
MULTIVARIATE MAJORIZATION AND 

REARRANGEMENT INEQUALITIES WITH SOME 

APPLICATIONS TO PROBABILITY AND STATISTICS 

BY 

YOSSEF RINOTT 

ABSTRACT 

Multivariate generalizations of the concept of a Schur convex-function are 
defined and characterized. These characterizations are shown to be useful in 
obtaining majorization and rearrangement inequalities. We give simple 
derivations of known results as well as new ones with applications in proba- 
bility and statistics. 

1. Introduction 

Rearrangement and majorization inequalities have been the subject of  many 

recent papers, e.g. [4], [10], [12]. Our main stimulation derives from the works 

of Lorentz [9] and Fan and Lorentz [3] (see Section 2). The theory bears applica- 

tions to the study of statistical comparison of distributions, reliability theory, etc. 

Let a = (al ,  "", a,) be an n-tuple of real numbers. We denote by a* the decreas- 

ing rearrangement of a, i.e. a* is composed of the components of a, set in decreas- 

ing order. 

Let cs be a prescribed collection of real valued functions. A class of partial 

orderings of R n can be defined as follows: for a, ~( ~ R n, we write a < ~ if 

f(a,) < ~ f(o~,) for a l l f i n  5.  
i = 1  i = 1  

It is established in Hardy et al. [5] that when c~ is the class of all Convex 

functions, the ordering a -,( ~ ia equivalent to the relations 

k k 

(1.2) ~ a* < ~ o~*, k = l , . . . , n  
i = 1  i=1  

Received December 5, 1972 

60 



Vol. 15, 1 9 7 3  MULTIVARIATE MAJORIZATION 61 

with equality for k = n. In this case a -< at can also be expressed by the relation 

a = aT  valid for some doubly stochastic matrix T. 

A wide class of ordering relations is generated by specifying ff to be a cone of 

generalized convex functions (for this concept see Karlin and Studden [7, Ch. XI]). 

In this context the ordering a -< at reduces to the expression that/~, - #, belongs 

to the dual cone of ff where/~a and #, represent the measures concentrating unit 

masses at the points of {ai} and {0h) respectively. 

Henceforth we concentrate on the case where cr comprises the collection of all 

convex functions and the relation -< is that of "majorization" [5, p. 45] which 

is equivalent to (1.2). 

In this paper we characterize the functions monotone with respect to the order- 

ing relation of majorization. That is, we delimit the functions ~ which satisfy 

O(a l, . . . ,a m) <= r 

for every set of n~-tuples a ~ ~ ~ ~ ~ (0q,...,0e,,) satisfying a i = (a l, -..,a,,) and = -<a i 

i = 1, . . . ,m. 

This monotonicity property, and another one (both in Section 3) can be con- 

strued as multivariate analogues of the concept of Schur functions (Ostrowski 

[13]). 

We show (in Section 4) that the theorem of Fan and Lorentz is a special ease ot 

our characterization. Section 4 offers further examples of probability inequalities, 

with emphasis on the multinomial distribution. We finish by presenting some 

consequences emanating from the inequality of Lorentz and show that a number 

of recent publications are subsumed by [9]. 

2. Remarks on results of Fan and Lorentz 

In this section we state the results of Lorentz [9] and Fan and Lorentz [3] 

and point out how the latter result can be obtained in a simple way from the 

former. We add a few remarks which will be useful later, in the applications. 

A function of two variables f ( x l ,  x2) is said to be a positive set function if 

(2.1) f ( x l  + h, x2 + k) - f ( x l  + h, x2) - f ( x l , x 2  + k) + f ( x l , x2 )  > 0 

for h, k > 0, and arbitrary choices of x~, x2. Note that when f has continuous 

second partial derivatives, condition (2.1) is equivalent to 

> 0  (2.2) OxiOx2 = 
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Let a t =  (a~,...,a,~), i = 1 , . . . ,m be n-tuples of real numbers. Let at t be the 

decreasing rearrangement of a t so that 0t i = a t* in the notation of Section 1. Let 

qb(xx, ..., Xm) be a positive set function in each pair of variables (the other m - 2 

kept fixed). Lorentz [9] established the following inequality 

(2.3) ~ 
jffil j = l  

The proof consists of the observation that the rearrangement of the vectors a 

can be done in steps, interchanging two terms of  a vector at a time. This reduces 

the problem to the simple case where we have to show that if 

a = (a I, a2), b = ( b l ,  b2)  , a *  = ~ ,  b *  = 

then 

~b(al, bl) + ~b(a2, b2) < ~b(cq, fix) + $(~2,fl2) 

which coincides with condition (2.1). 

