
< —d S —

(n/2+ 2k)k = (VolL*) ((n/2+k)k> ’
where

Proof: From Lemma 5.1 we see that
(f,g) >0 ifandonlyif (Tf,g)¢ >0 forall f,g€ Pp,ax.
Therefore, it follows that T maps L* to L},
T(L*) = L}.

It is not hard to show that T' commutes with the natural action of SO(n).
Therefore, after a suitable complexification, Schur’s Lemma [7] tells us that T
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acts by contraction in each irreducible subspace of P, 2. In particular, it follows
that

T((@+- - +a3)") =clal+ - +ap)".

In order to compute ¢, we note that it is enough to compute T{({(z% + - - - + z2)¥)
at a particular point on the unit sphere, say e;. It follows that

c=T((at+ 42 = [ (nen)do(o

_ T(3(3)

2k
= do = .
[, etam VAT (25)

The equality of the second line is standard; see, for example, [1].

Since 1T commutes with the action of SO(n) and fixes (z} +--- + z2)¥, it
follows that it also fixes the orthogonal complement of (z% + - -- + 22)*, which
is the hyperplane of all forms of integral 1 on the sphere. Therefore, %T maps
the section L* to L.

It is possible to describe precisely the action of %T on My 2x; see {3]. From
Schur’s Lemma, it follows that iT is a contraction operator and the exact co-
efficients of contraction can be computed. We only need the following estimate,
which follows from [3] Lemma 7.4 by estimating the change in volume to be at
worst the smallest contraction coefficient:

<Wﬂﬁ)um4>kmw+nm)
Vol L* ~ T(2%k+n/2)’

We observe that

ET(k+n/2) N k!
T'(2k +n/2) = (n/2+ 2k)*’
and therefore .
(Vol L(’;)l/DM k!
Vol L* = (n/2+2k)%

Also, from Lemma 7.4 of [3], it follows that contraction by the largest coefficient
occurs in the space of all harmonic polynomials of degree 2k which has dimension

D _ (RH2E-1) _ (n+2k-3
= 2% 2%-—2 J

Since the dimension of the ambient space M is
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timate that
we can estimate tha DH>1 ( ok — 1 )2

Dy n+2k -2
Since we can also estimate the largest contraction coefficient from above,
KTk +n/2) k!
< )
T2k +n/2) — (n/2+k)*
the lemma now follows. 1

We also show the following lemma, which allows us to compare the cone of
sums of squares to its dual.

LEMMA 5.3: The dual cone Sqj; to the cone of sums of squares in the differential
metric is contained in the cone of sums of squares S¢qn 2k,

Sqy C Sqn,2k-

Proof: In this proof we will work exclusively with the differential metric on
P, i and Py o;. Let W be the space of quadratic forms on P, . For A,Bin W,
with corresponding symmetric matrices M 4, Mg the inner product of A and B
is given by

(A,B) =trMasMp.
For g € P, , let A; be the rank one quadratic form giving the square of the
inner product with ¢:

Ay(p) = (p,q)3

Then for any B € W,
(Aq,B) = B(q).

For f € P, ai, let Hy be the following quadratic form on P, :
Hf(p) = (9*, f)a-

Now suppose that f € Sqj. Then the quadratic form H; is clearly positive
semidefinite. Therefore, Hy can be written as a nonnegative linear combination
of forms of rank 1:

(5.3.1) Hy = ZA‘I for some g € Py 1.

Let V be the subspace of W given by the linear span of the forms Hy for all
f € Py ;. Let P be the operator of orthogonal projection onto V. We claim

that )
2k\
ruag = (%) "t
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-1
It suffices to show that A, — (2:) H 2 is orthogonal to the forms H,.«, since
these forms span V. We observe that

Hoalp) = @R1p(0)* = R0 () )

Therefore, we see that

2k\ 7
(Aq - k qu,HUmc) = Hvzk (q) - (qu,Avk>
= Hya(q) — Hpe(vF) = 0.

Now we apply P to both sides of (5.3.1). It follows that

Hy = P(ZAq> =Y (2:>_1qu = (2:)—1112,,2.

