NILPOTENT INJECTORS IN SYMMETRIC GROUPS

BV ARIE BIALOSTOCKI

ABSTRACT

An N -Injector in an arbitrary finite group G is defined as a maximal nilpotent subgroup of G , containing a subgroup A of G of maximal order satisfying class(A) \leq 2. Among other results the N-Injectors of Sym(n) are determined and shown to consist of a unique conjugacy class of subgroups of $Sym(n)$.

A. Introduction

N-Injectors in a finite group G are maximal nilpotent subgroups which share many properties with the Sylow subgroups. The theory of Injectors, and in particular N-Injectors has been developed mostly for solvable groups. The aim of this paper is to develop the theory of N -Injectors for arbitrary finite groups, and to determine the N -Injectors of Sym (n) .

N-Injectors were first defined in [9] as follows: a subgroup A of G is an N-Injector, if for each $H \triangleleft \triangleleft G$, $A \cap H$ is a maximal nilpotent subgroup of H. In [13] it has been proved that if $C(F(G)) \subseteq F(G)$, then G contains N-Injectors, they form a conjugacy class, and they can be characterized as the maximal nilpotent subgroups which contain *F(G).* The following two observations (a) and (b) show that neither the definition of N-Injectors in [9], nor their characterization in [13] determine in general a unique conjugacy class of maximal nilpotent subgroups in G.

(a) The maximal nilpotent subgroups of Sym(5) are: $S_2(Sym(5))$, $S_5(Sym(5))$ and $C(S_3(Sym(5))$. They intersect Alt(5) in $S_2(Alt(5))$, $S_3(Alt(5))$ and $S_3(Alt(5))$, respectively. The intersections are maximal nilpotent subgroups of Alt(5), and since $Alt(5)$ and Sym(5) are the only non-trivial subnormal subgroups of Sym(5), it follows that each maximal nilpotent subgroup of Sym(5) is an N-Injector by the definition in [9].

Received November 24, 1980 and in revised form July 24, 1981

(b) As $F(Sym(5)) = 1$, each maximal nilpotent subgroup of Sym(5) is an N-Injector by the characterization in [13] as well.

Therefore, we will use another characterization of N-Injectors. First a definition.

DEFINITION 1. (i) $d(k, G)$ will denote the maximum of the orders of all nilpotent subgroups of G of class at most k .

(ii) $\mathcal{A}(k, G)$ will denote the set of all nilpotent subgroups of G of class at most k, having order $d(k, G)$.

(iii) $\mathcal{A}(\infty, G)$ ($d(\infty, G)$) will denote the set (order) of nilpotent subgroups of maximal order.

A theorem of Bender proved in [2] states: if $C(F(G)) \subseteq F(G)$, then A is an N-Injector iff \bf{A} is a maximal nilpotent subgroup of \bf{G} containing an element of $\mathcal{A}(2, G)$. Now it will be convenient to adopt the following definition of N-Injectors.

DEFINITION 2. A subgroup A of G is called an N-Injector if A is a maximal nilpotent subgroup containing an element of $\mathcal{A}(2, G)$. The set of N-Injectors of G will be denoted by $NI(G)$.

Our definition assures that any group G contains N-Injectors. If $C(F(G))\subset$ *F(G),* then by [2] and [13] our definition is equivalent to the original definition in [9].

Section B contains calculations which lead to the evaluation of $d(2, Sym(n))$, and as a consequence, Theorem B.8, $NI(Sym(n))$ is determined and shown to consist of a single conjugacy class.

THEOREM B.8. (a) Sym(n) *contains a single class of N-Injectors.*

(b) If $n \neq 3 \pmod{4}$, *then each N-Injector is a 2-Sylow subgroup of Sym(n).*

If $n = 3 \pmod{4}$, *then each N-Injector is the subgroup generated by a 3-cycle* and a 2-Sylow subgroup of $Sym(n-3)$ on the remaining $n-3$ symbols, and each *such subgroup belongs to* NI(Sym(n)).

In Section C, we have obtained results about $NI(Sym(n))$ and the sets $\mathcal{A}(k, \text{Sym}(n))$ similar to known results in groups of odd order, [1], [5]. The main result is that $NI(Sym(n)) = \mathcal{A}(\infty, Sym(n)).$

In Section D, we introduce a generalization of N-Injectors, namely π -N-Injectors. First a definition.

DEFINITION 3. Let π be a set of primes.

(i) $d(\pi, k, G)$ will denote the maximum of orders of all nilpotent π -subgroups of G of class at most k .

(ii) $\mathcal{A}(\pi, k, G)$ will denote the set of all nilpotent π -subgroups of G of class at most k having order $d(\pi, k, G)$.

(iii) $\mathcal{A}(\pi, \infty, G)$ ($d(\pi, \infty, G)$) will denote the set (order) of nilpotent π subgroups of maximal order.

DEFINITION 4. A subgroup A of G is called a π -N-Injector if A is a maximal nilpotent π -subgroup containing an element of $\mathcal{A}(\pi, 2, G)$. The set of π -N-Injectors of G will be denoted by NI(π , G).

REMARKS. (a) If π is the set of all primes, then:

(i) $\mathcal{A}(\pi, k, G) = \mathcal{A}(k, G)$.

(ii) $\mathcal{A}(\pi, \infty, G) = \mathcal{A}(\infty, G)$.

(iii) $NI(\pi, G) = NI(G)$.

