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TREES A N D  THE BIREFLECTION PROPERTY 

BY 

G A D I  M O R A N  

ABSTRACT 

The group of au tomorphisms of a tree (partially ordered set where the set of 
predecessors of an element  is well ordered) with no infinite levels enjoys the 
property that every member  is a product of two elements  of order - 2 .  It is 
shown that this property - -  called the birefiection property - -  fails for some 
trees having infinite levels. In fact, every subtree of a tree T has the bireflection 
property if and only if the tree of all zero-one sequences of length _-< to with 
finitely many ones is not embeddable  in T. 

0. Introduction 

We call an element ~ of a group G a reflection if ~ = ~- ' .  A bireflection of 

0 E G is an ordered pair (~, ~b) of reflections satisfying 0 = ~b. G is called 

bireflectional iff every element of G has some bireflection. Bireflectional groups 

are frequent and play an important role among groups encountered in Geometry 

(see Bachmann [1]; Veblen and Young [10], e.g., w167 121, 122; and Coxeter 

[2], p. 3). It is well known that the symmetric groups are bireflectional (see, e.g., 

Scott [9], 10.1.17). Bireflectionality in classical groups is studied by Ellers [3]. 

We say that a mathematical structure T has the bireflection property (b.r.p.) if 

its automorphism group Aut(T) is bireflectional. T has hereditarily the b.r.p, if 

every substructure of T has the b.r.p. Thus, abstract sets have hereditarily the 

b.r.p., by the bireflectionality of the symmetric groups. 

The object of this paper is the b.r.p, in trees. By a tree we shall mean a partial 

order T where the set of predecessors of each element is well-ordered. A tree T 

is naturally partitioned into levels T, labeled by ordinals, where an element a 

belongs to T, iff the set of predecessors of a has order type/z. The length lT of T 

is defined to be the first ordinal ~ such that T, = 0 .  As an abstract set T is also a 

tree of length 1, we see that T has the b.r.p, whenever lT = 1. Micha Perles 

(unpublished) discovered that whenever IT <= to, T has the b.r.p.* Now, every 

* A short proof of the b.r.p, when IT < to runs as follows: 
(a) Let G = II,~, G,. If G, is bireflectional for each i E L so is G. 
(b) Let G = K[H] (the wreath product of H by K).  If K, H are bireflectional, so is G. 
(c) Let IT < to. Then Au t (T)  is obtained from symmetric  groups by finitely many applications of 

direct products and wreath products. 
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subset of a tree of length =< to forms with the inherited order again such a tree. 

Thus, Micha Perles' Theorem implies: 

THEOREM A. Every tree of length < to has hereditarily the b.r.p. 

We generalize it as follows (Theorem 4.13): 

THEOREM B, A tree T has hereditarily the bireflection property if and only if T 
has no subset order-isomorphic to ~o. 

Here ~" is the tree of all zero-one sequences of length =< to that contain only 

finitely many ones. By some obvious mutual embedding relations ~,o can be 

replaced by an arbitrary augmented k-tree (a notion to be defined shortly; see 

also Definitions 4.0, 4.9). 

Theorem B as well as the rest of the results in this paper, were obtained in 

1972, stimulated by Perles' discovery of Theorem A. The rudimentary facts we 

use depend on an analysis of the set of bireflections of a permutation [5], that 

proves useful in handling some problems in the symmetric group ([4, 6-8]). It is 

summarized in w In w we obtain a parallel analysis for the set of bireflections 

of a tree automorphism of particular type, called a bounded tree automorphism 

(Definition 3.5). It follows that every bounded tree automorphism has some 

bireflection (Theorem 3.12). Since trees of length =<to have only bounded 

automorphisms, Theorem A follows (Corollary 3.13). 

Let k = ( k , ) , ~  be a sequence of integers greater than one. A k-tree is a tree 

of length to with a unique minimal element, such that every member of the n 'th 

level has precisely k, successors. An augmented k-tree T is obtained from a 

k-tree T by selecting a countable set of paths (maximal linearly ordered subsets) 

of T, whose union is T, and adding a maximal element to each. It turns out that 

any unbounded tree automorphism witnesses a subset of the tree, isomorphic to 

some augmented k-tree. In w automorphisms of k-trees are studied, and it is 

shown that no augmented k-tree has the b.r.p. (Theorem 4.12). Theorem B 

follows. 

The set T of all paths of a k-tree T is practically the same as the cartesian 

product F I , ~ K , ,  where K, has k, elements. We endow it with the metric of first 

difference, the distance between two different paths being 1/n + 1, where n is the 

first place they differ. With this metric, "it is a compact metric space homeomor- 

phic to Cantor's discontinuum C. The reason for choosing this particular metric 

is that a T-automorphism and a T-isometry are interchangeable notions 

(Proposition 4.1). Several of our auxiliary results seem to have independent 
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interest, restated topologically.  We collect some in the following lemma (Lemma 

4.2, Corollaries 4.3, 4.6): 

LEMMA. Let ~ be a disjointed countable family of countable dense subsets of 

the Cantor Discontinuum C. Endow C with the metric of first difference. Then:  

(a) There is an isometry of C having each member of sg for an orbit. 

