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ABSTRACT 

Let G be a separable complete metric additive topological group; it is shown 
that if a series Ex, is subseries convergent in any weaker Hausdorff group 
topology on G, then Ex, converges in G. This result can be used to obtain 
various extensions of the classical Orlicz-Pettis Theorem on subseries con- 
vergence in locally convex spaces. 

A series ]~.~a x. in an additive topological group is said to be subseries con- 

vergent if whenever (Xk.) is a subsequence of (x.) then ]~.~1 Xk converges. A 

subseries convergent series is unconditionally convergent, i.e., for every re- 

arrangement (xp(.)) of (x.) then the series Y~.~ 1 xp(.) converges. The classical 

Orlicz-Pettis Theorem asserts that in a locally convex topological vector space, 

subseries convergence in the weak topology implies subseries convergence in the 

original topology. This theorem was first proved in a special case by Orlicz 

[10] ; since then it has been refined in several papers, see [2] p. 240, [3], [5], [9], 

[10], [12] and [13]. 

Recently Thomas [15] and Stiles [14] have extended the theorem to non- 

locally convex complete metric linear spaces with bases; Stiles poses the question 

whether the result is true if we only assume the weak topology is Hausdorff. 

In this paper, by relating the Orlicz-Pettis Theorem to the Closed Graph 

Theorem we show that Stiles's conjecture is true if we restrict the space to be 

separable. The method of proof  highlights the important role played by separa- 

bility in the Orlicz-Pettis Theorem (see Thomas [15]). It also becomes apparent 

that the result is essentially about topological groups and only happens to assume 

a slightly simpler form in vector spaces. 
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Some improvements are obtained even when we restrict to locally convex 

spaces, provided we insist on some separability assumptions. 

1. The group S. 

Let Z be the additive group of integers with the discrete topology; then the 

product I-I~°= 1 (z)i of countably many copies of Z is a topological group under 

the product topology n. We adopt the following notation: 

s : {0  z,i: supl0il< } 

S, = {O~S;Oi=O 1 < i N n }  

K = {O~S; 0 < 0 i < l  i = 1 , 2 . . . }  

L, = { 0 e S ; - n < O i < n  i = 1 , 2 . . . } .  

Then S and S,, n = 1, 2. . . ,  are subgroups :of 1-[i~ 1 (Z)~, and K and L, n = 1,2..., 

are n-compact subsets of S (by an application of Tychonoff's theorem). 

We introduce a topology p on S thus: a base of neighbourhoods of zero is 

given by sets of the form 

{O S; 10 l-<n } 
where n k ~ 00. It is easy to verify that (S, p) is a topological group, and that 

p > / r .  

PROPOSITION 1. p is the finest topology agreeing with n on each L,. 

PROOF. First we show that p agrees with n on L,;  suppose V is p-open and 

x z V n L,. Then for some n k - -+  ct3 

x + B{nk} = V. 

Given n, there exists N such that for k > N, n k >= 2n. Then 

(x 4- SN) ~ L~ c (x 4- B{nk}) n L,  

c V ~ L ~ .  

As SN is a n-open subgroup of S we conclude that V N L, is n-open in L~. 

In order to prove that p is the finest topology agreeing with n in each L,, let us 

suppose V n L ,  is n-open in L,  for each n. We show first that if 0 e V then 0 is a 

p-interior point. The proof  is similar to that of the Banach-Dieudonn6 Theorem 

on metrizable locally convex spaces (see: K6the [8] p. 270). 
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We define m ( 0 ) =  0 and construct a sequence m(n) inductively such that if  

0 E L, and 

10 1 <= p re (p-  1) < k < re(p) 

p =  1,2,.-. n - 1 

then 0 ~ V. Let us suppose re(l), ..., m(n - 1) have been defined; for q => 1 we 

define Fq as the set of  all 0 e S with 

[Ok [ < p m(p - 1) < k _-< re(p) 

and p = 1 , 2 - . - , n -  1 

[ Ok I < n re(n-  1) < k < re(n-  1) + q. 