The result of Fan and Lorentz [-3] is as follows: Let a ~ be as above and let 0t i 

be n-tuples of decreasing numbers satisfying now af-< a t (i.e. (1.2) holds) for 

i = 1, . . . ,m. Let q~ be a positive set function in each pair of variables, which 

satisfies the additional condition that ~b is convex in each variable; then (2.3) is 

again valid. 

REMARKS. 

1. It follows easily that if  q~(xa, ..., Xk, "", Xm) determines a positive set function 

for every pair of variables x i, xj when i, j > k, or i, j < k, and a negative set function 

provided i < k and j > k then (2.3) takes the form 

n 
/.,'~ q~(a~, k k+t m .  �9 ..,ay, ay , . . . , a j )  

j = l  

where ~ f i a = (al, . . . ,  a,) is the increasing 

2. Let ~O(a, b) be a function of two 

r b) = [ i 
r , ba) 

= 9l.aj ," ' ,ay ,  a 1 , " . , ay  ) 
1=1  

rearrangement of a t, i = 1, ..., k. 

variables and introduce the matrix 

ff(al,b2) "" ~b(al, b,) 1 

| 
�9 .. ~,(a,, b.) 3 

a = ( a l , . " ,  a.), b = ( b l , ' " ,  b . ) .  
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A positive function ~b is called totally positive of order 2 (TP 2; see Karlin [6]) 

if every second order subdeterminant of ~(a,b) is non-negative. It is readily 

checked that a positive r is TP2 iff tk(a, b) = log ~(a, b) is a positive set function. 

Thus a version of (2.3) can be cast in the form 

(2.4) ~b(aJ , . . . ,  aT) < l-[ ~(a~*,..., aT* ) 
j=i j=i 

for any positive function ~ which is T P  2 a s  a function of  any two of its variables. 

3. Let W be a permutation matrix. Observe that (2.3) can be expressed for 

the case m = 2  in 

(2.5) tr W~b(0t, ll) < tr~b(0t,[I) ( trA = t race  of A) 

where ~b(a,fl) is a positive set function, at, p are n-tuples of decreasing numbers. 

Since any doubly stochastic matrix can be written as a convex combination of  

permutation matrices, it follows that (2.5) applies for any doubly stochastic W. 

4. Proof of the inequality of Fan and Lorentz: For ease of notation, we restrict 

ourselves to the case m = 2 (see also Section 4). Let a, b be n-tuples of real numbers 

and at,[i n-tuples of  decreasing numbers satisfying a -< or, b -< Ii. By a theorem of 

Hardy, Littlewood and P61ya [-5] there exist doubly stochastic matrices S and T 

such that a = aS, b = liT. Writing out the indicated expressions and invoking 

the convexity of tk in each variable we obtain 

tr~b(a,b) = tr ~b(0tS, l i T ) <  trST'~(0t ,  ll) < tr~(a,l l)  

where the last inequality results from Remark 3 above. But the inequality tr dp(a, b) 
< tr q~(0t, p) is exactly (2.3) in the case m = 2. 

In Section 4 we shall indicate that this result of Fan and Lorentz can be derived 

as a special case of our treatment of multivariate Schur convex functions. 