(b) If π consists of a single prime, then:

 $\mathcal{A}(\pi, \infty, G)$, NI(π , G) and the set of p-Sylow subgroups of G, coincide.

(c) If G is solvable and $\{H^x \mid x \in G\}$ is the set of π -Hall subgroups of G then:

(i)
$$
\mathscr{A}(\pi, k, G) = \bigcup_{x \in G} \mathscr{A}(\pi, k, H^*)
$$
.

(ii) $\mathcal{A}(\pi,\infty,G)=\bigcup_{x\in G}\mathcal{A}(\pi,\infty,H^{\times}).$

(iii) $NI(\pi, G) = \bigcup_{x \in G} NI(H^x)$.

We suggest the following two conjectures.

CONJECTURE 1. Let G be a finite group and π a set of primes, then $NI(\pi, G)$ is *a conjugacy class.*

CONJECTURE 2. Let G be a finite group and π a set of primes, then $\mathcal{A}(\pi, \infty, G)$ *is a conjugacy class.*

REMARKS. (d) Conjecture 1 holds in solvable groups.

(e) Conjecture 2 holds in groups of odd order, since then $\mathcal{A}(\pi, \infty, G)$ = $NI(\pi, G)$ [1], [5].

(f) If $\pi = \{p\}$, Conjectures 1 and 2 hold by the Sylow theorem.

(g) In general, NIG) and $\mathcal{A}(\infty, G)$ don't coincide. Examples of groups of order $p^{\alpha}q^{\beta}$ where it happens can be deduced from [7]. Another example is the Mathieu group M_{11} . By [11] $\mathcal{A}(\infty, M_{11})$ consists of the 2-Sylow subgroups of M_{11} , while $NI(M_{11})$ consists of the 11-Sylow subgroups of M_{11} .

The main result of Section D is that for $G = Sym(n)$, Conjectures 1 and 2 hold.

B. **The N-Injectors of** Sym(n)

 $NI(Sym(n))$ will be determined in three steps.

I. Evaluation of $d(2, S_n(Sym(n)))$.

II. Evaluation of $d(2, M)$, where M is any maximal nilpotent subgroup of $Sym(n)$.

III. Finding the maximal nilpotent subgroups of $Sym(n)$ which maximize $d(2, M)$, and showing that they constitute a unique conjugacy class. Thus, the N-Injectors are all conjugate.

Step I. Evaluation of $d(2, S_p(Sym(n)))$

Since $S_p(Sym(np + r)) = S_p(Sym(np))$ for $0 \le r < p$, it is enough to consider $S_p(Sym(np))$. We will deal with p odd and $p = 2$ separately.

If p is an odd prime, consider the arithmetic progression $\{kp^2 + p + 1\}$ $k =$ 1,2,...}. By the Dirichlet Theorem, we can find a prime $q = kp^2 + p + 1$ for some k. Clearly, $p \mid q-1$, but $p^2 \nmid q-1$. For such q the groups $S_p(Sym(np))$ [14, p. 11] and $S_p(GL(n,q))$ [16] are isomorphic (as abstract groups, not as permutation groups). Thus, $d(2, S_p(Sym(np)))$ will be evaluated as a consequence of Lemma B.1 on p-subgroups of $GL(n,q)$.

If $p = 2$, then the group Z_2 $S_2(Sym(n)) \cong S_2(Sym(2n))$ can be represented faithfully as a linear group, acting on a vector space V over $GF(3)$ of dimension n, in the following way. Let $V = V_1 \bigoplus V_2 \bigoplus \cdots V_n$ be the direct sum of n 1-dimensional subspaces. Let Z_2 act on each V_i , and let $S_2(Sym(n))$ permute the subspaces V_i , $1 \le i \le n$. We note that this embedding of $S_2(Sym(2n))$ in $S_2(GL(n,3))$ is not onto [6]. But still, $d(2, S_2(Sym(2n)))$ will be evaluated as a consequence of Lemma B.2 on 2-subgroups of $GL(n, 3)$. The final result of Step I will be summarized in Theorem B.3. Results of the nature of Lemma B.1 and Lemma B.2 appear in [10].

LEMMA B.1. Let p be an odd prime and P a p-subgroup of $GL(n, q)$ of class at *most p-1. If p | q-1 but p²* \neq *q-1, then* $|P| \le p^n$ *.*

PROOF. By induction on *n*. First we will check the lemma for $n \leq p$. Since

$$
|S_p(\mathrm{GL}(n,q))| = \begin{cases} p^n & \text{if } n < p \\ p^{p+1} & \text{if } n = p \end{cases}
$$

it suffices to consider the case $n = p$. However, class $(S_p(GL(p, q))) = p$, hence $|P| \leq p^{\rho}$. Assume, therefore, that $n > p$ and let P act on V, a vector space of dimension n . By induction, the theorem holds for any p -group of class at most

 $p-1$ which acts faithfully on V', where dim(V') $\lt n$. If V is reducible under P, say $V = V_1 \bigoplus V_2$, let $P_i = P/C_P(V_i)$ and $|V_i| = q^{n_i}$, $i = 1, 2$. We obtain:

$$
|P| \leq |P_1| |P_2| \leq p^{n_1} \cdot p^{n_2} = p^{n_1+n_2} = p^n.
$$

So, we may assume that V is irreducible. As $P \subseteq S_n(\text{GL}(n, q)) \cong S_n(\text{Sym}(np)),$ therefore, if P is cyclic, then $|P| \leq p^{\lfloor \log_p(np) \rfloor} \leq p^n$, and we are through. It is left to consider the case where P is non-cyclic. By [14, 19.2] P has a subgroup H of index p such that we can write V as a direct sum, $V = V_1 \bigoplus V_2 \bigoplus \cdots V_n$, where each V_i is an *H*-invariant subspace, and if $x \in P \backslash H$, then $V_i x = V_i$, where the permutation $i \rightarrow i'$ is a *p*-cycle.