Therefore f is a sum of squares. 1

6. Sums of squares

In this section we prove the bounds for the sums of squares. The full statement
of the bounds is the following,

THEOREM 6.1: There are the following bounds for the volume of ‘%n,2 I

(k)2 nk/2 Vol Sq,, 2 \1/Dw _ 4% (2k)1W2E _,
< ( ) i n .

< -
42k(2k)1v/24 (n/2 + 2k)k = \ Vol By = k

6.1. Proor oF THE UPPER BOUND. Let us begin by considering the support
function of Sgq,, o), which we call Lg:

Lg(f) = gerrslaéka(f, 9)-

The average width Wg;} of 5’7},‘72& is given by

Ws, =2 / L dp.
Sm
We now recall Urysohn’s Inequality [19, p. 318}, which applied to S'En’% gives

Vol %n,2k>l/DM Vs

6.1.1) ( Vol By -2
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Therefore, it suffices to obtain an upper bound for qu.
Let Sp,, denote the unit sphere in P, ;. We observe that extreme points of
Sq have the form

@ -2+ +22)¢ wherege P,; and / g’do = 1.
Sn—1

For f (S Mn,gk,
(f,(wf+-~-+xi)k>:/ fdo =0,

Sn—l
and therefore,
L=(f) = 3.
5 géggfk<f,g )

We now introduce a norm on P, o5, which we denote || ||s,:
2
= max )
1 £lsq geSo I(f, 97

It is clear that
Ls:() < Ifllea
Therefore, by (6.1.1) it follows that

Vol g, 4. /D
(o)™ < [ Wl

The proof of the upper bound of Theorem 6.1 is reduced to the estimate below.

THEOREM 6.2: There is the following bound for the average || ||sq over Sp:

2k 1
[ 18l < B

Proof: For f € P, o1 we introduce a quadratic form Hy on P, :

Hi(g) = (f,¢°) for g€ Pups.

We note that

1fllsq = gégapx Kf’92>] = ||Hf|lco-

We bound ||H || by a high L? norm of Hy. Since Hy is a form of degree 2 on
the vector space P, j of dimension D, 4, it follows by the inequality of Barvinok
in [1] applied in the same way as in the proof of Theorem 4.2 that

|H¢lloo < 2V3||Hf|l2p, -
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Therefore, it suffices to estimate

A= [ WAlao,dn= [ ([
Sm Sm S

We apply Holder’s inequality to see that

A< (/SM /SP ‘(f,gz)w"*da(g)du(f))l/wn'k-

By interchanging the order of integration we obtain

1/2D"‘1C
(f,g2)w"*d0(g)> du(f).

Pn,k

1/2D. &
o2 as([ [ gardunin)
Sp 4/ Sm
Now we observe that the inner integral
[ .oy
Sm

clearly depends only on the length of the projection of g2 into M, 2. Therefore,
we have

/S )P du(f) < [1g2l120n / ()PP r ),

Sm

for any p € Su.
We observe that

llg*/l2 = (llglla)* and [lglla =1.
By a result of Duoandikoetxea [6] Corollary 3 it follows that
llg°Il2 < 475,

Hence we obtain

/S (1.0l f) < 400 [ (g, 2P,

We note that this bound is independent of g and substituting into (6.2.1) we
get

asev( [ ) (. du)) o
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Since p € Sps we have

2Du s I'(Dnx + $)L(3Dm)
SM(L) du(f) = VAT (Do +1D0)

We use the following easy inequalities:

(D) 1/2Dx
(F(—2Ai__) P < 2

Dy i + %DM) - M
and .
[(Dpk + 5)\1/2Dn.
S CLIN Y </
( JT ) < VDo,
to see that

We now recall that

-1 2k —
Dn,k——-(n-}-: ) and DM=(n+ 1)—-1.

2k
Therefore
(2k -
S k
Thus
k
A < 4 (2k)!\/§n-—k/2
k!