3. The main theorems 

DEFINITION 1. Let a ~ = (a~,...,ai,,), i = 1,..-, m denote ni-tuples of decreasing 

numbers. A function ~(a 1, . . . ,a") is said to be a multivariate Schur function if 

~(at ,  ..., a m) < ~ 0t l, .. ., at m) for every set of  ni-tuples a t =  ( ~ , . . . ,  c~,), i =  1,... m, 

of decreasing numbers such that a ~ -< a t (i.e. relations (1.2) hold). For m = 1 

this reduces to the old concept of a Schur function (Ostrowski [13]).  A 

function of n variables is said to be a Schur function if ~(a) < ~b(0t) for any 

n-tuples of decreasing numbers a = (a 1 , " ' ,  an), at = (~1, "", ~,) which satisfy a -< 0t. 
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It is well known that a symmetric convex function is a Schur function. It can 

be easily shown that a symmetric function ~b which is convex in each one of its 

variables and which satisfies 

q~(al,ax,a3,...,a.) + ~b(az,az,aa,.. . ,a.) < 2(o(aa,a2,as,. . . ,a,) 

is also a Schur function. Note that if ~b is a negative set function (i.e. (2.1) holds 

with the inequality reversed) then the above inequality clearly holds. 

We first examine the case m = 1 and stipulate that ~(at,--- ,  a,n) is differentiable. 

(Henceforth we shall use differentiability as needed without stating it as one 

of  the conditions). 

The following lemma is established in [13]. Our simple proof  may be of some 

interest. 

LEMMA 1. ~k is a Schur function, i.e. ~ satisfies 

~(a l , . . . , a , )  < r  

for  any n-tuples of  decreasing numbers a = (a l , ' " ,  a,), ot = (cq,...,  ~,) satisfying 

a -< at, if  and only i f  

(3.1) 9-~-~(a) - 9-~-~b(a) > O for  all k < j and all decreasing n-tuples a .  

t Ju  k Us 

PROOF. Define ~b by c ~ ( z l , . . . , z , ) = O ( z l , z 2 - z l , . . . , z  . -  z,_ O. We have 

~'(a a, . . . ,  a . )  = ~b(al, a l  + a2, ".', al + a2 q- ."  q- a.) .  

Recallthat a -< at iff a~ + a2 + "" + ak <--<_ ~ + ~2 + "'" + ~kfor k < n -- 1 and thus 

is a Schur function if and only if ~b is monotone in its first n - 1 variables, on 

the domain where z, = a~ + .-. + a,  is constant. Differentiating for 1 < k < n 

gives 

z 0 = 1 . . . , z . )  =  (zl,z  - z l , ' " , z .  - z . - 0  = a ) .  

This implies (3.1) and the proof  is complete. 

Since ~(a 1, . . . ,a  m) is a multivariate Schur function if and only if it is a Schur 

function as a function of any one of its vector variables, the others kept constant, 

we deduce 

THEOREM 1. f f (a l , . . . , a  m) is a multivariate Schur function if  and only i f  
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(3.2) (a 1, . . . ,a m) - a~k (al, . . . ,a m) > 0 
8a~, 

for all 1 < k < j < nl, i = 1, . . . ,m where a s are nctuples of decreasing numbers. 

DEFINITION 2. Let al , . . . ,a  m be m n-tuples of real numbers. A function 

~(a 1, . . . ,a  m) is said to be a multivariate symmetric Schur function if 

r  _-< ~k(al,...,a m) 

for any n x n doubly stochastic matrix T, and any n-tuples at 1, . . . ,a  m. 

The definition tacitly presupposes certain symmetry properties to the extent that 

the value of the function is unchanged when the same permutation is applied to 

all vectors. This fact follows since the inverse of a permutation matrix is also a 

permutation matrix and both are doubly stochastic. 

For m = 1 our definition coincides with that of a symmetric Schur function, i.e. 

a symmetric function satisfying ~ (a) < ~O (a) whenever a -< a holds. (Here a 

and a are not necessarily in decreasing order.) 

THEOREM 2. ~ is a symmetric multivariate Schur function i f  and only i f  

- a2(al,...,a') ] _ o 
, =1  LD~ 0~) 

for all k, j <= n. 

Manifestly the above inequality is a weaker condition than (3.2)�9 

PROOF. Assume ~k is Schur, and take 

T = 

[" t 1 - t  0 
1 - t  t 0 

0 0 1 0 
1 

0 0 . 0 

0 
0 
0 

0 
1 

where 0 < t < 1. 