Let $K_i = C_H(V_i)$, $1 \leq i \leq p$ and take $x \in P \backslash H$. Here, by induction we have $|H/K_i| \leq p^{n/p}$, hence $|H| \leq p^n$. If $|H| < p^n$, we obtain $|P| \leq p^n$, so we may assume $|H| = p^n$. That means $H \cong \prod_{i=1}^p (H/K_i)$, so H is the direct product of its projections on V_i , these projections being conjugate through x. Letting y be an element of order p that H induces on V_i , it follows that P contains $\langle y, x \rangle \cong$ *Cp* $|Cp|$, of class p, which contradicts the assumption class $(P) \leq p-1$, and Lemma B.1 is proved.

LEMMA B.2. *If P is a 2-subgroup of* GL(n, 3) *of class at most two, then* $|P| \leq 2^{n+[n/2]}$.

PROOF. By induction on *n*. First, we will check the lemma for $n \le 3$. We have:

$$
|S_2(GL(n,3))| = \begin{cases} 2 & \text{if } n = 1, \\ 2^4 & \text{if } n = 2, \\ 2^5 & \text{if } n = 3. \end{cases}
$$

Following [6] $S_2(GL(2, 3))$ is Semidihedral of class 3 and $S_2(GL(3, 3))$ is the direct product of $S_2(GL(2,3))$ and Z_2 , again a group of class 3, hence if P is of class at most two, then $|P| \le 2^3$ if $n = 2$, and $|P| \le 2^4$ if $n = 3$. This completes the checking. Assume, therefore, that $n > 3$ and let P act on V, a vector space of dimension n. By induction, the lemma holds for any 2-subgroup of class at most two which acts faithfully on V', where dim(V') $\lt n$. If V is reducible under P, say $V = V_i \oplus V_2$, let $P_i = P/C_P(V_i)$ and $|V_i| = 3^{n_i}$, $i = 1, 2$. We obtain:

$$
|P| \leq |P_1| |P_2| \leq 2^{n_1 + (n_1/2)} 2^{n_2 + (n_2/2)} = 2^{n + (n_1/2) + (n_2/2)} \leq 2^{n + (n/2)}.
$$

So we may assume that V is irreducible. Since class $(P) \le 2$, it follows that if P is Quaternion, Dihedral or Semidihedral, then $|P| = 2^3 < 2^{n+|n/2|}$ for $n > 3$ as required.

266 A. BIALOSTOCKI Isr. J. Math.

If P is cyclic, let $\lceil n/2 \rceil = \sum_{i=1}^{s} 2^{\alpha_i}$ be the 2-adic representation of $\lceil n/2 \rceil$. Then $S_2(GL(n,3))$ is $\prod_{i=1}^s G_i$ for n even and $(\prod_{i=1}^s G_i) \times Z_2$ for n odd, where $G_i =$ $T \mid S_2(Sym(2^{\alpha_i}))$ and T denotes the Semidihedral group of order 2^4 . Since T has a faithful permutation representation of degree $2³$, it follows that G_i has such a representation of degree $2^3 \tcdot 2^{\alpha}$. Thus $S_2(GL(n,3))$ has a faithful permutation representation of degree less than or equal to $2^{3}(\sum_{i=1}^{s} 2^{\alpha_i})+2=2^{3}[n/2]+2$. It follows that $|P| \le 2^3 \lfloor n/2 \rfloor + 2 \le 2^{n + \lfloor n/2 \rfloor}$ for $n > 3$, as required.

It is left to consider the case where P is not cyclic Quaternion, Semidihedral, or Dihedral. Now the proof can be continued as in Lemma B.1. By [14, 19.2] P has a subgroup H of index 2 such that $V = V_1 \bigoplus V_2$ where V_i , $i = 1, 2$ are H-invariant subspaces of V and each $x \in P \backslash H$ permutes V_1 and V_2 . Let $K_i = C_H(V_i)$, it can be assumed that $H = K_1 \times K_2$ and $P \cong K_1 \setminus C_2$. Here class(P) \leq 2 implies that K_1 is abelian. But K_1 is irreducible on V_2 (otherwise P is reducible), so K_1 is cyclic, and now class(P) \leq 2 is possible only for $|K_1| = 2$, $|P| = 8$, and the lemma certainly holds for this case. Lemma B.2 is proved.

THEOREM B.3. If $m = np + r$, where $0 \le r < p$, then:

$$
d(2, S_p(Sym(m))) = d(2, S_p(Sym(np))) = \begin{cases} p^n & \text{if } p \text{ is odd,} \\ 2^{n + \lfloor n/2 \rfloor} & \text{if } p = 2. \end{cases}
$$

PROOF. In view of our discussion preceding Lemma B.1, it follows from Lemmas B.1 and B.2 that:

$$
d(2, S_p(\text{Sym}(np))) \leq \begin{cases} p^n & \text{if } p \text{ is odd,} \\ 2^{n+[n/2]} & \text{if } p = 2. \end{cases}
$$

In fact, the equality holds. If p is odd, then the group generated by n disjoint p-cycles is elementary abelian of order pⁿ. If $p = 2$, divide 2n into [n/2] sets of 4 elements each (in the case where n is odd there is a remainder of a two element set). Since the Dihedral group of order 8 has class two and acts faithfully on a set of 4 elements, we can construct a direct product of $\lfloor n/2 \rfloor$ such groups, adding a transposition to the product if n is odd. In any case, a group of order $2^{n+[n/2]}$ is obtained.

