
ISRAEL JOURNAL OF MATHEMATICS 1511 (2006), 355-380 

THERE ARE SIGNIFICANTLY MORE NONNEGATIVE 
POLYNOMIALS THAN SUMS OF SQUARES 

BY 

G R I G O R I Y  B L E K H E R M A N  

Department of Mathematics, University of Michigan 
Ann Arbor, MI 38109-1109, USA 

e-mail: gblekher@umich.edu 

ABSTRACT 

We s tudy the  quant i ta t ive  relat ionship between the  cones of nonnegat ive 

polynomials ,  cones of sums of squares and cones of sums of even powers 

of linear forms. We derive bounds  on the  volumes (raised to the  power 

reciprocal to the  ambient  dimension) of compact  sections of the three 

cones. We show tha t  the  bounds  are asymptot ical ly  exact if the  degree 

is fixed and number  of variables tends  to infinity. W h e n  the  degree is 

larger than  two, it follows tha t  there  are significantly more  nonnegat ive 

polynomials  than  sums of squares and there  are significantly more  sums of 

squares than  sums of even powers of linear forms. Moreover, we quantify 

the exact discrepancy between the  cones; from our bounds  it follows tha t  

the  discrepancy grows as the  number  of variables increases. 

1. I n t r o d u c t i o n  

The question of whether nonnegative polynomials admit some sum of squares 

representation has been of much interest in real algebraic geometry. The in- 

vestigation was begun by Hilbert, who identified all pairs (n, 2k), with n the 

number of variables and 2k the degree, where any nonnegative polynomial can 

be written as a sum of squares of polynomials (sos). Hilbert's theorem states 

that this is the case if the polynomial p is univariate, p is of degree 2, or p is a 

polynomial in two variables of degree 4. Moreover, in all other cases there exist 

nonnegative polynomials that are not sos. Hilbert's proof was nonconstructive 

and he did not exhibit explicit polynomials with this property [18]. 
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The next step was Hilbert 's 17th problem which asked whether a nonnegative 

polynomial is necessarily a sum of squares of rational functions. It was solved in 

the affirmative by Artin, leading to the creation of Artin-Schreier theory of real 

closed fields. However, this representation is not efficiently computable. One of 

the reasons is that  we may be forced to use rational functions with denominators 

of a very large degree [15]. 

The first explicit nonnegative polynomials that  are not sos were constructed 

by Motzkin. Since then several more families of such polynomials have been 

found, but overall the list of explicit examples is very short. All of the known 

nonnegative polynomials that  are not sos seem to lie either on the boundary of 

the cone of nonnegative polynomials or close to it [5], [18]. 

In this paper we investigate the quantitative relationship between nonnegative 

polynomials, sums of squares of polynomials and sums of even powers of linear 

forms. We show that,  for a fixed degree greater than 2, there are significantly 

more nonnegative polynomials than sums of squares and there are significantly 

more sums of squares than sums of even powers of linear forms. Moreover, 

we derive tight asymptotic bounds on the size of these sets as the number of 

variables grows. The bounds allow us to see the precise quantitative relationship 

between these sets. It should be noted that  our methods do not yield a way to 

generate examples of nonnegative polynomials that  are not sos. 

These results can be viewed as a quantitative version of Hilbert's theorem. 

They also have some computational ramifications. It is NP-hard to decide 

whether a polynomial is nonnegative [4]. Moreover, there are no practical al- 

gorithms for this problem. However, semidefinite programming can be used 

to decide whether a polynomial is sos, and testing for sos is practically efficient 

[12]. It has been suggested therefore to substitute testing for nonnegativity with 

testing for sos [13]. However, since there are much fewer sums of squares than 

nonnegative polynomials, in general this does not work well. 

We now introduce some notation to state our results precisely. Let Pn,2k 
be the vector space of homogeneous polynomials in n variables of degree 2k. 

We observe that  a nonnegative polynomial can be homogenized without losing 

its nonnegativity and therefore we deal with the homogeneous case. The main 

subject of this paper are the following three convex cones in P,~,2k: 

The cone of nonnegative polynomials POSn,2k, 

Posn,2k = {p E Pn,2kl p(x) >_ 0 for all x E I~ n }. 
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The cone of sums of squares Sqn,2k, 

Sqn,2k = {p • Pn,2k I P = ~ P~ for some p~ • Pn,k }. 
i 

The cone of sums of 2k-th powers of linear forms Lf~,2k, 

l? k for some linear forms li • Pn,1 }. Lfn,2k = {P • P~,2kI P = z..., 
i 

The cones Pos~,2k, Sq~,2k and Lf~,2k are closed, full-dimensional convex cones 

in Pn,2k. There is an obvious inclusion relationship, 

Lfn,2k C_ Sqn,2k C Pos~,2k. 

In order to compare the relative size of these cones, we take compact  sections 

of these cones with a hyperplane. Let Ln,2k be the hyperplane of polynomials 

of average 1 on the unit sphere S n - l :  

Ln,2k = { P E  Pn,2k fS,~_lPda = l } ,  

where a is the rotat ion invariant probabili ty measure on S •-1. Let Postn,2k, 
Sq~n,2k and L]~,2 k be the sections of the respective cones with Ln,2k: 

I t ! POSn,2k = POSn,2k CI Ln,2k, Sqn,2 k = Sqn,2k A Ln,2k and Lf~,2 k = Lfn,2k N Ln,2k. 