By adding and subtracting terms in an obvious way, we get, invoking the mean 

value theorem 
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0 < 
~(~J...,am)_ ~(~IT,...,amT) 

1 - t  

Conversely, define 

Y. KINOTr Israel J. Math., 

t ~ l  S=l  

~b(t) = ~b(ot' T , . . . ,  gmT) 

for T explicitly as above. Then 

where a s = eST. 

N o w  a,' _ a2' = (2 t  - 1 ) (~ i  - ~ ) ,  and so by our assumption qV(t) => 0 for t > �89 

But q~(t) is symmetric about t = �89 which implies 

r >= r for 0 < t _< 1, 

i.e. ~(01,. . . ,  at') > ~(at 1T,.. . ,  ~mT). 

For a general doubly stochastic matrix the result is obtained by interchanging the 

first and k-th rows and the first and j-th columns of T, for k, j =< n and repeating 

the above argument, and then applying the fact that every doubly stochastic 

matrix is a product of a finite number of  matrices of  the above form [5, p. 47]. 

4. Applications 

EXAMPLE 1. From our general setting we indicate how to extract the inequality 

of Fan and Lorentz which we now restate in a slightly more general form than in 

Section 2. Let a s, i = 1,..., m, be n-iuples of decreasing numbers, and let a ~ be 

an n-tuple of increasing numbers which will be kept fixed. Let ~b(Xo, x l , ' " ,  Xm) be 

a function of m + 1 real variables and define 

: ( a ' , . - . , a ' )  o , 
= r  , a  t , "", a N .  

j = l  

We prove that ~ is a multivariate Schur function as a function of a 1, . . . ,a m, with 

fixed (but arbitrary) a ~ if and only if 

a 2 
axiOxk~p(yo,yl,...,ym) >= O, 1 <= i ,k  <= m 

(4 .1)  
0 2 

OXsOXoC(yo,Yl,'",ym) <= O, 1 <-- i <-- m 

for all real Yo, '" ,  Ym, in the domain of ~b. 
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PROOF. Since a ~ are vectors of decreasing numbers we consider for 1 < i ~ m, 

1 < k < n, the expression 

d~ (aS,...,a~)_ d__~ (at,...,am). 
da~ ~a~+ l 

This equals 

t92 
aq~. o t aq~. o " ~ (a~ a ~ + l ) ~ b ( y  ) 
"dxi (ak ,ak,-. . ,a~') - -~-~(ak+t,a~+l,...,ak+t ) = j=o  i j 

where y = (Yo,Yt,'",Y=) is a suitable point arising by application of the mean 

value theorem. It follows that 

a~ (al , . . . ,am) _ O---~-~ (a~,... ,am) > 0 
aa~ Oa~ + l 

if the conditions of  (4.1) are satisfied. By making a special choice of the terms of 

a s it is easy to see that conditions (4.1) are also necessary. Appealing to Theorem 1 

the proof  is complete. 

By a standard approximation procedure we can deduce that (4.1) is necessary 

and su~cient  for q~ to satisfy 

-1  fo l  
J ?p(t,f~(t),'",fm(t))dt <= d?(t,#t(t),...,#m(t))dt 

o 

for every system of decreasing bounded functions f~,g~, i = 1 , . . . ,m such that 

f~ -< g~, i.e. 

f~(t)dt ~_ a~(t)dt, 0 < x < 1 with equality for x = 1.  

EXAYWLE 2. Let X = (X ~,..., X~) have the multinomial distribution 

( P(X = x) = 17 ~' 
X1, "", Xk i=l 

k k where x = (x~,.. . ,  Xk), Y~ ~= t X~ = N, and 0~ 1. 

Let ~b(xt,...,xk) be a symmetric Schur function (i.e. q~ is symmetric and satisfies 

~b(x) < if(y) whenever x -< y). Define the function r as the expectation 

( )' N 17 O? r = Eor = Z ~(x) x , . . . ,  x~ ,=1 
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where the sum extends over all k-tuples of non-negative integers x = (x~,..., xk) 

for which X ~= 1 x~ = N holds. 

PROPOSmO~q. r is a Schur function. 

PROOF. We show that condition (3.1) of Lemma 1 (Section 3) is satisfied. 