(b) Let 0 be any permutation of sr Then there is an isometry X of C, such that X 

maps A onto O(A ) for every A E ~ .  

The assumption that ~ is countable  is essential. In fact, using the well 

order ing principle it is easy to obtain a parti t ion of C into countable  dense sets 

such that no h o m e o m o r p h i s m  of C has all parts for orbits. The negation of  (b) is 

even simpler, whenever  I ~ l  = K and 2 K exceeds the cardinality of the con- 

t inuum. 

1. Notat ion 

to and Z denote  the set {0, 1,2, �9 �9 �9 } of natural numbers  and the set of integers 

respectively. A n  ordinal number  is identified with the set of smaller ordinals,  and 

so 0 is identical with the empty  set 0 .  We denote  integers and ordinals =< to by 

m, n. i, j, k, p, q, r, s, t denote  integers. A, /z, v denote  arbitrary ordinals. O the r  

greek letters denote  functions. 

F o r m ,  n E Z U { t o } w e w r i t e m l n  i f fm,  n E Z a n d n = m r  for s o m e r E Z ,  

or  if n @{0, to}. Thus,  n ~ Z and to I n implies n = 0 and rn I~ holds for every 

m ~ Z U { t o } .  

Let 0 be a function,  A a subset of its domain.  Then  O IA denotes  the 

restriction of  0 to A, and O'A = {O(a) : a ~ A }. Thus  O" is a function defined on 

the power  set of the domain  of 0. 

Let  a be a function defined on an ordinal u. We think of a also as a well 

o rdered  sequence of length u and write la = u. If v is finite we also write 

a = (a(0) , .  �9 a ( u  - 1)). For /x  =< la we define d ( / z )  = a I tz. We write T < a itt 

T = d( t~)  for  some /z < la, i.e. when T is a p roper  initial segment  of  a. 

Let  A be a set. Then  I A I  denotes  the cardinali ty of A (identified with the 

smallest ordinal  of  that  cardinality), and A ~ the set of all functions from v to A 

(well o rdered  sequences over  A of  order  type v). Note  that if A = Q or  v = 0 

then A ~ = {0}. Let A <~ = U , < ~ A  ~'. 

A tree is a nonempty  subset T of  A <~ satisfying: a E T a n d / x  < la implies 

d (/x) E T. Thus,  Q is a minimal e lement  of every tree. If T is a t ree , /z  an ordinal  

then T~ = {a E T : la =/.L}, and lT  is the smallest /x such that T,  = O.  

Let T, T '  be trees, and let z be a function defined on T. Then  we let 
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r,, = z [ T~,. Let now r : T---> T'. Then ~" is order preserving (o.p.) iff for every 

a, b E T, a < b implies ~'(a) < r(b) .  r is called order preserving onto (o.p.o.) iff it 

is o.p. and maps T onto T'. r is an embedding if it is one to one and a < b if and 

only if ~ ( a ) <  ~0(b). z is an isomorphism iff it is an embedding onto T, and it is 

an automorphism iff it is an isomorphism and T = T'. 

Let T be a tree. A chain in T is a linearly ordered subset, and a path is a 

maximal chain. Define a set of functions defined on ordinals T by a E T i f f  

6 ( ~ ) ~  T for every/x < la, but for no b ~ Ta  < b holds. Let T* = T U 7 ~. Then 

T* is the smallest tree containing T, enjoying the property that every path has a 

maximal element, and 7 ~ is the set of maximal elements of T*. 

Let r : T---> T' be o.p.o. Then there exist a unique extension ~-* : T * ~  T'* 

which is o.p.o. We let ? = r* I?'. Thus ? is defined by ~:(ot)(n)= r(6(n)). 
Clearly, the mapping 0---> 0 is a group-monomorphism of Aut (T)  into ST, the 

symmetric group on T. 

We shall also need to consider trees in the broader sense mentioned in the 

introduction. A tree in the broad sense (tree i.b.s.) is a set T endowed with a 

partial order (transitive irreflexive relation) < ,  where for every x E T the set 

( - , x )  = {y : y < x} is well ordered. Most of our previously defined notions for 

trees have obvious counterparts for trees i.b.s., which we do not reproduce here. 

A tree i.b.s. T is isomorphic to a tree if and only if it satisfies the extra condition: 

(*) if ( - ,  x)  = ( - ,  y)  has no maximal element, then x = y. 

Notice that (*) implies that T has a unique minimal element. Every tree i.b.s. T 

is naturally embeddable in a tree i.b.s. T' satisfying (*) with the same group of 

automorphisms (to obtain T' from T add a unique maximal element to each set 

( - ,  x)  with no maximal element). Hence our results for trees hold for trees i.b.s. 

2. The bireflections of a permutat ion  

We summarize here for the reader 's convenience notation and results from 

[5]. Let  A be a nonempty set and let 0 be a permutation of A. For a E A  let 

(a)e = {0 m ( a ) : m  E Z } ,  and let (A)~ = {(a)o : a  ~ A } .  Thus (a)o is the 0-orbit 

containing a and (A)~ is the partition of A into 0-orbits. 

Let SA denote the group of all permutations of A and let 

B R ( 0 )  = {(~, ~b): ~, ~b E SA, ~2 = ~b2 = l ,  0 = ~ 0 } .  