COROLLARY B.4.

$$
d(2, S_p(Sym(p^n))) = \begin{cases} p^{p^{n-1}} & \text{if } p \text{ is odd,} \\ 2 & \text{if } p = 2 \text{ and } n = 1, \\ 2^{3 \cdot 2^{n-2}} & \text{if } p = 2 \text{ and } n > 1. \end{cases}
$$

Step II. Evaluation of d(2, M)

First, we will describe the structure of the maximal nilpotent subgroups of Sym(n), [15, I.5]. Let $n = \sum_{i=1}^{k} n_i$ be a partition of n into k positive integers and assume it satisfies:

(i) The integer 1 occurs in the partition at most once.

(ii) The integer p^{α} (p is a prime) occurs in the partition at most $p-1$ times.

Then, to each such partition, there corresponds a unique conjugacy class of maximal nilpotent subgroups. Let $Sym(n)$ act on $\Omega = \{1, 2, \dots, n\}$. Take any partition $\{\Omega_i | 1 \le i \le k\}$ of Ω such that $|\Omega_i| = n_i$ for $1 \le i \le k$. Each subgroup in the class is a direct product of k transitive nilpotent subgroups G_i of degree n_i , acting on Ω_i , $1 \leq i \leq k$. Each G_i is isomorphic to a direct product of p-Sylow subgroups of Sym(p^{α}) [12, p. 379], where p^{α} is the highest power of p dividing n_i and p runs over the primes which divide n_i .

REMARKS. (a) The structure of the subgroups of $Sym(n)$ maximal with respect to being nilpotent and transitive, can be deduced from the above description. These are the subgroups which correspond to the trivial partition $n = n₁$ and they form a conjugacy class.

(b) To each partition of n there corresponds a nilpotent subgroup as described above, but conditions (i) and (ii) imply its maximality.

NOTATION. Though the n_i 's in a partition of n need not be distinct, we will use the set notation $\{n_1, \dots, n_r\}$ in order to denote partitions.

THEOREM B.5. *If M is a maximal nilpotent subgroup of* Sym(n) *which corresponds to the partition* $\{n_1, \dots, n_r\}$, then $d(2, M) = \prod_{i=1}^r \varphi_2(n_i)$, where

$$
\varphi_2(m) = \begin{cases}\n1 & \text{if } m = 1, \\
2 & \text{if } m = 2, \\
2^{3 \cdot 2^{\alpha - 2}} & \text{if } m = 2^{\alpha}, \ \alpha \ge 2, \\
p^{p^{\alpha - 1}} & \text{if } m = p^{\alpha}, \ p \ne 2, \ \alpha > 0, \\
\prod_{i=1}^l \varphi_2(p_i^{\alpha_i}) & \text{if } m = \prod_{i=1}^l p_i^{\alpha_i}, \\
\text{where } p_i \text{ are distinct primes for } 1 \le i \le l.\n\end{cases}
$$

PROOF. By the discussion above $M = \prod_{i=1}^{r} M_i$, where each M_i is a nilpotent subgroup of M of degree n_i . By Corollary B.4, $d(2, M) \ge \prod_{i=1}^r \varphi_2(n_i)$ and since every subgroup of M of class at most two is contained in a product of its projections on the M_i 's, we obtain an equality.

268 A. BIALOSTOCKI Isr. J. Math.

LEMMA B.6. If $p^{\alpha} > 3$, where p is an odd prime and $p^{\alpha} = 2^{\alpha_1} + \cdots + 2^{\alpha_s}$ is the *2-adic representation of p^a, then:* $\prod_{i=1}^{s} \varphi_2(2^{n_i}) > \varphi_2(p^{\alpha})$.

PROOF. The lemma can be easily checked up to $p^{\alpha} \le 17$, so assume $p^{\alpha} > 17$. If $p^{\alpha} = 3 \pmod{4}$, then $\Pi_{i=1}^{s} \varphi_2(2^{\alpha_i}) = 2^{-\frac{5}{4}} \Pi_{i=1}^{s} 2^{3 \cdot 2^{\alpha_i - 2}}$ and if $p^{\alpha} = 1 \pmod{4}$, then $\Pi_{i=1}^{s} \varphi_2(2^{a_i}) = 2^{-\frac{3}{4}} \Pi_{i=1}^{s} 2^{3 \cdot 2^{a_i - 2}}$. So in any case we get in view of $p^{\alpha} > 17$ and $p \ge 3$:

$$
\prod_{i=1}^s \varphi_2(2^{\alpha_i}) \geq 2^{\frac{-s}{4}} \prod_{i=1}^s 2^{3\cdot 2^{\alpha_i-2}} = 2^{-\frac{s}{4}} \cdot 2^{\frac{3}{4}\sum_{i=1}^s 2^{\alpha_i}} = 2^{\frac{3}{4}p^{\alpha-\frac{s}{4}}} > 2^{\frac{2}{3}p^{\alpha}} > p^{p^{\alpha-1}} = \varphi_2(p^{\alpha}).
$$