These convex bodies are compact  full-dimensional sets in Ln,2k. 

For technical reasons we prefer to translate PoS'n,2k , Sq'~,2k and Lf~,2 k by 

subtracting (x~ + . . .  + X2n) k so that  polynomials have average 0 on the unit 

sphere S n-1. We let Mn,2k denote the hyperplane of polynomials of average 0 

on S n-1. Let POSn,2k, Sqn,2k and Lfn,2 k be the respective translations: 

Po~s~,2k = {p e Mn,2k[ P + (x~ + . . .  + x~) k • Pos',2k}, 

Sqn,2k ---- {p • Mn,2kl p + (x 2 + " "  + X2n) k • Sqtn,2k}, 

= { p c  M ,2kl p + + . . . +  k • L f % } .  

There is the following natural  L 2 inner product  in Pn,2k: 

(f,  g) = f fgda. 
Js n - - 1  

We use DM to denote the dimension of M~,2k, SM to denote the unit sphere in 

M~,2k and BM to denote the unit ball in M~,2k. 
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We would like to measure the respective sizes of POSn,2k, Sqn,2k and Lf~,2k. 
For a compact convex set K ,  a good measure of size of K that  takes into account 

the effect of large dimensions is the volume of K raised to the power reciprocal 

to the ambient dimension: 

(VolK)I/dimK 

For example, homothetically expanding K by a constant factor leads to an 

increase by the same factor in this normed volume. 

We now state the main theorem of this paper: 

THEOREM 1.1: There exist positive constants Cl(k), c2 (k), C 3 (k) ,  c4(k ) ,  c 5 (k), 
c6(k) dependent on k only, such that for any ~ > 0 and all n sumciently large 

(Vol Pos.,~k ~ 1/DM C1 n-1/2 ~__\ ~ ] ~-- C2 n-1/2, 

(Vol Sqn,: k ~ 1/Du c3n -k/~ <_\ ~ ] <-c4n-k/2, 

( V°lLfn,2k ~ 1/DM c6n-k+l/2+e chn -k+1/2 <\  ~ ] <- 

We observe that  if the degree 2k is 2, then Hilbert 's theorem tells us that  

all three convex bodies Posn,2k, Sqn,2k and Lfn,2k are the same and indeed 

Theorem 1.1 gives us the same asymptotic behavior of volumes. However, if the 

degree is at least 4 then we see that  the asymptotics are different and it follows 

that  there are significantly more nonnegative polynomials than sums of squares 

and significantly more sums of squares than sums of even powers of linear forms. 

Theorem 1.1 consists of six bounds and we would like to point out the re- 

lationship between them. The lower bound for POSn,2k and the upper bound 

for Sqn,2 k are derived using similar techniques. For a generalization of these 

techniques and applications to other convex objects we refer to [2]. The upper 

bound for Posn,2k is derived using a different approach, involving an analytic 

inequality of Kellogg on the length of the gradient of a homogeneous polyno- 

mial [9]. The cone of sums of powers of linear forms can be identified with the 

dual cone of the cone of nonnegative polynomial. The lower bound for Lfn,~ k is 

derived from the upper bound for PoSn,2k using the Blaschke-Santal6 inequal- 

ity from convexity. The remaining bounds are also proved using duality and 

convexity inequalities. 

We will often omit the subscript n, 2k from Posn,2k, Mn,2k and the like when 

the subscript is clear from the context. 
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The rest of the paper is structured as follows. In Section 2 we lay out some 

results from convexity and representation theory that  will be useful throughout 

this paper. In Section 3 we give an informal outline of the proofs. In Section 4 

we prove the bounds for nonnegative polynomials. In Section 5 we prove some 

results that  will help us derive bounds using duality. In Section 6 we prove the 

bounds for sums of squares. In Section 7 we prove the bounds for sums of even 

powers of linear forms. 

2. Prel iminaries  

For a real Euclidean vector space V with the unit sphere Sv and a function 

f :  V --+ R, we use I]fllp to denote the L p norm of f :  

Ilfllp = IflPd, and Ilfll~ = max If(x)l. 
v x6Sv 

For a convex body /( with origin in its interior the gauge GK of K, also 

known as the norm of K, is a function that measures at a point v how much K 

needs to be expanded to put v into it: 

GK: V --~ ~, GK(V) = minimal, A > 0 such that  Av 6 K. 

2.1. THE ACTION OF THE ORTHOGONAL GROUP ON Pn,2k. The special 

orthogonal group SO(n) acts on Pn,2k by rotating the coordinates, 

A • SO(n) sends f • Pn,2k to A / = / ( A - i x ) .  

We observe that  the cones POSn,2k, Sqn,2k and Lfn,2k are invariant under this 

action and so is Mn,2k , the hyperplane of polynomials of average 0 on the unit 

sphere S n-1. Therefore, the sections Posn,2k, Sqn,2k and L/n,2 k are fixed by 

SO(n) as well. 

Let A be the Laplace differential operator: 

02 02 

A form f such that  

A( f )  = 0 

is called h a r m o n i c .  We will need the fact that  the irreducible components of 

this representation are subspaces Hn,2L for 0 < 1 < k, which have the following 

form: 

_2 ~k-tL where h 6 P,~m is harmonic).  Hn,21 = { f  • Pn,2kl f = (x~ + . . .  + xn) u 
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For v E Rn, the functional 

Mn, k  v(f) : f(v),  

is linear and therefore there exists a form qv E M such that  

Av ( f )  = (qv, f}.  