( - )  t3r 0 r  N! ]~ r 1I 
ao, 002 ,=, x , ! /  " 

Rearranging the order of summation the sum becomes 

01' 
N! ~ I-'[ ~ (~b(Yl + 1,y2,'",Yk) - r + 1,Ya,'",Yk)) 

i = l  

where the sum now extends over all k-tuples 

k - 1  

~, y i = N - 1 .  
i = 1  

Invoking the symmetry of ~ we finally obtain 

Y = (Yl, "",Yk) for which 

0 0 1  0 0 2  

//~IYl/~Y2.. /~Yk jQY2/~YI~QY3 ~Yk\ [ 

_ ~ ~ "---~k_.| ~ ( y l  + I ,  Ye, , Yk) = N! ]~ / ~'' v 2 "  ~,_A__k ... 
\ya!Yz!'"Ykl YlIYzI"'Ykl ] \ 

Y2 + 1, ..., Yk) 

where the sum extends over (y~,..., Yk) as above satisfying the additional condition 

Yl > Y2- Since ~ is a Schur function 

q~(Yt + 1,y2, "",Yk) -- ~b(Yt,Y2 + 1,Yz,'",Yk) -->-- 0 

for Yl > Y2. Since 

O~,,m2 t~y2ny~ > 0 for Yl > Y2 and 01 > 02 1 w2 - -  ~1 u 2  = 

w e have 

0r 0r _> o 
001 002 - 

for 01 > 02 and the proof is complete. 

As an example consider the expectations 
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~x(0) =Eo(  max Xi) ~ 
l <i<_k 

~k2(O) = E o (  m i n  Xi)" 
l <i~_k 

~ > 0  

where Xi are distributed as above. Since (maxl<__i<_<_kXi)'and--(minl<i<_kXi) ~ 

are both symmetric Schur functions, the proposition implies that ~1(0) and 

- ip2(O ) are Schur functions. 

Thus we obtain for example that Eo(max~<=izkXi) is minimized for 0 

= ( l / k , . . .  l / k )  since for any O=(01,'",Ok) where ]~k Oi 1 we have i=1  

(1/k, ..., 1/k) -< (O1,..., Ok). 

Results of this kind are applicable in determining least favorable distributions 

for testing multinomial hypotheses. (See, for example, Gupta and Nagel [4], 

where some tables of ~kl(0) and ~2(0) are given.) 

In the same way we obtain that the function ~1(0) = - Po(XI > r, "",Xn > r) 

and r = - Pc(X1 < r, . . . ,Xk < r) (r fixed) are Schur functions. This is so 

because 

where 

Po(X1 >= r, . . ' ,X  k > r) = Eor ) 

Po(Xx < r, "",Xk < r) = EoZ~(X) 

r  = 

[1 m i n x  i ~_ y 
l < i < k  

LO m i n x  i ~ r 
l<=i<=k 

(-1 max xi < r 
Z , ( x )  = 1- i- k 

L 0 max xi > r 
t ~ i ~ k  

ans both - er(x) and - Z,(x), being monotone functions of min xi and max xi 

respectively, are symmetric Schur functions. For a different proof of this result 

see Olkin [12]. 

COROLLARY. Let Xi, i =  1, . . . ,k  be independent random variables with the 

Poisson distribution~ i.r 
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P(X~ = X) = e -x' 2~ x ! '  x 0,1,... 

If c~(x) is a symmetric Schur function then E~(XI ,  "",Xk) is a Schur function. 
The proof follows from the fact that the distribution of X given ~k= 1 X~ 

is the multinomial distribution, and from the fact that the collection of Schur 

functions is a convex cone. 

EXAMPLE 3. Let XI, . . . ,X,  be independent binomial random variables with 

P(X~ 1 ) = p v D e n o t e S =  ~ = l X v W e s h o w  

~ ( p , , . . . , p , )  = ~ p , , . . . , p . ~ ( s )  

is a Schur function if q~ is concave. For this we use Lemma 1, 

~b(pt,...,p.) = ~ p~'(1-p~) '-x ' . . .p ,"(1-p.) t-x"dp(,=~ x,)  

where the sum extends over all vectors (x,, . . . ,x.) of zeros and ones. 