Then Fq is n-closed for each q. Let D.+I  = L.+I  - (L.+ 1 n V); D.+I  is n-closed 

in L.+~, and therefore n-compact;  furthermore 

q = l  

so that 

D.+ I n h Fq = ;ZJ 
q = l  

by the inductive hypothesis. Hence there exists qo such that 

qo 

D.+ln n F~=N. 
q = l  

We define re(n) = m(n - 1) + qo, and it is clear that the inductive hypothesis is 

satisfied. 
I f  we now set 

then 

P k = r  where m ( r - 1 ) < k < m ( r )  

8{w} v 

so that 0 is a/z-interior point of  V. 

Now suppose 0~ V; then OeLm for some m and so for any fixed n we have 

Ln = L m + n -  0, and as ( V -  0 ) n ( L m + . -  0) is n-open in L , , + , -  0, we obtain 

that (V - 0) n L,  is n-open in L, for each n. Hence 0 is a /z-interior point of  

V - 0 and so 0 is a/z-interior point of  V. 

A group homomorphism ~: G ~ H between two topological groups is almost 
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(or nearly) continuous if for every neighbourhood U of 0 in H, a - l ( U )  is a 

neighbourhood of 0 in G. 

PROPOSITION 2. Let a be a group homomorphism of S into an additive 

topological group G; then 

(i) a is continuous if  and only if  the restriction of ~ to K is continuous. 

(ii) a is almost continuous if  and only if  for every neighbourhood U of O in G, 

-a-1 (U) C~ K is a neighbourhood of 0 in K. 

PROOF. The proofs of  (i) and (ii) are identical; we prove the latter. To prove (ii) 

we choose a sequence V, of  neighbourhoods of 0 in G such that 

V o - V o ~ U 

V, + V, c V,_I  

Then for some increasing sequence re(n), n > 1, 

Sm(,~ n K c a -a(V,)  

We define Pk = P where re(p) < k < m(p + 1), with p~ = 0 for k < re(l). Then 

for O~ B{pk} C~ L,  

we have 

where 

W, 

so that 

and 

0 ~ W, - W, 

= (S,.(x) N K) + (Sin(2) ('~ K) + ... + (S,,(,~ ~ K) 

(X-I(v1) --~ ~ - l ( v 2 )  --[- ... --~ ~ - l (Vn)  

c ~ - i ( V I + . . . + V , )  c ~-l(Vo)  

W, - W, = . - X ( V o  - Vo) ~ a - ~ ( U )  

B{pk} c e - l ( U ) .  

2. The closed graph theorem in S 

THEOREM 1. Let ~ be a group homomorphism of S into the additive topo- 

logical group G. Suppose e(S) is separable; then a is almost continuous. 

PROOF. Suppose U is a neighbourhood of 0 in G and that V is a neighbourhood 

with 
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v - v c u .  
Then as a(S) is separable 

for some sequence 8% S. Hence 

and so, as K c S is compact, by the Baire category theorem there exists an n 

such that @) + a- ' (V)  n K has non-zero interior in K. Thus for some N and 

some 4 E K 

( 4  + S,) n K  c 0'") + a- ' (V)  

Let I) E SN n K ;  then we let 

xi = 1 if Il/i = 4i = 1 

and 

xi = 0 otherwise. 

Then x S N , * - X E ~ N  

and 
- X E K ,  ~ + ( I ) - x ) E K -  

Therefore 
-- 

4 - x - ecn) E a - l ( v )  
--- 

4 + I ) - X - o ' " ' € a - 1 ( ~ )  

and so 

Hence 

S, n K c a- l (u )  

and by Proposition 2, a is almost continuous. 

COROLLARY. W e  may replace the assumption "a(S) is separable" b y  the 

assumption "a(K) is separable". 

THEOREM 2. Let G be a separable complete metrizable additive topological 
group; then any homomorphism a:  S-, G with closed graph is continuous. 
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PROOF. This follows immediately from Theorem 1 and Kelley [-7] p. 213 

Example R. 

3. The Orlicz-Pettis Theorem in complete metric topological groups. 

PROPOSITION 3. Let (G,p) be an additive Hausdorff topological group; a 

homomorphism ~: S ~ G is continuous for p if  and only if  it takes the form 

~(0) = Z Oix 
i = 1  

where the infinite sums converge in p. 