There are explicit descriptions of the polynomials qv; under a suitable nor- 

malization they are the so-called Gegenbauer or ultraspherical polynomials. We 

will only need the property that  for v E S n- l ,  

IIq, ll2 = Dv/D--£, 

For more details on this representation of SO(n)  see [20]. 

2.2. THE BLASCHKE-SANTALO INEQUALITY. Here we introduce an inequal- 

ity from convexity that  allows us to interpolate between volume bounds for a 

convex body and its polar. Let K be a full-dimensional convex body in ll~ n with 

the origin in its interior and let (,) be an inner product. We will use K ° to 

denote the polar of K,  

K ° = {x E l~nl (x,y) _< 1 for all y E K}. 

Now suppose that  a point z is in the interior of K and let K z be the polar of 

K when z is translated to the origin: 

K z = {x E l~nl ( x -  z , y -  z) _< 1 for all y E K}. 

The point z at which the volume of K :  is minimal is unique and it is called the 

Santal6 point of K.  Moreover, the following inequality on volumes of K and 

K z holds: 
Vol K Vol K z 

(Vol B) 2 _< 1, 

where B is the unit ball of (,) and z is the Santald point of K.  This is known 

as the Blaschke-Santal6 inequality [10]. 

3. Outline of proofs 

Since many of the following proofs are technical we would like to first give an 

informal outline. 

We begin with the description of the proofs for the cone of nonnegative poly- 

nomials. We observe that  Posn,2k is the convex body of forms of integral 0 on 
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S n-:, such that the minimum of the forms on the unit sphere S n-1 is at least 

--1, 

Po"-VSn,2k = { f  E Mn,2kl f (x)  ~> --1 for all x • sn-1}.  

Let Boo be the unit ball of L °° norm in Mn,2k, 

Boo = { f  • Mn,2kl If(x)l _< 1 for all x • Sn-1}. 

It follows that 

Boo = POSn,2k N --POSn,2k and therefore Boo C Posn,2k. 

However, using the Blaschke-Santal6 inequality and a theorem of Rogers and 

Shephard [11] we can show that, conversely, 

(. 
Vol ~OSn,2k / >_ 1/4. 

Therefore, it suffices to derive upper and lower bounds for the volume of Boo. 

For the lower bound we reduce the proof to bounding the average L °° norm 

of a polynomial in M~,2k, 

sM Ilfllood~, 

where SM is the unit sphere in Mn,2k and # is the rotation invariant probability 

measure on SM. The key idea is to estimate IIflloo using L 2p norms for some 

large p. An inequality of Barvinok [1] is used to see that taking p = n suffices 

for Ilfll2p to be within a constant factor of IIflloo. The proof is completed with 
some further estimates. 

The techniques used for the proof of the upper bound are quite different. Let 

V f  be the gradient of f • P~,2k, 

,. • . , 

and let (Vf, V f)  be the following polynomial giving the squared length of the 

gradient of f ,  

(Vf, Vf )  = ~ O X l :  + " +  ~,OXn: " 

The key to the proof is the following theorem of Kellogg [9] which tells us that 

for homogeneous polynomials the maximum length of the gradient on the unit 

sphere S ~-: is equal to the maximum absolute value of the polynomial on S ~-1 

multiplied by the degree of the polynomial: 

II(Vf, Vf)ll~ : 4k2llfIl~, 
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We define a different inner product on Pn,2k which we call the gradient inner 

product, 

<f, g>o = 4k 2 ,,-~ (V f, Vg>da. 

We denote the norm of f in the gradient metric by [Iflla and the unit ball of 

the gradient metric in Mn,2k by BG. We observe that 

Ilfll~ -- ~ ,,-,(V f' V f>d':r' 

and hence it follows that 

IlflLc ~ Ilflloo and therefore Boo C BG. 

The usual L 2 inner product gives us 

Ilfll~ = L,,-~ f2d°  

The relationship between the gradient metric and the L 2 metric can be calcu- 

lated precisely by using the fact that both metrics are SO(n)-invariant. There- 

fore, these metrics are multiples of each other in the irreducible subspaces of the 

SO(n) representation and the multiplication factors can be calculated directly 

using the Stokes' formula [6]. Hence we obtain an upper bound for the volume 

of Boo in terms of the volume of BM, the unit ball of the L 2 metric in M,~,2~. 

The proof of the upper bound for the cone of sums of squares is quite similar 

to the proof of the lower bound for the cone of nonnegative polynomials. We 

define the following norm on Pn,2k, 

llfll q= max l(f, g2)l, 
g6Spn, k 

where Sp=,~ is the unit sphere in Pn,k. Using inequalities from convexity we can 
reduce the proof to bounding the average llf{Isq. 

To every form f 6 Pn,2k w e  can associate a quadratic form H f o n  Pn,2k by 

letting 

Hi(g ) = (f, g2) for g 6 Pn,k. 

It follows that 

Ilfllsq = IIHllloo. 