Opx @2 ~:3 

which is non-negative by the concavity of 4. For a different proof see [7]. 

EXAMPLE 4. We now generalize the preceding example to the case of multi- 

nomial variables. Consider the (m + 1)-dimensional random variables 

"(1,0, 0,...,0) with probability p~ 

(0,1,0,...,0) with probability p~ 

0 ! m ( X k , X k , ' " , X k )  = 

(0, .-., O, 1) with probability p~' 

p~ = 1, k = 1,...,n. 
1 = 0  

Set pi t = (Pl, "",P,), i = 1, ..., m and define 

�9 ,<p',..., p - ) =  . . . , .  + X~').  
k = !  
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We shall derive conditions on �9 under which 7' is a (symmetric) multivariate 

Schur function. Note that 

h o , . (  ) ~, (p , , . . . , f )=  ~ (pO)~(p~)~...(p~,;~e ~: ~L..., ~ ~7 
k = l  k = l  k = l  

where the sum extends over all (m + 1)-tuples of zeros and one x ~ ...,x~' 

such that 

Differentiation produces 

x ~ = l  , k = l , . . . , n .  
i = 0  

. -[ ( -) O~g _ Z (pO)~... (p~,)~ ~ 1 + ~ x~, ~ x~..., ~ x, 
OPl k =2 k=2 k=2 k=2 

For simplicity of notation we replace in the sequel each sum of the form 

~k=3 " Xk~ by ~; thus for example 

We get 

~ ( 2 +  ~ l ,~)2 , . . . ,~m)  = O (2 + x~, ~ v , . ,  g xr)etc. 
k=3 k=3 k=3 

f i  ra (9 ~ 0 kg = Z (pO)~k~ (p~.)~k A 

Opl Opl ~=3 

where the sum is as above only for k = 3,..., m, and 

a = (p~ - pl) [~(2 + r + r + ~(r 

+ ~ (p2~ _ p l )  [~(1 + yl,yz,...,y,-1,1 + y,,y,+l,. . . ,y,) 
i=2  

- r + r, r2,... ,ym)- O(yl,.. . ,r*-l, 1 + r*,r i+~, ...,v m) + r  1, ..., ~*)]. 

By Theorem 1 we infer that if �9 is concave and a negative set function in each two 

variables then 7' is a multivariate Schur function (consult Definition 1). 
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We now check the condition of Theorem 2. Using the above computation one 

gets 

(P~ - P~2) a ~  0~_ = _ 2~ (pO)X~... (p~)X~. Q ' ( A , j ~ )  Q 
, = 1  

where Q'  (p~ i 2 _  2 ,, = - p 2 , p l  p2, " " , px  - p'~) 

and (A~j~) denotes the m x m symmetric matrix with entries 

Ai j ~ = 4(71, . . . ,~ i -1 ,  1 dr- 7 ~,.' ',~fi-1, 1 + ~)J, 7 j+l , ' ' ' , ] )m) 

- ~b(~, 1, . . . ,3 / -1 ,  1 + ?i,? i+1, . . . ,?m) 

_ ~b(?l , . . . , ? , . . . , ? j - l ,1  + ])j~j+l, . . .~m) ..~ ~(~1,... ]Tm ) 

for 1 < i < j < m ,  and for i =  1 , . . . ,m 

Aiiff) = ~(~i,  . . . ,? i -1 ,2  + ?i, ?i+ l ' . . . ,  ?m) 

- 2q~(? 1, "",? ~-1, 1 + ?i, ?~+ 1, ...,?m) + #(71, ... ?,,). 

Thus ~ is a symmetric multivariate Schur function (Definition 2) provided 

(Ai~ q~)~j=1 is non-positive definite. Observe that (Aifl~)~= I is the discrete 

analogue of  the second differential, so that the condition becomes that # is a 

discrete-concave function. 

EXAMPLE 5. Let X~, i = 1, .... n be independent random variables with dis- 

tribution given by p ( X  i = k) = (1/si)(1 - 1/si) k,/c = 0, 1,2, . . .  where 

s~ > 1, i = 1,. . . ,  n, i.e. X~ has a geometric distribution with 

1 
(2) Pl = 1 - - - ,  i = 1,. . . ,  n. 