Let ~P be a reflection of (A)  e, i.e. ~bESCA)o and ~2 =  1. Define BR(0;~)_C 

BR(0)  by: 

Br(0; ~ )  = {(~, ~b) E BR(0)  : q~"[(A )~ = O"I(A )o = ~}. 
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2.0. THEOREM. Let (~o, of) E BR(0).  Then ~o" = tO" = �9 is a cardinality pre- 
serving reflection of (A ) ~ Hence B R ( 0 ) =  U BR(0;qb), where �9 ranges on all 

cardinality preserving reflections of (A )o. 

Let qb be a cardinality preserving reflection of (A)". A coupling for �9 is a pair 

p = (px, p ~) of functions defined on ((A)~)* with values in A, satisfying for every 
u E ( (A)o ) .  

u = { ( p , ( u ) ) o , ( p  ,(u)),}. 

(r of)G BR(0)  obeys a coupling p for qb iff for every u E ((A)~ *, (p(p,(u)) = 

p_,(u ) holds. 

2.1. THEOREM. Let �9 be a cardinality preserving reflection of (A )~ 

(1) Every coupling p for ~ has a unique bireflection (p, O f )EBR(O;~)  such 

that (q~, of) obeys O. 
(2) Every (q~, tO) E BR(0 ; qb) obeys some coupling O [or d#. 

Let I A ] = n, 1_-< n = to, and let 0 be a cycle in SA, i.e., (A)~ ={A}.  When 

n < to we call a pair (a, b) of members  of A an antipodalpair (with respect to the 

cycle 0) if b = O'(a), where s = [n/2] is the greatest integer not greater  than n/2. 

Let (~, of) E BR(0).  a,, E A is a ~-point (of-point) iff ~(a,,) = ao(of(ao) = a,>). ao 
is a reflection point of ((p, of) itt it is ei ther a r or a of-point. 

2.2. THEOREM. Let 0 E S,, be a cycle, (~, of) E BR(0);  

(i) if I A I = to then there is exactly one reflection point, 
(ii) if 1 < I A I <  to then there are exactly two reflection points that form an 

antipodal pair (a~,, b(,). I f  I A I  is even, then ao, b,, are both ~p-points or both 
of-points. I f  I AI is odd, then a,, is a ~p-point and bo is a of-point. 

3. The bireflections of bounded tree automorphisms 

Throughout  this section T is a fixed tree and 0 E Aut(T) .  Let r ~ : T--* (T)  ~ be 

the natural mapping, i.e., r~ = (a)e. Define a binary relation < on (T) ~ by 

(1) x < y  r  

clearly 

(2) x < y C : > V a E x 3 b E y [ a < b ] C : ~ V b E y 3 a E x [ a < b ] .  

Let T o denote  the set ( T f  with the relation < .  We omit the straightforward 

proof of the following proposition: 
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3.0. PROPOSITION. T" is a tree in the broad sense and ~'~ : T--~ T" is order 

preserving onto (o.p.o.). 

3.1. COROLLARY. "c~ maps  T,  onto T~ for every ordinal lx < IT, and  lT" = lT. 

The following proposition is obvious, yet extremely useful. 

3.2. PROPOSITION. Let  a ,b  E T, a < b, and  let n = I(a)o I. For m E Z let 

B,. = {b' @ (b)o : 0 " (a)  < b'}. Then {B,. : m E Z }  is a partition of  (b )o into n sets 

o f  cardinality k, where k is the least cardinal satisfying n �9 k = I(b ), I. In fact, 0"  

maps  Bo onto B,, ,  and  B m =  B,,, iff n [ m - m '. 

3.3. COROLLARY. (a) Letx ,  y ~ T  o , x < y ,  l x l = m ,  I y l = n .  Then r a i n .  

(b) Let  a E x E T o , and  define Ta C_ T, Tx C_ T o by: 

T a = { b E T : b < a o r b = a o r a < b } ,  

Tx = { y E T  ~ : y < x o r y  = x o r x  < y } .  

I f  l Y I = I x I whenever y E T o and x < y, then r ~ I To is an isomorphism of  Ta onto 

Tx. Hence  r ~ IT. is an isomorphism if  Ix l = to. 

Define BR~(0) _C Aut(T)  x Aut(T),  Ro C Aut(T ~ by: 

BR<(0) = BR(0)  f3 (Aut(T) x Aut(T)),  

R o = { q b @ A u t ( T  ~ 2 = 1  and V x C  T ~  

Note that Ro is never empty, as the identity 1 is in Ro. 

For qbE Ro define BR<(0;qb)C_ BR(0)  by: 

BR<(O : ~)  = BR(O; ~)  O BR<(O). 

The following is a generalization of Theorem 2.0: 

3.4. THEOREM. Let  (~p, 0 ) E B R < ( 0 ) .  Then c b = q ~ " = ~ b " ~ R o .  Hence  

BR<(0) = U.~R, BR<(0, qb). 