Now we can estimate IIHflloo by high L 2p norms of H / a n d  the proof is finished 

using similar ideas to the proof for the case of nonnegative polynomials. 
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For the remainder of the proofs we will need to consider yet another metric on 

Pn,2k. To a form f E Pn,2k, 

• i n  S= Z 1 .xn , 

we formally associate the differential operator Dr: 

D$ = Z C~ Ox~ ""Oxen" 
a=(i~,...,i~) 

We define the following metric on Pn,2k, which we call the differential metric: 

(],g)d = DI(g). 

It is not hard to check that this indeed defines a symmetric positive definite 

bilinear form, which is invariant under the action of SO(n). The relationship 

between the differential metric and the integral metric can be calculated pre- 

cisely. 

For the proof of the lower bound for the cone of sums of squares we show that 

the dual cone Sq~ of Sq~,2k with respect to the differential metric is contained 

in Sqn,2k. We use this to derive a lower bound on the volume of Sqn,2 k by using 

the Blaschke-Santald inequality. 

It can be shown that the cone of sums of 2k-th powers of linear forms Lfn,2k 
is dual to Posn,2k in the differential metric. The proofs of the bounds for the 

sums of even powers of linear forms follow from the bounds derived for Posn,2k 
and the Blaschke-Santal5 inequality. 

4. Nonnega t ive  polynomia ls  

In this section we prove the bounds for nonnegative polynomials. Here is the 

precise statement of the bounds: 

THEOREM 4.1: There are the following bounds on the volume of PoSn,2k: 

1 n-1/2 < (VolPosn'2k"tl/DM < 4 (  2k2 -~1/2 

2~/4k+2 - \ VolBM / - \ 2 k ~ n /  

4.1. PROOF OF THE LOWER BOUND. We begin by observing that  Posn,2k is 

a convex body in Mn,2k with origin in its interior and the boundary of Posn,2k 
consists of polynomials with minimum - 1  on the unit sphere S "-1. Therefore, 

the gauge Gp of Posn,2k is given by 

Gp(f)=l  min f(v)l. vCS,~-I 
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By using integration in polar coordinates in Mn,2k we obtain the following ex- 
pression for the volume of Posn,2k, 

(Vol PO~Sn 2k ) 1/DM ( [  ~ k 1/DM 
(4.1.1) \ ~ ¢ ~  = \ j s M  c~DMd#] , 

where # is the rotation invariant probability measure on SM. The relationship 
(4.1.1) holds for any convex body with origin in its interior [14, p. 91]. 

We interpret the right hand side of (4.1.1) as [IGpIIIDM, and by H61der's 
inequality 

IIG~IIIDM _> lla~ll[1. 

Thus, 
(VolPosn,2k 1 / D M  

\ VolBM ) >fs~t GPldI'~" 

By applying Jensen's inequality [8, p. 150], with convex function y = 1/x it 
follows that, 

fsM Gpldp >-- ( /s~ Gpd.) -1 
Hence we see that 

(Vol Posn,2k ~ 1/DM _ f[dp) 
k Vdiol~--~M / >( f sM Imin 

Clearly, for all f E P~,2k 
Ilfll~ _> I min f[ • 

Therefore, 
(Vol Posn,2k ) 1/DM 
\ VO-i--B-MM >-- (fsM '[fl'~d#) 

The proof of the lower bound of Theorem 4.1 is now completed by the following 
estimate. 

THEOREM 4.2: Let SM be the unit sphere in M~,2k and let I~ be the rotation 
invariant probability measure on SM. Then the following inequality for the 
average L ~ norm over SM holds: 

fs  [If}l~d~t <_ + 2x/2n(2k 1). 
M 

Proof: It was shown by Barvinok in [1] that for all f E Pn,2k, 

2kn + n - 1) 1/2r, 
tIfl[oo (_ \ 2kn lIf[12n. 
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It is not hard to see that  

2 k n + n - 1 )  1/2n < 2 x / ~ +  1. 

2kn 

Therefore, it suffices to estimate the average L 2n norm, which we denote by A: 

A =  [ IIfll2~d~. 
.is M 

Applying HSlder's inequality we observe that  

\ 1/2~ \ 1/2~ 

A=L.(f.°_ '"(')" ) . 

By interchanging the order of integration we obtain 

(4:2.1) A <_ ( fs,,_l LM f2n(x)dpda) 1/2n 

We now note that  by symmetry of Mn,2k, 

L M f2n(x)d# 

is the same for all x E S u-1. Therefore, we see that  in (4.2.1) the outer integral 

is redundant and thus 

(~S / \ l /2n 
(4.2.2) A < f2n(v)dl.t~ , where v is any vector in S n-1. 

M 

We recall from Section 2 that  for v E S n-1 there exists a form qv in M such 

that  

(f, qv) = f(v) for all f • M and ]lqvl]2 = V/-~U • 

Rewriting (4.2.2) we see that  

\ 1/2~ 

A<_ (~ (f, qv)"d#) • (4.2.3) 

We observe that  

(DM)nF(n 1 1 f s  + g)F(7DM) M (f'qv)2nd# = X/~F(1DM + n) ' 
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since this is the integral on the sphere of 2n-th power of a linear form for which 

the formula is standard; see, for example, [1]. We substitute this into (4.2.3) to 

obtain 
~)F(~ D M ) I  1 / 1/2~. A ~ [ k(DM)nF(n+ 

v~r(½DM + n) J 

Since 

r(½DM + n)J 

we see that 

V• F(n + l l2 )~  1/2~ < nl/2, 
and ( y ~  ] _ 

A _< (2n) 1/2. 