St 

We set 

~ ( s l , ' " , s . )  = Es, ....... ~ ( X 1 , - . . , X . )  

where ~ is a symmetric function of n variables and we determine conditions under 
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which kV(s:, . . . ,s,) is a Sehur function. The case where q~ is a function of the sum 

~'= 1 x~ was treated in 17]. 

We prove: 

PROPOSITION. I f  ~ is convex in each variable and i f  the function 

g(x l, . . . ,x i_  l, u,xi+ 1, . . . , x j_  l ,v ,  xj+ 1, . . . , x , )  

u + v  u - - v  
= ~ b ( x l ' " " x t - l '  2 ' x ~ + l ' " " x ~ - l '  2 ' x J + l ' " " x " )  

is nondecreasing in v and a positive set function in u and v for  all i # j .  

i , j  = 1 . . . . .  n then ~ ( s l , " ' , s , )  is a Schur function. 

It is easily checked that #(xl ,  . . . ,x,)  = X ~=~ r(x3 satisfies the above condi- 

tions if both y(x) and its first derivative are convex and we conclude that 

$ ( s l , ' " , s , )  = E~, ..... ,~ ~ n= 1 Y(X'i) is a Schur function. In particular 

E,~ ..... ~. ~7= a X~, 2) > 2 is a Schur function. 

PROOF OF PROPOSITION. 

~(S,,'",Sn) = f i  (1 - -  p , )  
i=1 kt ..... kn=O 

Differentiating with respect to s~ and s2 we get 

pkl kn 
�9 .. Pn ~ ( k l , . . . ,  k , ) .  

c~ s 1 "~ss 2 ~ -- (1 - P3" {(P~ - P2) ~ pkg... Pn (~(kl, "", kn) 
i=1 kl ..... kn=O 

oo 
+ (1 --  p l )  2 X 

kl ..... k,=O 
k~p~,-~ p~2.., pkn, ~(kl ,  "", k,) 

- (1 - -  p2)  2 ~ k 2 p k l  p k , - 1  pk33. ."  pkn,, (~ (k l ,  . . . , k , ) } .  
kl , . . . .kn=O 

We now regard the latter expression as a polynomial in Pl, "", P, and rearrange 

the order of summation by collecting the coefficients of terms of equal degree 

(say m + 1) in p l , . . . ,p , .  We thus obtain 

c3sx ~ ~ = (1 - Pi)(Px - P2) 
i = l  k~ ..... k .=O 

A(k3,..., k,) 

where 
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Bm_2kplp2 {(m -- 2k + 1) 1,~(m -- k , k ,  k3, ..., k ,)  
m = 0  k = O  

- 2 ~ ( m  - k + 1, k ,  k 3 , . . . ,  kn) + ~ ( m  - k + 2, k,  k a , . . .  , kn) ] 

+ [(k + 1)~/i(m - k + 2, k, k3 ," ' ,  k,) 

- (k + 1)~b(m - k + 1, k + 1, ka , ." ,  kn) 

- k ~ ( m  - k + 1, k - 1, k a, . . . ,  k, )  + k ~ ( m  - k ,  k,  k3 , . . ' ,  k~)]} 

and B~ ~ "  ~ n-~ = PlP2 �9 i = 0  

By Lemma 1 we deduce that in order for k~ to be a Schur function it is sufficient 

that ~ is convex in each variable and satisfies for every pair of variables the 

inequality 

(k + 1)~(m - k + 2, k) - (k + 1)~(m - k + 1, k + 1) - k ~ ( m  - k + 1, k - 1) 

(3) + k ~ ( m  - k,  k) > 0 

where we have suppressed the variables which are unchanged. To simplify (3) define 

O(U,V) = ~b (u + v u ' 2 v )  ., 

then ~(x, y) = O(X + y,  x - y)  and (3) becomes 

{g(m + 2, m - 2k  + 2) - g(m + 2, m - 2k)} + k (g (m + 2, m - 2k  + 2) 

(4) 
- o ( m  + 2, m - 2 k ) -  g(m, m - 2k + 2) + g ( m ,  m - 2k)} > 0. 