PROOF. Let eCk")= 6.k (the Kronecker delta); then for 0 e S 

0 = ~ 0.~ (n). 
n=l 

Let a(~("))= x,;  if ~ is continuous we obtain 

~(o) = ~: o.x. (p). 
n = l  

Conversely suppose 

~(0) = Z Oix~. 
i = 1  

Then given a closed neighbourhood V of 0, we may show, by a simple reductio 

ad absurdum argument, that there exists n such that for all 0 e K with 

Oi= 0 i < n  

0 = 0 eventually 

we have ~ (0) ~ V. It follows since for any 0 ~ K 

O~x~ = lim ~ O~x~ 
i = 1  r n ~ o v  i = l  

that 

a(S. C~ K) c V 

and so a is continuous on K. By Proposition 2, ~ is continuous. 

THEOREM 3. Let G be an additive group and p and z be two Hausdorff 

topologies on G such that (G,p) and (G,z) are separable topological groups: 

suppose p <= z and z is complete and metrizable. Then if ~ x  i is p-subseries 

convergent it follows that ~,x~ is z-subseries convergent. 
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PROOF. We define e: S--* G by 

~(0) = Z Oixi 
i = I  

Israel J. Math., 

Then 

y(e) ~ E with 

f~ (y(~)) = ~i f~ (x). 

x = ~C f, (x)x,. 
i = 1  

PROOF. The conditions insure that ]~xi is tr(E, F) subseries convergent where F 

is the linear subspace of E* generated by (f,; n = 1, 2 ...); the result then follows 

by Theorem 3 or its Corollary. 

An FK-space is a space of complex-valued sequences with a complete metric 

vector space topology z such that the co-ordinate maps x--.  Ix. [are  

continuous. 

THEOREM 5. Let E be a separable FK-space and suppose x (") ~ E; then ~,x Cn) 

converges unconditionally i f  and only i f  for every sequence e n = +__ 1 and for 

each k the series ~e,x(g ") converges and i f  Yk = ~en x(n) then y ~ E. 

where the infinite sum converges in p. Then by Proposition 3, c~ is continuous as a 

map c~: (S,/z) ~ (G, P); hence e has closed graph as a map c~: (S,/0 ~ (G, ~) and by 

Theorem 2 e is continuous for these topologies. The result follows by applying 

Proposition 2 again. 

COROLLARY. Let (E, z) be a separable complete metric linear space, and suppose 

F is a separating fami ly  of continuous linear functionals on E. I f  ~,x i is tr(E,F) 

subseriesconvergent, then ~,xi is z-subseries convergent. 

This corollary improves the result of Thomas [15], who assumes that E is a 

Banach space and F has "positive index", or Stiles [14] who assumes that E has 

a basis, and that F is linear space generated by the co-ordinate functionals for 

the given basis. 

A number of intriguing results follow from Theorem 3; the following theorem 

was first proved for Banach spaces by Bachelis and Rosenthal [1] and a different 

proof applicable to locally convex Frechet spaces was given by Bennett and 

Kalton [3]. We do not here assume local convexity. 

THEOREM 4. Let (E,z) be a separable complete metric linear space and let 

(x ;fi) be a biorthogonal system in E, (with each fi continuous), such that {fi} is 

total over E. Suppose x EE is such that for any sequences e i = +_ 1, there exists 
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PROOF. Let F be the linear span of the functions {fi"}; we have that ]~x (") is 

a(E, F) subseries convergent and the result again follows by Theorem 3 and its 

corollary. 

The following theorem is well known (it follows easily, for example, from 

Theorem 4 of I-4]). 

THEOREM 6. Let X be a separable Banach space which is the dual of a 

Banach space. Then X contains no subspace isomorphic to c o. 