The theorem now follows. | 

4.2. PROOF OF THE UPPER BOUND. We begin by noting that the origin is 

the only point in Mn,2k fixed by SO(n).  Let Pos ° be the polar of POSn,2k in 

Mn,2k, 
Pos ° = { f  E Mn,2kl ( f ,g)  _< 1 for all g E Posn,2k}. 

Since Posn,2k is fixed by the action of SO(n) and the Santal6 point of a convex 
body is unique, it follows that the origin is the Santal5 point of POSn,2k. We 
now use Blaschke-Santal6 inequality, which applied to Posn,2k gives us 

(Vol Po~sn,2k)(Vol Pos "-'-~) <_ (Vol BM) 2 . 

Therefore, it would suffice to show that 

(Vol Pos ° ~ 1/D• 1 ( + n )  1/2 2k 2 
(4.2.4) \ VO~M / > 4 \ 

- 2k 2 

Let Boo be the unit ball of the Loo metric in Mn,2k, 

Boo = { f  • Mn,2k[ []f[]oo _< 1}. 

We observe that Boo is clearly the intersection of POSn,2k with --Posn,2k: 

Boo = Posn,2k N -Posn,2k. 

By taking polars it follows that 

O Boo = ConvexHull{Pos °, - P o s  °} C Pos ° • ( -Pos° ) ,  
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where $ denotes Minkowski addition. By the theorem of Rogers and Shephard, 
([ll]  p. 78), it follows that 

Since 

we obtain 
hl 

Vol Pos0 1 ( Val B& ) ' I D M  > -' 4 

Combining with (4.2.4) we see that we have reduced the proof of the lower 
bound of Theorem 4.1 to showing that 

For a form f we use V f to denote the gradient of f :  

We also define a different Euclidean metric on Pn,2,, which we call the gradient 
metric: 

We denote the unit ball in this metric by BG and the norm of f by 1 1  f llG. For 

f E Pn,2k let (V f ,  V f )  be the following polynomial: 

It  was shown by Kellogg in [9] that 

It clearly follows that 

l l f  2 / I f  1 1 ~ 1  
and therefore 

B,  s BG. 

Polarity reverses inclusion and thus we see that 

(Vol B M ) ~  
B; B& and Vol BE = 

Vol BG ' 
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since BG is an ellipsoid. Hence we see that  

(Vol BM) 2 
Vol > 

Vol Ba 

Thus (4.2.5) and consequently the upper bound of Theorem 4.1 will follow from 

the following lemma. 

LEMMA 4.3: 

Proof: It will suffice to show that  for all f E M~,2k, 

2k 2 + n 
(4.3.1) ( f , f ) a  >_ 2k 2 ( f , f ) .  

By the invariance of both inner products under the action of SO(n) ,  it is enough 

to prove (4.3.1) in the irreducible components of the representation. From 

Section 2, we know that  the irreducible components are H,~,2l for 0 < l < k, 

which have the following form: 

_.2 ~k-11_ H~,21 = { f  E Pn,2kl f = (x~ + " "  + xn) re where h E Pn,~L is harmonic}. 

First let f be a harmonic form of degree 2d in n variables. It is not hard to 

show using Stokes' formula that  

2d 
( f , f )  

I £ £ \  

4 d + n -  2 U ' J / a ;  

see [6] p. 488. 

Now suppose that  f = (x~ + -.. + x 2~j]k-dh, where h is a harmonic form of 

degree 2d <_ 2k. It is easy to check that  

k2 _ d 2 
( f , f ) a  = (h ,h)a  + ----~---(h,h) .  

Since h is harmonic we know that  

( h , h ) a - 4 4 + n - 2 ( h , h )  and (f, f )  = (h, h). 
2d 

Thus 
2k 2 + d(n - 2) + 2 ~  

(1, ] )v  = 2k 2 (1, f ) .  

Since f E Mn,2k we know that  1 _< d < k. The minimum clearly occurs when 

d --- 1 and we see that  
(f, f ) a  _ > 2k2 + 

2k ( f , / ) .  
The lemma now follows. | 
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5. T h e  d i f f e ren t i a l  m e t r i c  

Before we proceed with the proofs for sums of squares and sums of powers of 

linear forms, we will need some preparatory results that  involve switching to a 

different Euclidean metric on Pn,2k. 
To a form f 6 Pn,2k, 

f =  ~ c,~x~ 1" ~,~ " ' X  n , 

a=(il ,...,i,~) 

we formally associate the differential operator DI:  

Oi~ Oio 
---------r-- . . . .  DS = E cC~ ox~l ~xi~ " 

~ - - - - ( i l , - . . , i n )  v n 

We define the following metric on P~,2k, which we call the differential metric: 

(f,g>d = Dy(g). 

It is not hard to check that  this indeed defines a symmetric positive definite 

bilinear form, which is invaxiant under the action of SO(n). For a point v 6 S n-1 
we will use v 2k to denote the polynomial 

V 2k ~-- (VlXl - I - ' ' "  -t- VnXn) 2k. 