PROOF. Let (~, 0 ) E  BR<(0). By Theorem 2.0 we know that cI) = q~"= ~," is a 

cardinality preserving permutation of T o of order _-< 2. It is left to show that 

�9 EAu t (T~  Let x,y E T o , x < y .  Pick a Ex,  b E y such that a < b .  Since 

q~ E A u t ( T ) ,  q~(a)< q~(b), and so (q~(a))o < (q~(b))o. But (q~(a))o = cI)(x), 
(~p (b))e = qb(y ), and so qb(x ) < qb(y ). Conversely, if q)(x ) < qb(y ) then qb(qb(x )) = 

x < y = 

Since �9 is a permutation of T o we conclude (b E Aut(T~ [] 
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Let  qb C Re. Then  (TO) * is a set of n o n e m p t y  sets, each of which contains  at 

most  two 0-orbi ts  of the same cardinali ty.  In analogy with (1), define for  

u, v E (T~ 

u < v  r 3 x E u 3 y ~ v  x < y .  

We let T o.* denote  (TO) * with the relat ion < .  Since @ @ A u t ( T ~  Proposi t ion 

3.0 implies that  T ~ is a tree and the natural  mapp ing  z* : T o --0 T O.* given by 

~-*(x) = ( x ) .  is o.p.o.  Le t  ~.o,. = r . r o .  Then  ~.o..: T---> T O'* is o.p.o.  

Let  I" : T--o T~ be o.p.o.  We call 6 : T~---> T a  generalized inverse (g.i.) of ~" iff 6 

is an embedding ,  6a-6 = 6 and z6-c = z. It is easily checked  that  if lh: T~--> T2 is 

also o.p.o,  and ,51 is a g.i. of  ~', then 66~: T 2 ~  T is a g.i. of ~h~'. 

Now 6 : T o ~ T is a g.i. of T ~ iff 6 is an o.p. choice funct ion on T". We note  

that  ~.o may  not have a g.i. In fact, let T be the tree of all ze ro -one  sequences  of 

length =< to and let 0 @ A u t ( T )  satisfy 7", E T O for  every  n (we call such a 0 a 

minimal  a u t o m o r p h i s m ;  see Defini t ion 4.4). Then  any o.p. 6 : T o ~ T must  be 

constant  on T ~ a set of the cardinal i ty of the cont inuum,  and so 6 is not  a choice 

function.  

3.5. DEFINITION. Let  0 E Au t (T ) .  We  call 0 a bounded automorphism iff for  

every  x @ T O the set of  cardinals  {IY 1: Y < x} is finite. 

Note  that  if IT  <= to then every  0 E A u t ( T )  is bounded .  Also,  every  0 having 

only finite orbits  or  only infinite orbits  is bounded .  

Using Corol la ry  3.3(a) one easily verifies: 

3.6. PROPOSITION. The fol lowing are the equivalent  o f  0 ~ A u t ( T ) :  

(i) 0 is bounded, 

(ii) for every 0 < u and every a E T, there is a A < v such that  for A <-_ IX < v, 

( t , ) )o  I = [. 

3.7. PROPOSITION. Let  0 ~ A u t ( T )  be a bounded automorphism.  Then T o has a 

generalized inverse. 

PROOF. Define ~5 : T o ~ T by induction.  Let  6({0}) = 0 .  Assume  that  6 ( y ) i s  

a l ready defined for  y < x E T~ so that  6 is an o rder  preserving choice function.  

Let  a E x. F o r / ~  < u let y~, = r ~  n.  = lY~ I, b~ = 6(y~).  By Propos i t ion  

3.6 let A < v ,  n_-<to satisfy n = n ~  for  every  A _ - < p . < v .  Let  m ~ Z  satisfy 

0"~ (d(A)) = b, .  Le t  A < / ~  < v. By  the induction hypothesis ,  b, < b, .  By Proposi-  

t ion 3.2, it follows f rom nA = n ,  that  b , < c E T , ,  implies c = b ~ .  Now c =  

0 " ( a ( ~ ) )  satisfies c E y ~  and b, = 0  " ( a ( A ) ) < 0  " ( d ( ~ ) ) = c .  H e n c e  b , =  
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6 ( y . ) =  0m(ci(#)) for every A =</~ < u. Thus 6 ( y ) <  O"(a)  for every y < x, and 

we can make 6 (x) = 0 " (a). [] 

Let �9 E Ro, and consider r* : T o ~ T ~ Since qb E Aut (T  ~ is bounded, it has 

a g.i. Let &: T~174 T o be a g.i. of ~-*. Then 3~ is an o.p. choice function on T ~ 

Since l u[_<-2 for u E T o`* , there is a unique g.i. 6_~ of r*  satisfying u = 

{&(u), 6_~(u)} for every u ~ T ~ We shall call (6z, 6_ 0 a complementary pair (of 

g.i.s of r*). 

By a coherent coupling for qb we mean a coupling P = (P~, O-J) for qb (see w 

such that P~ is o.p. for i =  1 , -  1. Thus a coupling p = (p~,p_t) is a coherent 

coupling iff p~,p ~ are embeddings of T o.* in T. 

3.8. PROPOSmON. Let 0 E Aut(T).  Then the following are equivalent: 

(i) ~.o has a generalized inverse, 

(ii) every �9 ~ Ro has a coherent coupling. 