LEMMA B.7. Let $\{n_1, \dots, n_r\}$ be a partition of n which maximizes the product $\prod_{i=1}^r \varphi_2(n_i)$. Then either all the n_i's are powers of 2, or $n_1 = 3$ and all the other n_i's $(if r > 1)$ *are powers of 2.*

PROOF. If one of the n_i 's equals $p^{\alpha}t$, where p is an odd prime, $p^{\alpha} > 3$ and $(t, p) = 1$, then replacing n_i by the set $\{2^\alpha t \mid 1 \le i \le s\}$, where $p^\alpha = 2^{\alpha_1} + \cdots + 2^{\alpha_s}$ yields in view of Lemma B.6:

$$
\prod_{i=1}^{s} \varphi_2(2^{\alpha_i}t) \geq \prod_{i=1}^{s} (\varphi_2(2^{\alpha_i})\varphi_2(t)) = (\varphi_2(t))^s \prod_{i=1}^{s} \varphi_2(2^{\alpha_i})
$$
\n
$$
\geq \varphi_2(t) \prod_{i=1}^{s} \varphi_2(2^{\alpha_i}) > \varphi_2(t)\varphi_2(p^{\alpha}) = \varphi_2(np^{\alpha}) = \varphi_2(n_i)
$$

contradicting the maximality of $\prod_{i=1}^{r} \varphi_2(n_i)$. Hence each *n_i* is of the form $3^{\alpha} \cdot 2^{\beta}$. where $0 \le \alpha \le 1$ and $\beta \ge 0$. If $\alpha = 1$ and $\beta > 0$ then replacing $3 \cdot 2^{\beta}$ by 2^{β} and $2^{\beta+1}$ again yields a contradiction since $\varphi_2(3\cdot2^{\beta}) < \varphi_2(2^{\beta})\varphi_2(2^{\beta+1})$. So $\alpha = 1$ implies $\beta = 0$. We conclude that each n_i is either 3 or 2^β , $\beta \ge 0$. Since $\varphi_2(3)\varphi_2(3) = 9 < 16 = \varphi_2(4)\varphi_2(2)$, $n_i = 3$ can occur at most once and the lemma is proved.

THEOREM B.8. (a) Sym(n) *contains a single class of N-Injectors.*

(b) If $n \neq 3 \pmod{4}$, *then each N-Injector is a 2-Sylow subgroup of Sym(n)*.

If $n = 3 \pmod{4}$, *then each N-Injector is the subgroup generated by a 3-cycle* and a 2-Sylow subgroup of $Sym(n-3)$ on the remaining $n-3$ symbols, and each *such subgroup belongs to* NI(Sym(n)).

PROOF. Let M be an N-Injector of $Sym(n)$ corresponding to a partition ${n_1, \dots, n_r}$. By Lemma B.7, the n_i 's are powers of 2 and possibly one of them is 3. Since M is a maximal nilpotent subgroup of $Sym(n)$, conditions (i) and (ii) imply that all the n_i 's are distinct. Hence, either the n_i 's are the terms in the 2-adic representation of n, or 3 occurs and the other n_i 's are the terms in the 2-adic representation of $n-3$, whichever yields a larger $d(2, M)$. Throughout Vol. 41, 1982 SYMMETRIC GROUPS 269

the proofs of Lemmas B.6 and B.7 strict inequalities were involved hence for each n a unique partition corresponds to an N-Injector of $Sym(n)$. Thus by [15], $NI(Sym(n))$ consists of a unique conjugacy class and (a) follows. A simple checking determines the n_i's in the two cases where $n \neq 3$ (mod 4) and where $n = 3 \pmod{4}$. Applying [14, p. 11] (b) follows.

REMARK. The 2-Sylow subgroups of $Sym(n)$ are the only self-normalizing nilpotent subgroups, namely the Carter subgroups of $Sym(n)$ [3]. By Theorem B.8, the Carter subgroups and the N-Injectors of Sym(n) coincide for $n \neq 3$ (mod 4) and are similar, but different, for $n = 3 \pmod{4}$.

C. Further properties of $NI(Sym(n))$

We will investigate the sets $\mathcal{A}(k, \text{Sym}(n))$, where k is a positive integer or equals ∞ , and obtain results similar to known results for groups of odd order [1], [5]. The problem of evaluation of $d(1, Sym(n))$ was solved by Bercov and Moser [4], who reduced it to an arithmetical problem: find a partition $\{n_1, \dots, n_r\}$ of n which maximizes the product $\prod_{i=1}^{r} n_i$. Then they used [8] and obtained the following formula:

$$
d(1, \text{Sym}(n)) = \begin{cases} 3^{k} & \text{if } n = 3k, \\ 4 \cdot 3^{k-1} & \text{if } n = 3k + 1, \\ 2 \cdot 3^{k} & \text{if } n = 3k + 2. \end{cases}
$$

In Section B, we have already evaluated $d(2, Sym(n))$. Now we will prove:

THEOREM C.1. Let k denote ∞ or a positive integer different from 1 or 3 and let $A \in \mathcal{A}(k, \text{Sym}(n)).$

(a) If $n \neq 3 \pmod{4}$, *then* A is a 2-subgroup.