We also define an important  linear operator T: Pn,2k ~ Pn,2k, which to a 

form f 6 Pn,2k associates a weighted average of forms v 2k with the weight f (v) :  

T( f )  = fs . -~ f(v)v2kda(v)" 

We take our definition for T from [3]; it can be shown that  this operator was 

first introduced in a very different form by Reznick in [17]. The operator T acts 

as a switch between our standard L 2 metric and the differential metric in the 

following sense: 

LEMMA 5.1: The following identity relating the operator T and the two metrics 
holds, 

(Tf,  g)d = (2k)!(f,g). 

Proof." We observe that  

(Tf ,  g>d = (~,~_~ f(v)v2kd°'(v),g)d = ~,~_ (f(v)v2k,g)dda(v). 
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(T f, = (2k)! fs . - ,  f (v)g(v)da(v)  = (2k)!{f,g). II 

Let L be a full-dimensional cone in Pn,2k such that  (x~ + " "  + x2) k is in the 

interior of L and fs~_l f d a  > 0 for all non-zero f in L. We define L as the set 

of all forms f in Mn,2k such that  f + (x~ + . . .  + X2n) k lies in L, 

= {]  e Mn,2k[ f + (x 2 + " "  + x2n) k • L}. 

We let L* be the dual cone of L in the L 2 metric and L} be the dual cone of L 

in the differential metric: 

L* = { f  • Pn,2k[ ( f ,g} > 0 for all g • n}, 

n*d = { f  • Pn,2kt (f ,g}d >_ 0 for all g • L}. 

We observe that  (x21 + . . .  + x2n) k is in the interior of both L* and L~ and also 

fs ,_1 f d a  > 0 for all non-zero f in both of the dual cones. Therefore, we can 

similarly define L* and L d as sets of all forms f in M such that  f+(x~+.. .+X2n) ~ 

lies in the respective cone. 

LEMMA 5.2: Let L be a full-dimensional cone in Pn,2k such that (x~ + . . . + x ~ )  k 

is the interior of  L and fs~-~ f d a  > 0 for all f in L. Then there is the following 
relationship between the volumes of  L* and Ld, 

where 
( 2 k - 1  / ~ 

a = l -  2 k + n - 2  " 

Prom Lemma 5.1 we see that  Proof'. 

{f,g} >_ 0 if and only if (T f ,  g)d >_ 0 

Therefore, it follows that  T maps L* to L~, 

T(L*) = L* d. 

for all f ,  g E P,~,2k. 

It is not hard to show that  T commutes with the natural action of SO(n).  
Therefore, after a suitable complexification, Schur's Lemma [7] tells us that  T 
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acts by contraction in each irreducible subspace of Pn,2k. In particular, it follows 

that 
2 k T((x  + . . .  + k) = c(x  + . . .  + . 

In order to compute c, we note that it is enough to compute T((x~ + . . .  + x~) k) 

at a particular point on the unit sphere, say el. It follows that 

~k  fS c = T((x~ + . . .  + x~) )(el) ---- (X, el}2kd(T(x) 
n - 1  

= x~kd a r (  ~ )F(7 ) 
o _ 1  - " 

The equality of the second line is standard; see, for example, [1]. 

Since !T  commutes with the action of SO(n )  and fixes (x~ + ...  + x 2 ~k it 
C n /  ' 

follows that it also fixes the orthogonal complement of (x 2 + ...  + x 2 ~k which 
n /  , 

is the hyperplane of all forms of integral 1 on the sphere. Therefore, ~T maps 

the section L* to L d. 

It is possible to describe precisely the action of ~T on Mn,2k; see [3]. From 

Schur's Lemma, it follows that lcT is a contraction operator and the exact co- 

efficients of contraction can be computed. We only need the following estimate, 

which follows from [3] Lemma 7.4 by estimating the change in volume to be at 

worst the smallest contraction coefficient: 

We observe that 

and therefore 

/Vol L~ ~'/D~ k!F(k + n /2 )  

' ' ,VolL.J  - F ( 2 k + n / 2 )  

k ! r ( k  + n /2 )  k! 

I'(2k + n /2 )  > (n /2  + 2k) k' 

(VolL*d')I/DM > k! 

~Vol L. j - ( n / 2 + 2 k ) k "  

Also, from Lemma 7.4 of [3], it follows that contraction by the largest coefficient 

occurs in the space of all harmonic polynomials of degree 2k which has dimension 

DH =- 2k - 2k - 2 " 

Since the dimension of the ambient space M is 

n + 2k - 1 / 
DM = \ 2k - 1, 
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we can estimate that 
D H > i _  ( 2 k - 1  )~ 
DM - n + 2 k -  2 " 

Since we can also estimate the largest contraction coefficient from above, 

k!V(k + n/2) k! 
r(2k + n/2) <- (n/2 + k) k ' 

the lemma now follows. | 

We also show the following lemma, which allows us to compare the cone of 

sums of squares to its dual. 

LEMMA 5.3: The dual cone Sq~ to the cone of sums of squares in the differential 

metric is contained in the cone of sums of squares Sqn,2a, 

Sq~ c_ Sqn,2a. 

Proof." In this proof we will work exclusively with the differential metric on 

Pn,a and Pn,2a. Let W be the space of quadratic forms on Pn,a. For A, B in W, 

with corresponding symmetric matrices MA, MB the inner product of A and B 

is given by 

(A, B) = tr MAMB. 