PROOF. (i) ~ (ii): Let (6 ,  6 ~) be a complementary pair of g.i.s for z*, and let 

be a g.i. for r ~ Then p = (3&, 36_~) is easily checked to be a coherent coupling 
for ~b. 

(ii) ~ (i): Let p = (p~,p ~) be a coherent coupling for 1 E Ro, the identity 

mapping of T~ 6 : T~ T b y 6 ( x ) = p ~ ( { x } ) .  6 is clearly a g.i. of ~ -~ []  

3.9. COROLLARY. Let 0 E A u t ( T )  be bounded. Then every C~ERo has a 

coherent coupling. 

As in w we say that (~0, to)E BR~(0) obeys a coupling p for qbE Re iff 

q~(p~(u)) = p_,(u) for every u C T ~ 

3.10. PROPOSITION. Let 0 @ Aut(T) ,  ~ C Ro and let p be a coherent coupling 

for ~.  Then there is a unique (q~,to)E BR~(0;qb) such that (q, to) obeys p. 

PROOF. By Theorem 2.1 (1) there is a unique (q~,to)EBR(0;qb) such that 

(~p, tO) obeys p. It is left to show that q~ is o.p. This implies q~ E Aut (T)  and 

tO = r E Aut(T) ,  whence (~o, tO)@ BR~(0;qb). 

Since @ is an automorphism of T ~ and q~"= qb, we conclude that ~p, is a 

permutation of T~ for every/z  < lT. Recall (Proposition 3.2) that for a < b E T, 

r E Z  we have a < O ~ ( b )  iff n l r ,  where n =l(a)01.  

Let a <b .  We shall show r  Define x,y (E T o , u ,v  E T ~ and 

l<=n<=w by x = ( a ) o ,  y = ( b ) 0 ,  u = ( x ) . ,  v = ( y ) . ,  n = l x  I. Then x < y ,  

u ={x, dP(x ) }<{y ,~ (y ) }=v ,  I@(x) l=n .  Let p~(u)=a~, p~(v)=b~, i = 1 , - 1 .  

Since p~ is o.p. we have a~ < b~, i = 1, - 1. Also, by the definition of a coupling, 

u ={(a,)o,(a-,) ,} ,  v ={(b~)o,(b-,)o}. With no loss of generality we assume 

x = (a~)o and y = (b~)o. Let m,r E Z satisfy: 



252 G. MORAN lsr. J. Math. 

a = O'(a,) ,  b = Or(b,). 

By a < b, al < b~ we have n I r -  m. Since (~p, gJ) obeys  p we have 

~ ( a , ) =  a - , ,  

By r  = 0 m , ~0 ,  = 0-'~o we have 

r  = O-"(a_,), 

q~(b,) = b-l.  

~ ( b )  = 0 ~(b-l). 

Let n ' =  [(a_,)o I. By a_, < b_, we have ~o(a )<  q~(b) iff n ' l r -  m. But (a-,)o = 

qb(x). Hence  by ] qb(x)[ = n we have n ' =  n. Thus  q~(a) < ~o(b). []  

3.11. PROPOSmON. Let 0 E A u t ( T )  and assume that z ~ has a generalized 

inverse & Let ~ E R o  and let (q~ ,q0~BR~(0 ;qb) .  Then (~0, qJ) obeys some 

coherent coupling for ~.  

PROOV. Let  (6~,6 ~) be a c o m p l e m e n t a r y  pair  of g.i.s of qb. Def ine  p = 

(pl, p-~) by p~ = 66j, p ~ = ~pp~. Then  the p~ are obviously  o rder  preserving,  and 

p , ( u ) E  &(u), i = 1, - 1. [ ]  

Corol la ry  3.9 and Proposi t ions  3.10, 3.11 combine  in the following extension 

of T h e o r e m  2.1: 

3.12. THEOREM. Let 0 C A u t ( T )  be a bounded automorphism, and let c~ E 

Ro. Then : 

(0) There exists a coherent coupling for ~.  

(1) Every coherent coupling p for cb has a unique (q~, qJ) @ BR<(0;  qb) such that 

(q~, tO) obeys p. 
(2) Every (q~, ~b)E BR~(0, qb) obeys some coherent coupling for c~. 

Recall ing our  r e m a r k  that  t rees  of length _-< o~ have only bounded  a u t o m o r p h -  

isms and that  Ro is never  e m p t y  we obtain:  

3.13. COROLLARY (Micha Perles).  Let IT <= w. Then T has the bireflection 

property. 

4. k-trees and augmented k-trees 

We show in this section that  certain trees of length ~o + 1 called a u g m e n t e d  

k- t rees  fail to have the bireflection proper ty .  Moreover ,  every a u g m e n t e d  k- t ree  

is e m b e d d a b l e  in every tree T that  fails to have the b.r.p. (This follows f rom 

T h e o r e m  4.13 and the fact that  every  a u g m e n t e d  k - t r ee  can be e m b e d d e d  in the 

tree ~.o defined therein.)  

Let  k = (k, : n E w) be a sequence  of integers grea ter  than one.  Define t, by 

t, = FI,<, ki. In part icular ,  to = 1. We fix k in the sequel.  
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4.0. DEFINITION. A tree T is a k- t ree  iff IT = to and for  n E to, a E 7', we 

have:  
I{b' :  a < b ' ,  b ' @  T,+,} I = k,.  