(4) will be satisfied if # is monotone in the second variable and a positive set 

function. 

In the case that ~ is a function of ~ 7= 1 x, the expression in (3) vanishes and 

thus W will be a Schur function if �9 is convex. 

5. Some applications of the theorem of Lorentz 

In this section we indicate how several recent results can be derived directly 

from the inequality of Lorentz I-9]. Some of these observations were also made 

by Day 12]. 

1. Ruderman [14]. 

The function t~(xl, "",xm) = I-IT--1 xi is a positive set function in each pair 

of variables, for x ~ => 0, i = 1,..., m. Thus for nonnegative n-tuples a i i = 1, -.., m 
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< i ,  by (2.3). H al = aj 
j = l  i=1 j = l  i=1 

Note that the function q~(xl, ...,x,,) = log (]~ im=l Xt) is a negative set function in 

each pair of  variables for x~ >0,  i = 1, ..., m. Remark 2 of Section 2 implies 

f i  ~ a~=> FI ~ a)* 
j = l  t = I  j = l  i=1 

2. Minc [10]. 

The function ~b(xl,-..,x,,) = mina<.<m x~, x i > 0 is both TPz and a positive 

set function in each pair of variables. Remark 2 and the inequality of Lorentz 

(2.3) imply, for a s, i = 1, ..., m n-tuples of positive numbers 

~I ~ <  I~ min a~* min a i = 
j = l  1 <i<ra j = l  l~i<m 

and 

< rain aj rain aj = 
j = l  l~_i<m j = l  l~i_~m 

which are Theorems 3 and 5 in ]10]. 

3. London [8]. 

For a > 0, b > 0 let ~b(a, b) = F(log (1 + b/a)) where F(x) is convex and 

increasing for x > 0. 

Then Oz~[OaOb < 0 which implies using Remark 1 and London's notation 

F(x) = f(e ~) 

i=I ~i=l i=l ai*/ 

for a,b n-tuples of positive numbers. This is Theorem 1 in [8]. 

4. The next example is similar to London's Theorem 2 [8]. Both are direct 

consequences of the inequality of Lorentz. Consider qS(a, b) = f (a  - b) where f 

is convex. �9 is a negative set function for - m < a, b < m which implies (see 

Remark 1) 

f ( a , -  bl) <= ~ f(a* - b,). 
i=1  i = I  
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la,-btl'  ]a:- tl f o r p ~ l .  
i=1  t = l  

5. The following example generalizes a result of Abramovich [1]. 

Y= (Y~, "",Yzn) and consider the function of 2n variables k~ defined by 

Let 

T ( y )  = ~ (r)(y2~_~, y2t). 
t = l  

An easy induction argument shows that if ~(a, b) is symmetric then ~ satisfies 

T ( y )  <_ ~ (y* )  for all y �9 R 2n 

if and only i f r  is a positive set function. Setting Y2t-~ = at, Y2i = bi, i = 1, ..., n 

we can rewrite the above inequality in the form 

�9 (at, b,) < ~ ~(a*,b:) <= ~ * * tP (Y2t -  1, Y21) 
i=1  i=1  i=1  

where on the left we have applied Lorentz's inequality. On the right the vector 

y* is a decreasing rearrangement of y whereas on the left a and b are rearranged 

separately. Invoking Remark 2 of Section 2, this implies that the function 

defined by 

n 

~ ( Y )  = ]--[ F(Y2i- 1, Y2t) 
i=1  

where F is positive and symmetric satisfies 

~(y) =< if(y*) for all y �9 R 2" 

if and only if F is T P  2. In particular if we choose 

F ( x , y )  = (xy)m+ at (xy)  '~-1 + ... + a m 

x,y>=O, a t > O  , i = l , . . . , m ,  then F ( x , y )  is TP2 (see Karlin [6, p. 101]). We 

obtain that 

I~ [(Y2i-~Y2ff n + a1(y2~-lY2t) 'n-1 + , ' " ,  + am] 
i=1  

attains its maximum when y is arranged in decreasing order. This analyses 

Theorem 2 in Abramovich [1]. 
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