Theorem 6.2 now follows. ]

6.2. PROOF OF THE LOWER BOUND. We begin with a corollary of Theorem
6.2. Let By be the unit ball of the norm || ||5,

Bsq = {f € Mp2k] |flsq < 1}-

From Theorem 6.2 we know that

/ 1 leqds <
Sm

It follows in the same way as in Section 3.1 that

42’9(219)!\/ﬂn_,c /2
k! '

(VolBsq)l/DM S k! /2
Vol By T 4k(2k)V24
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Now let 5’7(/10 be the polar of :9\&”‘% in My o4. It follows easily that By, is the
intersection of ./5'710 and —./57;10:
Bsyy=S8¢ Nn-3q .
Let S¢* be the dual cone of S¢y 25 in the integral metric and let Sq be deﬁned

in the same way as for the previous cones. It is not hard to check that S’q is
the negative of Sq :

Sq = -Sq¢-.
Therefore, we see that
Vol Sg*\ /D k! .
2. > ———_pk/?
(6.2.2) (Vol BM) = 2FR)V2A

Now we observe that (z% + --- + z2)* is in the interior of Sgq, 2, and also
for all non-zero f in Sgy 2 we have |, gn—1 fdo > 0. Therefore, we can apply
Lemma 5.2 to Sgp, 2 and it follows that

(VO1§?1§)1/DM .M
Vol Sg* ~ (n/2+2k)%

Combining with (6.2.2) we see that

<VO1§5§)1/DM ) nk/?
Vol By T 42k(2k)1V24 (n/2 + 2k)*

By Lemma 5.3, we know that Sqj in contained in Sgq,, 2; and therefore
Sq; g SQn,2k'

The lower bound of Theorem 6.1 now follows.

7. Sums of 2k-th powers of linear forms

In this section we prove the bounds for sums of powers of linear forms. Here is
the precise statement of the bounds,

THEOREM 7.1: There are the following bounds for the volume of an’%:

E!(2k% 4 n)1/? < (VOIZJ;n,%)l/DM
4k+/2(n/2 + 2k)k ~ \ Vol By

where

n(4k+2)((—n%)a

26—-1 2
~(rms)
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7.1. PROOF OF THE LOWER BOUND. We observe that the cone of sums of
2k-th powers of linear forms is dual to the cone of nonnegative polynomials in
the differential metric,

Lf,, 21 = Posy,

since in the differential metric,
(f,0%)q = (2k)!f(v) for all f € Py,

Therefore, it follows that
Lf, o, = Pos}.

We first consider the dual cone Pos* of Posy, o in the integral metric. Similarly
to the situation with the cone of sums of squares, it is not hard to check that

—~—0 — —
the dual Pos of Posy, o in M, o with respect to the integral metric is —Pos

— O —
Pos = —Pos .

We recall that in Section 4.2 we have shown (4.2.4):

()™ 235"

Since Posn ok has (z2 + - + z2)¥ in its interior and [g,_, fdo > 0 for all
non-zero f in Posy ok, we can apply Lemma 5.2 to Posy 21 and obtain

(Vollgzs;)l/DM N k!
Vol Pos” = (n/2+42k)F

Since L~fn,2k = 13\6?9:; and Pos = —Pos we can combine with (4.2.4) and get

(V01L~fn’2k)l/DM k' (2k% +n)1/2

Vol B = 4kv2 (n/2+ 2k)%

7.2. Proor oF THE UrPPER BOUND. We begin by applying the Blaschke-
Santal6 inequality to Pos, 2 as in Section 3.2 to obtain

Vol Posy, o1 Vol Pos. §
(VOI By )2 -

0 Kk
Since Pos = —Pos we can rewrite this to get

(Voll?éjs*)l/DM < (VVolBM )I/DM‘

Vol By ol Posn an



Vol. 153, 2006 MORE NONNEGATIVE POLYNOMIALS THAN SUMS OF SQUARES 379

We observe that by the lower bound of Theorem 4.1 it follows that

(7.1.1) (VOI Pos® )UDM < 24/n(k + 2).

Vol BM

Now we apply the upper bound of Lemma 5.2 to Posy2x and get

Vol Pos\1/Du Ko\
G =G

where

The upper bound now follows by combining with (7.1.1).
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