For q E Pn,k, let Aq be the rank one quadratic form giving the square of the 
inner product with q: 

Aq(p) = <p, q)2 d. 

Then for any B E W, 

(Aq, B) = B(q). 

For f E Pn,2k, let Hf  be the following quadratic form on Pn,k: 

Hf(p) = (p2, f)d. 

Now suppose that f E Sq~. Then the quadratic form Hf is clearly positive 

semidefinite. Therefore, Hf  can be written as a nonnegative linear combination 

of forms of rank 1: 

(5.3.1) Hf  = Z Aq for some q e P~,k. 

Let V be the subspace of W given by the linear span of the forms Hf for all 

f C Pn,2k. Let F be the operator of orthogonal projection onto V. We claim 

that 
( 2 : ) - 1  

]P(Aq) -- Hq2. 
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It suffices to show that Aq - (k k) -1Hq2 is orthogonal to the forms Hv2~, since 

these forms span V. We observe that 

H,,2k (p) = (2k)!p(v) 2k - 

Therefore, we see that 

(2k)!Avk(P) (k!) 2 - ( 2 : )  A~k (p)" 

(2:)' 
(Aq - Uq2, U,,2~) = H,:~ (q) - (Hq2, A,k) 

= Hv:k(q ) - Hq2(V k) = O. 

Now we apply ~ to both sides of (5.3.1). It follows that 

( ~ )  (2 : )  -1 (2k) -1 
Hf = ]~ Aq = E Hq2 = H E q2. 

Therefore f is a sum of squares. | 

6. Sums of squares  

In this section we prove the bounds for the sums of squares. The full statement 

of the bounds is the following, 

THEOREM 6.1: There are the following bounds for the volume of Sqn,2k: 

(k!) 2 n k/2 <__ (VolSq,~,2k ~ 1/DM ~__ 42k(2k)[v~n_k/2 
42k(2k)!x/~-4 (n/2 + 2k) k \ VolBM ] k! 

6.1. PROOF OF THE UPPER BOUND. Let us begin by considering the support 

function of Sqn,2k, which we call L~q: 

L~q(f) = max (f ,g).  
gE~qn,2k 

The average width W~q of Sqn,2 k is given by 

W~q = 2 ~ L~d#. 
M 

We now recall Urysohn's Inequality [19, p. 318], which applied to Sqn,2k gives 

(VolSqn,2 k ~ 1/DM ~-- W~q 
(6.1.1) 

h-- M J 2 
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Therefore, it suffices to obtain an upper bound for W~q. 

Let Sp~, k denote the unit sphere in Pink. We observe that  extreme points of 

Sq have the form 

g2 - (x~ + - . .  + ~)~ 

For f 6 Mn,2k, 

and therefore, 

where g 6 Pn,k and fs,,- ~ g2 da = 1. 

<f , (x~ +. . .  + x2n) k) --- IS"-1 f da = O, 

n~(f)----- max <f, g2). 
g6Spn, k 

We now introduce a norm on Pn,2k, which we denote II [Isq: 

Ilfll~q= max ](f, g2>l. 
g6SPn,k 

It is clear that  

L~q(f) <_ Ilfllsq. 

Therefore, by (6.1.1) it follows that  

(Vol Sqn,: k ~ X/DM f < IEf l l~d . .  
\ ~ "/ JsM 

The proof of the upper bound of Theorem 6.1 is reduced to the estimate below. 

THEOREM 6.2: There is the following bound for the average II llsq over SM: 

Proof: 

42k(2k)!vr~n_k/2 
fSM llfll~qd/~ <- k! 

For f E P,~,2k we introduce a quadratic form Hf on Pn,k: 

H:(g) = {f, g2) for g e Pn,k. 

We note that  

IIfll~q = m a x  I(f,  g2>l = I IHf l l~ .  gESp,~,k 

We bound 11/-/:11oo by a high L 2p norm of H/ .  Since Hf  is a form of degree 2 on 

the vector space Pn,k of dimension Dn,k, it follows by the inequality of Barvinok 

in [1] applied in the same way as in the proof of Theorem 4.2 that  



Vol. 153, 2006 MORE NONNEGATIVE POLYNOMIALS THAN SUMS OF SQUARES 375 

Therefore, it suffices to estimate 

A = f .  IIHfll2D,~, kdr = ft_ (f'g2)2D'~'kda(g) dr(f)" 
J s  M J~M Pn, k 

We apply HSlder's inequality to see that  

A < ( /SM ~e,, (f, g2)2D'~,kda(g)dr(f)) i/2D'~'k 

By interchanging the order of integration we obtain 

(6.2.1) A <_ (~p,,k ~M(f, g2)2D",kdr(f)da(g)) 1/2D~'k 

Now we observe that  the inner integral 

su (f' g2}2Dn.k dr(f) 

clearly depends only on the length of the projection of g2 into Mn,2k. Therefore, 

we have 

~M(f, g2)2D"'kdr(f) < - [[g2[122D"'k fSM(f,p)2D'~'kdr(f) , 

for any p E SM. 

We observe that  

Iig2112 = (llgl14) 2 and Ilgl12 = 1. 

By a result of Duoandikoetxea [6] Corollary 3 it follows that  

llg JI2 _ 4 2k. 