If $n = 3 \pmod{4}$, *then* A *is generated by a 3-cycle and a 2-subgroup on the remaining* $n-3$ *symbols.*

(b) $\mathcal{A}(\infty, \text{Sym}(n)) = N I(\text{Sym}(n)).$

(c) *There is a* $B \in \mathcal{A}(\infty, \text{Sym}(n))$ *such that* $B \supseteq A$ *, and any maximal nilpotent subgroup of Sym(n) which contains A belongs to* $\mathcal{A}(\infty, Sym(n))$.

PROOF. We first prove (a). The case $k = 2$ has already been proved, so assume $k \ge 4$ or $k = \infty$. For each prime power p^{α} , define

$$
\varphi_k(p^{\alpha})=d(k, S_p(\mathrm{Sym}(p^{\alpha})))
$$

and if $m = \prod_{i=1}^{s} p_i^{\alpha_i}$ where p_i are distinct primes, let $\varphi_k (m) = \prod_{i=1}^{s} \varphi_k (p_i^{\alpha_i}) =$ $d(k, \Pi_{i=1}^s S_{p_i}(Sym(p_i^{a_i})))$. If $A \in \mathcal{A}(k, Sym(n))$, then $A \subseteq M$ where M is a maxi270 A. BIALOSTOCKI Isr. J. Math.

mal nilpotent subgroup of $Sym(n)$. Thus, $d(k, Sym(n)) = max{d(k, M)}$ *M* is a maximal nilpotent subgroup of $Sym(n)$ and let the maximum value be obtained on M, which corresponds to the partition $\{n_1, \dots, n_r\}$. Clearly [12, p. 379] $\varphi_k(p^{\alpha}) \leq \varphi_x(p^{\alpha}) = p^{(p^{\alpha}-1)/(p-1)}, \varphi_k(1) = 1, \varphi_k(2) = 2, \varphi_k(4) = 8$ and if $\alpha \geq 3$, then $\varphi_k (2^\alpha) \ge \varphi_4 (2^\alpha) \ge 2^{7 \cdot 2^{\alpha-3}}$, since $S_2(Sym 2^3)$ is of order 2⁷ and of class 4 [12, p. 379].

We claim now that an analogue of Lemma B.6 holds: if $p^{\alpha} > 3$, where p is an odd prime and $p^{\alpha} = 2^{\alpha_1} + \cdots + 2^{\alpha_s}$ is the 2-adic representation of p^{α} , then: $\prod_{i=1}^{s} \varphi_k(2^{a_i}) > \varphi_k(p^{\alpha})$ for $k \ge 4$. It is easy to check the claim for $p^{\alpha} \le 31$, so assume, since p^{α} is a power of an odd prime, that $p^{\alpha} \ge 37$. Using our estimates it suffices to prove:

$$
2^{-\frac{17}{8}}\prod_{i=1}^{s} 2^{7\cdot 2^{\alpha_i-3}} > p^{(p^{\alpha}-1)/(p-1)} \qquad \text{or} \qquad 2^{\frac{2}{8}p^{\alpha}-\frac{17}{8}} > p^{(p^{\alpha}-1)/(p-1)}.
$$

Since $p^{\alpha} \ge 37$, hence $\frac{7}{8}p^{\alpha} - \frac{17}{16}p^{\alpha}$ and the problem reduces to proving

$$
2^{\frac{13}{16}p^{\alpha}} > p^{(p^{\alpha-1})/(p-1)} \qquad \text{or} \qquad \frac{13}{16}p^{\alpha} > \frac{p^{\alpha}-1}{p-1}\log_2 p.
$$

But

$$
\frac{13}{16}p^{\alpha} = \frac{13}{16}(p-1)\frac{p^{\alpha}}{p-1} > \frac{p^{\alpha}-1}{p-1}\log_2 p
$$

since $\frac{13}{16}(p - 1) > \log_2 p$ for $p \ge 3$. The claim has been proved. Now applying the arguments of the proofs of Lemma B.7 and Theorem B.8, we deduce that M is either $S_2(Sym(n))$ or a subgroup generated by a 3-cycle and $S_2(Sym(n-3))$. Thus, $d(k, Sym(n)) = max\{3d(k, S_2(Sym(n-3))), d(k, S_2(Sym(n)))\}$. Let $n =$ $4m + \varepsilon$, where $\varepsilon = 0, 1, 2, 3$. Then for $\varepsilon = 0, 1, 2$ we get:

$$
3d(k, S_2(Sym(n-3))) \le 3 \cdot 2d(k, S_2(Sym(n-4-\varepsilon)))
$$

$$
\le \frac{6}{8}d(k, S_2(Sym(n-\varepsilon))) < d(k, S_2(Sym(n)))
$$

and if $\varepsilon = 3$, then

$$
d(k, S_2(Sym(n))) \leq 2d(k, S_2(Sym(4m))) < 3d(k, S_2(Sym(4m))).
$$

These inequalities complete the proof of (a). Parts (b) and (c) follow directly from the proof of part (a).

The problem of $\mathcal{A}(3,(\text{Sym}(n))$ will be dealt with elsewhere. The following example shows that the case $k = 3$ (as well as the case $k = 1$) is exceptional.

EXAMPLE. $S_3(Sym(9))$ is of order 3⁴ and class 3, while $S_2(Sym(9))$ is of order 2⁷ and class 4, [12, p. 379] and it is easy to see that $\mathcal{A}(3, Sym(9))$ is the set of 3-Sylow subgroups of Sym(9).

D. π -N-Injectors in $\text{Sym}(n)$

 π -N-Injectors have been defined in Section A. We will now prove that $Conjectures 1$ and 2 of Section A hold in Sym(n).