Recall  that  To = {Q}, and so for a k- t ree  T we have 17", I = t. for  every  n E to. 

Le t  T be a k- t ree .  Define a metr ic  d on 7" by d ( a , a ) = 0  and d ( a , / 3 ) =  

1/(n + 1) for  a ~ / 3 ,  where  n satisfies i f ( n ) = / 3 ( n )  and ff(n + 1 ) ~ / 3 ( n  + 1). For  

a E T  let Ua = { a E T " : ~ ( l a ) = a } .  Then  U, is a c lopen ball of  d i ame te r  

1/(la + 1), and the family {U, : a E T} is a basis to the metr ic  topo logy  on 1". 

4.1. PROPOSITION. Let T be a k-tree. Then x is an isometry of T" if and only if 

X = 0 for some 0 E Aut (T ) .  

The  s t ra ight forward  p roof  is left to the reader .  

The  abundance  of i somorphisms  be tween  two k- t rees  is displayed in the 

following lemma.  

4.2. ISOMORPHISM LEMMA. Let T", T I be k-trees. For n @ to, i = 0 , 1  let A '. be a 

countable dense subset of ~.i so that n ~ m implies A ~, 71 A ~ = (~. Then there is an 

isomorphism ~': T~ T' such that for every n C to, ~"A~= A J,. 

PROOF. Let  A~,= {c~.m: m Eto}  be an enumera t i on  of A~,. Let  {(p,,q~):s E 

to} be any fixed enumera t i on  of to x to. Thus  for  any n C to, the sets {s :ps = n, q~ 

is even} and {s :ps = n, q~ is odd} are infinite dis jointed subsets  of to. 

We shall define for s E to, i = 0, 1, B~, ~ so that: 

(1) B~ is a finite subset  of 1" and B~C B~+~. 

(2) Let  C~s={~(r):/3 EBbs, rE to} .  Then  T~C Cir. 

(3) ~ : C~--> C~ is an i somorphism,  and ~-s = ~-~+l I C~. 

(4) B~+~ contains  the first m e m b e r  of A~, not in B~,, where  i =  0 or  i =  1 

according as q~ is even or odd. 

(5) a @ A " , n B  ~ if and only if §  

We show first that  defining z : T ~  T ~ by z I C ~ = ~-' we obtain  an i somor-  

phism as required.  Indeed ,  by (2) and (3) ~- is well defined,  and is an i somorph ism 

of T ~ onto  T ~. Let  n E to. We show that  ? "A  ~ = A~,. Indeed  let tx = a~  A~. 

Suppose  s satisfies: The re  are distinct so," �9 ", s,,_~ smal ler  than s such that  p,j = n 

and q,j is even,  j - - 0 , . . . , m  - 1. Then  by (4) and (1), o , c ~ , j E B ~ f o r j < m .  I f i n  

addi t ion p ~ = n  and q~ is even,  then a~176 by (4), and so ~:(a~ = 

~:'+'(a~ ~ A 1. by (5). Thus  ( " A  o CA_ A 1.. The  p roof  of the inclusion A ~, _C ( " A  o is 

similar. 

We now define B~, ~-' satisfying (1)-(5) by induction.  Let  B~, = {a~,~} and 

~-~ %(n)) = ~ ~o(n). 
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Induction Step. Assume  that  B,, r s are a l ready defined so that  (1)-(5) hold. 

I. L e t a ~ E A  ~ p , b e f i r s t n o t i n B ~ . w i t h i = 0 o r i = l a c c o r d i n g a s q ~ i s e v e n o r  

odd. Let  t be smallest  such that  B ' ,N U a v ) = Q .  By (2), s < t .  Also,  a =  

a ' ( t - 1 ) E C ~ .  Let  b = r~(a). Then  by (1), (3), b E TI i, and we may  pick 

' C~ . S i n c e A p ,  T , w e m a y p i c k  b E T I  ' s a t i s f y i n g b < b ' a n d b ' ~  ~-~ ~-~ is dense in "~ ' 

a ~-' E A ~ - ' N  U~,. Let  B ~ ~ C ~ p, = B , U { a ~ } ,  = { f l ( r ) : f l E B ~ , r ~ t o }  and define 

z ' : C " ~ C  ~ by z'IB~ and r '(a"(r))=aZ(r),  rEto .  Clearly z '  is an 

i somorph ism of C ~ onto  C Z, and ? ' ( a " )  = a '. 

II. For  a E T ~  let Da = { b E T ~ + ~ : a < b ,  b ~ C ' } .  Then  IDol=lo,,,~ for 

every  a E T~, so we fix a bi ject ion z, : D, ~ D~,~,). For  every  a E T~ and b E Da 
pick a ~ , E A ~ , N  Ub. Let:  

B~+, = B ~ U  U { a ~ : b E D ~  
aET', 

o C I by zs+~[ C ~ ' Def ine  ~'s+' : C,+,---> s+, = z ,  and zs+ ' (6~ = a -~,or for  

a E T ~ b E Da and r E w. It is readily checked that  (1)-(5) hold. [ ]  

4.3. COROLLARY. Let T be a k-tree and let (A,  : n E w) be a sequence of 

mutually disjoint countable dense subsets of 7". Let or be a permutation of w. Then 

there is an isometry X of 7" such that X maps A .  onto A,,r for every n E to. 