Hence we obtain 

We note that  this bound is independent of g and substituting into (6.2.1) we 

get 
x 1/2n,,,k 

A <_ 42k( fsM(f,p)2D"'kdr(f) ) . 
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Since p E SM we have 

= 1 1 
r ( D n , k  + ~)F(~DM) 

M (f'p)2°"'~d#(f) v~r(Dn,~ + 1DM) 

We use the following easy inequalities: 

r(Dn,~ + ~D.) 

and 

to see that 

We now recall that 

Therefore 

Thus 

2k 
A < 4  V -~M~" 

( n + k - 1 )  ( n + 2 k -  1) 
Dn,k = k and DM = 2k - 1. 

Theorem 6.2 now follows. 

~ < (~)V'n-kle. 
i 

A < 4k(2k)!~n-k/2. 
- -  k !  

| 

Isr. J. Math. 

6.2. PROOF OF THE LOWER BOUND. We begin with a corollary of Theorem 

6.2. Let Bsq be the unit ball of the norm II Ilsq, 

B~q = {f e Mn,2kl ilfll~q --- I}. 

From Theorem 6.2 we know that 

42k(2k)!~n_k/2 
fSM IIf[Isqd# <_ k~ 

It follows in the same way as in Section 3.1 that 

VolBsq 1/DM k! nk/2 > 
- 4 2 k ( 2 k ) ! v , ~  • 
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Now let Sq be the polar of Sqn,2 k in Mn,2k. It follows easily that  Bsq is the 

intersection of Sq and - S q  : 

Bsq = Sq A - S q  . 

Let Sq* be the dual cone of Sqn,2k in the integral metric and let Sq* be defined 
~ O  

in the same way as for the previous cones. It is not hard to check that  Sq is 

the negative of Sq*: 

Sq = -Sq* .  

Therefore, we see that  

(Vol Sq* ") 1/DM k! 
(6.2.2) \ ~ /  > n k/e 

- 42k (2k) !v /~  " 

Now we observe that  (x~ + . . .  + x~) k is in the interior of Sqn,2k, and also 

for all non-zero f in Sqn,2k we have fs~_l f d a  > 0. Therefore, we can apply 

Lemma 5.2 to Sqn,2k and it follows that  

rvolsq   k! 
| l > 
,,VolSq'-~ / - (n/2 + 2k)k" 

Combining with (6.2.2) we see that  

( V ° l ~ q ~  1/DM > (k!) 2 rtk/2 

\Vol BM / - 42k(2k)!v/~ (n/2 + 2k) k" 

By Lemma 5.3, we know that  Sq~ in contained in ,-,qqn,2k and therefore 

Sq~ C_ Sqn,2 k. 

The lower bound of Theorem 6.1 now follows. 

7. S u m s  o f  2k- th  p o w e r s  o f  l inear  f o r m s  

In this section we prove the bounds for sums of powers of linear forms. Here is 

the precise statement of the bounds, 

THEOREM 7.1: There are the following bounds for the volume of Lfn,2k: 

- + 2) + J 4kv/2(n/2 + 2k) k < VolBM 

where 
( 2 k -  1 )2 

a = l -  \ n + 2 k - 2  
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7.1. PROOF OF THE LOWER BOUND. We observe that  the cone of sums of 

2k-th powers of linear forms is dual to the cone of nonnegative polynomials in 

the differential metric, 

Lfn,2k = POS*d, 

since in the differential metric, 

(f,  v2k)d ---- (2k)!f(v) for all f E Pn,2k. 

Therefore, it follows that  

Lf~,:k = Pos* d. 

We first consider the dual cone Pos* of Posn,2k in the integral metric. Similarly 

to the situation with the cone of sums of squares, it is not hard to check that  

the dual Pos of Posn,2k in Mn,2k with respect to the integral metric is - P o s  , 

Pos = - P o s  . 

We recall that  in Section 4.2 we have shown (4.2.4): 

(VolVos° l/.M 1 f2k2 + > n )  1/2" 

\ VolBM ] - 4 \  2k-g 

Since Posn,2k has (x~ + . . .  + X2n) k in its interior and f s , _ l  f d a  > 0 for all 

non-zero f in Posn,2k, we can apply Lemma 5.2 to Posn,2k and obtain 

" olpoJ - (n/2 + 2k) " 
~ ~ 0  ~ $  

Since Lfn,2 k = Pos d and Pos = - P o s  we can combine with (4.2.4) and get 

( V o l L f n 2 k ) l / D M  k! (2k2 +n)  1/2 

k ~ >- 4 k v ~  (n/2 + 2k) k" 

7.2. PROOF OF THE UPPER BOUND. We begin by applying the Blaschke- 

Santal5 inequality to Posn,2k as in Section 3.2 to obtain 

Vol Pos~,2k Vol Pos < 1 
(Vol BM)2 - 

Since Pos = - P o s  we can rewrite this to get 

Vol'P-oo8*)l/DM < ( VolBM )I/DM 

~ool--~M - , V ~ 2 a  / 
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We observe that  by the lower bound of Theorem 4.1 it follows that  

[Vol Pos* ) 1/DM 
(7.1.1) \ ~ _< 2x/n(4k + 2). 

Now we apply the upper bound of Lemma 5.2 to Posn,2k and get 

(VolPosez')I /D~ < ( .~_:. 

where 
( 2 k -  1 )2 

a = l -  \ n + 2 k _  2 • 

The upper bound now follows by combining with (7.1.1). 
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