PROOF. Let X = Y* and suppose x, EX is a basis of a subspace Z of X equiv- 

alent to the usual basis of Co. Then for any sequence 0, = 1 or 0, we have that 

~= ~Oixi is a bounded sequence in X, and so is a(Y*, Y) bounded in Y*. Thus for 

y ~ Y  

Ix,(y)l  < oo 
i = l  

and so ~,~=lOzxi [is~ a a(Y*, Y)-Cauchy sequence; by the weak*-compactness 

of closed balls in Y* we have that ]~0~ x i converges a(Y*, Y), i.e. ]~x~ is a(Y*, Y) 

subseries convergent. By Theorem 3 ~x~ is norm convergent and this contradicts 

the choice of (x,). 

4. The Orliez-Pettis Theorem in general topological groups 

The restriction that G be complete and metrizable in Theorem 3 may be reduced 

if we include further restrictions on the topologies ~ and p. 

THEOREM 7. Let G be additive group which becomes a Hausdorff topological 

group under the topologies p and z; suppose p <= z and ~ has a base of p-closed 

neighbourhoods of O. Suppose further that (G,T) is separable; then if ]~x~ is 

p-subseries convergent it follows that ~ x  i is z-subseries convergent. 

PROOF. Once again we define the map 

o~ : S--> G 
by 

~(0) = p -  Z Oixi 
i = l  

and by Proposition 3, ~ is continuous for p. 

Now let V be a p-closed z-neighbourhood of 0 in G; let {V,}, chosen inductively 

be p-closed z-neighbourhoods of  zero with 
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V 1 - -  V 1 c V 

V, - V, c V,_I. 

Then H = n~=lV , is a p-closed subgroup of G; consider the quotient space 

G/H, and the quotient map re: G ~ G/H. Let ? be a topology on G/H with a 

base of  neighbourhoods {uV,; n = 1, 2 ...}; then (G/H, 7) is metrizable. Further- 

more the map u: (G, z) ~ (G /H, 7) is continuous and surjective, so that G/H is 

?-separable. Let M be the ?-completion of  G/H; we identify G/H as a subspace 

of M, and consider the map zc~: S -~  M. 

We show that u a  has a closed graph; suppose 0 4 is a net in S such that 

0~-~0 

7zc~0~ ~ m 

Then (rt~0z) is Cauchy in G/H and so given n there exists 2 o such that for 2, 

2 ' > 2  o 

1~0)'  -- ~o~0,~ ~ ~ V  n 

~Oz' - aOa ~ V. 

As V, is p-closed and a0z ~ ~0 in p 

~0 - ~0~ ~ V ,  2 > 20 

and we deduce that m~0~ ~ u~0 in 7, i.e. m = ua0. Hence u~ is continuous by 

Theorem 2, and so for O~S by Proposition 3 ~,Oiu(xi) converges in ? to uaO. 

Thus for n > no (for some no) we have 

~0 - ~ O~xi ~ V 
i = 1  

and this is true for any such V 

Oix ~ = a(0) in z. 
i = 1  

THEOREM 8. Let ( E , F )  be a dual pair of vector spaces and suppose that 

is an ( E , F )  -polar topology on E such that (E,z) is separable. Then if ~,x~ is 

a(E,F)-subseries convergent, then ~,x~ is z-subseries convergent. 
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PROOF. As z has a basis o f  a(E, F)-closed ne ighbourhoods  o f  zero this follows 

directly f rom Theorem 7. 

COROLLARY. I f  (E, fl(E,F)) is separable then Z x i  is fl(E,F) convergent. 

The following theorem is essentially a generalization of  the classical Orhcz-  

Pettis theorem for locally convex spaces; it improves for example the result o f  

Thomas  [15]. 

THEOREM 9. Let ( E , F )  be a dual pair of vector spaces and suppose z is an 

(E ,F) -po lar  topology on E; then i f  ~_,x i is tr(E,F) subseries convergent, it is 

necessary and sufficient for  ~ x i  to be z-subseries convergent that the set 

X = ( Z  O~x~; 0 ~ K) 

is contained in a r-separable subspace of  E. 

PROOf. One direction is an immediate consequence of  Theorem 8. Conversely 

if ~ x ,  is ~-subseries convergent then X is r-separable and so lin X is z-sep- 

arable. 

It  is to be observed that  this includes the classical Orlicz-Pettis theorem;  for if 

z is an (E,  F ) -dua l  topology then z and a(E, F) will define the same separable 

subspaces. 
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