THEOREM D.1. Let π be any set of primes, then $NI(\pi, \text{Sym}(n))$ is a conjugacy *lass.*

PROOF. If $2, 3 \in \pi$, then $NI(\pi, \text{Sym}(n)) = NI(\text{Sym}(n))$ and hence is a conjugcy class. If $2 \in \pi$ but $3 \notin \pi$, then using the same arguments as in the proof of "heorem B.8 it follows that $NI(\pi, \text{Sym}(n))$ is the set of the 2-Sylow subgroups of $y_m(n)$ and, hence again, is a conjugacy class. So let us assume that $2 \notin \pi$. We *All* prove that any element of $NI(\pi, Sym(n))$ has the following form: it is the r-Hall subgroup of a maximal nilpotent subgroup of $Sym(n)$ which corresponds o a uniquely defined partition $\{m, n_1, \dots, n_s\}$ of n satisfying the following onditions:

(a) $m < \min\{p \mid p \in \pi\}$ or $m = 0$.

(b) For each i, $1 \le i \le s$, $n_i = p_i^{\alpha_i}$ where $p_i \in \pi$ not necessarily distinct and $r_i\geq 1$.

Since each subgroup in the set $\mathcal{A}(\pi, 2, \text{Sym}(n))$ is contained in a maximal $ilpotent subgroup M$,

 $d(\pi, 2, \text{Sym}(n)) = \max\{d(\pi, 2, M) | M \text{ is maximal nilpotent in } \text{Sym}(n)\}.$

et ${m_1, \dots, m_r}$ be a partition of n which corresponds to an M_1 such that $t(\pi, 2, M_1) = d(\pi, 2, \text{Sym}(n)).$ Then define $m = \sum m_i$, where the summation runs wer those i's for which $d(\pi, 2, \text{Sym}(m_i)) = 1$. Clearly $m < \min\{p \mid p \in \pi\}$. Let M α a maximal nilpotent subgroup of Sym(n) corresponding to the partition m, n_1, \dots, n_s where the n_i 's are those m_i 's which satisfy $d(\pi, 2, \text{Sym}(m_i)) > 1$. 3bviously $d(\pi, 2, M) = d(\pi, 2, M_1) = d(\pi, 2, \text{Sym}(n))$. It follows from the maxinality of $d(\pi, 2, M)$ that only primes from π divide each n_i , $1 \le i \le s$. We will low prove that $n_i = p_i^{\alpha_i}$ where $p_i \in \pi$ and $\alpha_i \ge 1$. Suppose that $n_i = p^{\alpha} q^{\beta}$, where $a, a \in \pi$ and W.L.O.G. $p > q$. By splitting n_i into q^{β} parts of cardinality p^{α} each, we get a contribution of $p^{p^{a-1}q^{\beta}}$ instead of $p^{p^{a-1}}q^{q^{\beta-1}}$, thus increasing $t(\pi, 2, \text{Sym}(n))$. So n_i cannot be a product of powers of two distinct primes, and ising induction, we obtain $n_i = p_i^{\alpha_i}$.

It is left to prove that $d(\pi, 2, \text{Sym}(n))$ determines the n_i 's uniquely. Denote by $w(p)$ the sum of all the n_i's which are powers of the prime p, and let $w(p) = \sum_{k=1}^{r} a_k p^{\alpha_k}$, $1 \le a_k \le p-1$, $\alpha_k \ge 1$ be the *p*-adic representation of *w(p)*. By the maximality of M each p^{α_k} appears exactly a_k times as an n_i for some i. Since $2 \notin \pi$, Theorem B.3 implies that the exponent of p in $d(\pi, 2, M)$ is $\sum_{k=1}^{l} a_k p^{\alpha_k - 1}$ and hence the a_k 's and the α_k 's are uniquely determined by $d(\pi, 2, M)$. We conclude that all the n_i 's are uniquely determined and hence the elements of $NI(\pi, \text{Sym}(n))$ form a single conjugacy class.

THEOREM D.2. Let π be any set of primes, then the set $\mathcal{A}(\pi, \infty, \text{Sym}(n))$ is a *conjugacy class.*

PROOF. The proof is quite similar to the proof of Theorem D.1. We will prove that if $H \in \mathcal{A}(\pi, \infty, \text{Sym}(n))$ then it is a π -Hall subgroup of a maximal nilpotent subgroup of $Sym(n)$ which corresponds to a uniquely defined partition ${m, n_1, \dots, n_s}$ of n satisfying the following conditions:

(a) $m < \min\{p \mid p \in \pi\}$ or $m = 0$.

(b) For each i, $1 \le i \le s$, $n_i = p_i^{\alpha_i}$ where $p_i \in \pi$ not necessarily distinct and $\alpha_i \geq 1$.

Define $\{m_1, \dots, m_r\}$, $\{m, n_1, \dots, n_s\}$ and M similarly to their definitions in the proof of Theorem D.1. We will now prove that $n_i = p_i^{\alpha_i}$ for some $p_i \in \pi$ and $\alpha_i \geq 1$. If p $|n_i|$ then clearly $p \in \pi$. Suppose that $n_i = p^{\alpha} q^{\beta}$ where $p, q \in \pi$ and W.L.O.G. $p > q$. Splitting n_i into q^{β} parts of cardinality p^{α} each, we get since $|S_n(\text{Sym}(p^{\alpha}))|=p^{(p^{\alpha}-1)/(p-1)}$ a contribution of

$$
p^{((p^{\alpha}-1)/(p-1))q^{\beta}} > p^{(p^{\alpha}-1)/(p-1)}q^{(q^{\beta}-1)/(q-1)},
$$

thus increasing $d(\pi, \infty, \text{Sym}(n))$. We have proved that n_i cannot be a product of powers of two distinct primes, and using induction, we obtain $n_i = p_i^{\alpha_i}$.