4.4. DEFINITION. Let  T be a k- t ree .  Then  0 E A u t ( T )  is called a minimal 

automorphism iff T" = {T. : n E to}. 

The  t e rm minimal  is bo r rowed  f rom topological  dynamics ,  where  a h o m e o -  

morph i sm  is called minimal  when  every  orbi t  is dense.  Indeed ,  the r eader  will 

easily verify: 

4.5. PROPOSITION. Let T be a k-tree, 0 E Aut(0) .  Then the following are 

equivalent: 

(i) 0 is minimal. 

(ii) (a)a is dense for some a E T. 

(iii) (a)~ is dense for every a E T. 

Perhaps  the most  na tura l  example  of a minimal  a u t o m o r p h i s m  of a k- t ree  

is the following one.  Let  T be the k- t ree  of all finite sequences  a = 

(ao," ' ", a,_~) E to<~ satisfying 0-< a~ < k~. With a E T, associate  a natural  

n u m b e r  ma by: 

n - I  

m. = ~ ait~ 
i = 0  
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where,  as usual, t~ = Ilj<; k;. Thus,  if k, = 10 for all n, then a,-~a,-2" �9 �9 a,  is the 

decimal  represen ta t ion  of m, ,  possibly with some zeros in front  of it. 

It is easily checked that  the mapp ing  r,  ( a ) =  m, is a bi ject ion of T, on to  

{0,. �9 to - 1}, and so for  0 =< m < t, let a,.,, be the unique a E T, with m,  = m. 

Define 0, by: 

O , ( a , . , , ) = a  . . . .  ~, m + l < t ,  

and 
O,(a. , ,_ , )=a, , . .  

Then  obviously T, = (a.m)oo for any 0 =  < m < r,. It is easily checked  that  0 

defined by 0 [ T, = 0, is indeed an a u t o m o r p h i s m  of T, and so 0 is a minimal  

au tomorph i sm.  

L e m m a  4.2 implies: 

4.6. COROLLARY. Let  T b e  a k-tree. For n E w let A .  C 7"be a countable dense 

set, such that A .  fq A, ,  = (~ for n ~ m. Then there is an isometry X of  T such that 

A ,  is a x-orbit  for every n E w. 

PROOF. Let  T" be an arb i t ra ry  k- t ree  and let 0 be a minimal  a u t o m o r p h i s m  

of T". For  n E w let A ~ be a #-orbi t  so that  A o, A o are different (hence disjoint) 

if n ~ m. By Proposi t ion  4.5 each A o is dense.  By L e m m a  4.2 let ? : T"---~ ~" be an 

i sometry  mapp ing  A~ on to  A , .  Let  X = ?07- ~. [ ]  

We discuss next the bireflections of a minimal  a u t o m o r p h i s m  of a k- t ree .  The  

famil iar i ty with the fixed points  of a possible bireflect ion (w turns out  to be 

useful. 

For  an arb i t ra ry  pe rmu ta t i on  q~ of a set A, let F '~ deno te  the set of points  fixed 

by ~p, i.e.: 

F '~ = { a  E A  : ~p (a )=  a}. 

Clearly,  if T is a tree,  q~ E A u t ( T ) ,  then F * is also a tree.  

Now let T be a k- t ree ,  let 0 E A u t ( T )  be a minimal  au tomorph i sm ,  and let 

(~, tO)E BR<(0) .  We  wish to de t e rmine  F '~, F ~; f rom F *, F *. Le t  F = F ,  U F , .  

Then  F is a tree.  Since T, E T o is ~o-invariant and tO-invariant, we have  by 

T h e o r e m  2.2: F.  = F fq T, is a two-e l emen t  set for  every  n > 0. We  say that  F 

splits at n "if for some a E F.  we have a < b for every  b E F.+~. 

4.7. PROPOSITION. Let n > O. F splits at n if and only if k.  is even. 

PROOF. By T h e o r e m  2.2 there  are b , b ' E  T.+~ such that  b ' =  O~(b), where  

s = [~t.+l], and F,+~ = {b, b'}. Le t  a = /~(n) .  Then  a < b '  if and only if OS(a) = a, 

that  is, if and only if t. Is. 



256 G. MORAN lsr. J. Math. 

I Case O. k. is even.  say k , , = 2 r .  Then  s=[~_t , ,+,]=['k . t .]=[~.2r. t .]= 

[ r . t . ] = r . t . ,  and so t. Is, so a < b ' .  

Case 1. k. is odd,  say k , , = 2 r + l .  Then  s = [ ! ( 2 r + l ) t . ] = [ ( r + ~ ) t . ]  = 

ft. + [�89 Since n > 0, we have 2 =< k,, ,-<_ t,, and so (J< ['t,,] < t.. Hence  t. X s 

and so a < b '  does not hold. []  

Clear ly F ~ = F "-~, F ~ = F"-'; and F r U F 'i' = F. 