It is left to prove that $d(\pi, \infty, \text{Sym}(n))$ determines the n_i 's uniquely. Denote by $w(p)$ the sum of all the n_i 's which are powers of the prime p, and let $w(p) = \sum_{k=1}^r a_k p^{\alpha_k}$, $1 \leq a_k \leq p-1$, $\alpha_k \geq 1$ be the *p*-adic representation of *w(p)*. By the maximality of M each p^{α_k} appears exactly a_k times as n_i for some i. But by [14, p. I1]

$$
|S_{P}(M)| = \left|\prod_{k=1}^{i} (S_{P}(Sym(p_{k}^{\alpha_{k}})))^{\alpha_{k}}\right| = |S_{P}(Sym(w(p)))|
$$

and since p divides $w(p)$, $|S_n(M)|$ and hence $d(\pi, \infty, \text{Sym}(n))$ uniquely determine w(p). Thus $d(\pi, \infty, \text{Sym}(n))$ uniquely determines the a_k 's and the α_k 's, and consequently also the n_i 's. The uniqueness of the n_i 's implies that the elements of $\mathcal{A}(\pi, \infty, \text{Sym}(n))$ form a single conjugacy class.

We will conclude with some examples:

EXAMPLES. (a) For $k \ge 2$ or $k = \infty$ $\mathcal{A}(\{3\}', k, \text{Sym}(n))$ is a set of 2-subgroups of $Sym(n)$.

(b) For $k \ge 1$ or $k = \infty$ $\mathcal{A}(\{3, 5\}', k, \text{Sym}(n))$ is a set of 2-subgroups of Sym(n).

(c) NI({2}', Sym(ll)) consists of groups generated by the disjoint 3-cycles and a disjoint 5-cycle, while $\mathcal{A}(\{2\}', \infty, \text{Sym}(11))$ is the set of 3-Sylow subgroups of Sym(11). Thus, the fact that $NI(G) = \mathcal{A}(\infty, G)$ for groups of odd order cannot be extended to $NI({2}^{\prime}, G) = \mathcal{A}({2}^{\prime}, \infty, G)$ for arbitrary groups. However, it holds if **G is solvable.**

ACKNOWLEDGEMENTS

This work is a part of the author's doctoral research at Tel Aviv University. The author is extremely grateful to his thesis advisor, Professor M. Herzog, for his guidance and encouragement.

The author is also grateful to the referee for his constructive remarks.

REFERENCES

1. Z. Arad, *Abelian and nilpotent subgroups of maximal order of groups of odd order*, Pacific J. Math. 62 (1976), 29-35.

2. Z. Arad and D. Chillag, *Injectors of finite solvable groups,* Comm. Algebra 7(2) (1979), 115-138.

3. Maria Bellani Tamburini and Lino Di Martino, *I sottogruppi nilpotenti autonormalizzanti di S~* e di A, (English summary). Instit. Lombardo Accad. Sci. Lett. Rend. A 110 (1976), No. 2, 235-241 (1977). MR 58-5862.

4. R. Bercov and L. Moser, *On Abelian permutation groups,* Canad. Math. Bull. 8 (1965), 627-630.

5. A. Bialostocki, *On products of two nilpotent subgroups o[a finite group,* Israel J. Math. 20 (1975), 178-188.

6. R. Carter and P. Fong, *The Sylow 2-subgroups of the finite classical groups*, J. Algebra 1 (1964), 139-151.

7. M. Coates, M. Dwan and J. Rose, A note on Burnside's other p^o q^{μ} theorem, J. London Math. Soc. (2) 14 (1976), No. 1, 160-166.

8. A. Evans, *Problem* 80, *solution by V. Linis,* Canad. Math. Bull. 7 (1964), 626.

9. B. Fischer, W. Gaschiitz and B. Hartley, *Injectoren Endliche Aufl6sbare Gruppen,* Math. Z. 102 (1967), 337-339.

ll). G. Glauberman. *On Burnside's other p"q" theorem.* Pacific J. Math. 56 (1975), 469-476.

11. Philip J. Greenberg, *Mathieu Groups,* Courant Institute of Mathematical Sciences, New York University, 1973.

12. B. Huppert, *Endliche Gruppen L* Springer-Verlag, Berlin, Heidelberg, New York, 1967.

13. A. Mann, *Injectors and normal subgroups of finite groups,* Israel J. Math. 9 (1971), 554-558.

14. D. Passman, *Permutation Groups,* W.A. Benjamin Inc., New York, Amsterdam, 1968.

15. D. A. Suprunenko, *Matrix Groups,* Translations of Mathematical Monographs Vol. 45, Amer. Math. Soc., Providence, Rhode Island, 1976.

16. A. Weir, *Sylow p-subgroups of the classical groups over finite fields with characteristic prime to* p, Proc. Amer. Math. Soc. 6 (1955), 529-533.

DEPARTMENT OF PURE MATHEMATICS

TEL Avlv UNIVERSITY

RAMAT AVIV, ISRAEL