We first de t e rmine  IF [ .  Since F is an infinite tree but F. is finite for all n, F is 

nonempty ,  by K6nig ' s  L e m m a .  Thus,  [Pl  => 1. 

Case A. k. is odd  for all but finitely many  values of n. Then  there  is an no 

such that  F does  not split at n for  n >= n,,. Since IF.  [ = 2 for all n, we conclude 

that  l tel : 2. 

Case B. k, is even for infinitely many  values of n. Then  F splits at n 

infinitely often,  and since IF, I =  2 for all n, F has at most  one m e m b e r .  By 

[~'[ > 1 we conclude that  I FI  = 1. 

We next discuss F ~ and F ~ separate ly .  There  are three  cases, two of which are 

dual. 

Case I. k, is an odd integer  for  every  n E w. Then  by T h e o r e m  2.2 (b), 

[F.*[ = [F.*[ = 1 for every  n E w, and so IF~[  = IF~[  = 1; that  is, there  exist one 

(o-point and one q~-point. 

Case H. There  is a smallest  n,, such that  k,~, is even.  By T h e o r e m  2.2 (b), 

F,~, = F.*,, or  F,~, = F*.,,. Case II  splits accordingly,  and we have:  

= = F . (F . )  is e m p t y  for  n > no, Case II. (Case II,). F~, F*.,, (F~, F.*,,). Then  * * = 

since F* (F*)  is a tree.  Thus  F = F ~ ( F  = F~).  

We  summar ize  this discussion in: 

4.8. THEOREM. Let T be a k-tree and 0 a minimal automorphism of T. Let 

(~o, qJ) @ BR<(0) .  Then ((o, ~)  is a bireflection of 0 and the following holds: 

(1) I f  k. is odd for all but finitely many n's then ((o, ~)  has precisely two 

refection points. 

(2) I f  k. is even for infinitely many values of n then ((o, (O) has precisely one 

reflection point. 

(3) I f  k. is odd for all n then there are precisely one (o-point and one (O-point. 

(4) If  no is smallest such that k~, is even and the two reflection points of the 

bireflection (~o,~,+1, 4J.o+n) of OK,+, are both ~o-points (qJ-points) then all reflection 

points of ((O, ~)  are (o-points (~-points). 

(5) Let x E (~.)o. Then (o"x = x ~ ~"x = x <z~ x contains a reflection point of 
( (o, (o). [] 

PROOF. (1)-(4) are discussed above .  (5) follows f rom T h e o r e m s  2.0 and 

2.2 (i). 
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4.9. DEFINITION. An augmented k-tree is a tree "I' of length to + 1, satisfying 

7" = T U A, where T is a k-tree and A is a countable dense subset of ~P. An 

automorphism 0 EAut ( ' s  is called minimal if K I T  is a minimal automor- 
phism of T. 

By the Isomorphism Lemma 4.2, every two augmented k-trees are isomor- 

phic. 

Let (p, k) denote the greatest common divisor of the integers p and k. 

4.10. THEOREM. Assume that[or some I < p  <to, (p,k,)  = 1 ]:or all n @to. 

Then every augmented k-tree has a minimal automorphism 0 admitting no 

bireflection. 

PROOF. By the Isomorphism Lemma 4.2 it is enough to show that there exists 

an augmented k-tree which has a minimal automorphism 0 admitting no 

bireflection. 

Let T be an arbitrary k-tree, and let r / ~  Aut(T) be minimal. Let RoE "/~, and 

for m ~ Z let ~,, = ~ "(ao). Let q @ to satisfy 5 < q and (q, k , ) =  1 for every 

n Eto. Define 0 E Aut(T) by 0 = r/L By (q ,k . )=  1 we have for a E T,: 

( a ) o = { O ' ( a ) : r C Z } = { r l q ' ( a ) : r E Z } = { ~ 7 ' ( a ) : r E Z } = ( a ) ,  = T, 

and so 0 is also minimal. 

Set x,, = (c~,.)a. Clearly xm = x,,. iff q lm - m ' .  

Let B ={x 2, xo, x~}, A =x_2UxoUx~.  

Then A is a countable dense subset of ]" (Proposition 4.5). Let 7" = T U A. 

Thus, "s is an augmented k-tree. Define 0 E Aut('s by 0 I T = 0, 0 I a = d I a .  
Then 0 is a minimal automorphism of T. We shall show that BR<(0)= 0 .  

In fact, suppose not and let (~b, q~) E BR~(0). Let q~ = ~b I T, tO = ~ I T. Then 

(q~, tO) E BR.~(0). 

CLAIM 1. q~'r/j  = r/-J~ for every j @ Z. 

PROOF. Let a E 7". and let t. = I T. I. Since (q, k.) = 1 for all n, t. = II~<. k~, 

we have (q , t . )=  1 and so we can find r E Z  so that t. I q r - j .  Thus r/q'(b) = 

rli(b), and rl-q'(b)= -q-i(b) for every b E 7".. Now, by q~0' = 0-'~0 and by a, 

q~(a)E 7",: 

~oTqJ(a) = r ~oO'(a)= O-'r r/-q~(q~(a))= r/-Jcp(a). [] 

Note that Claim 1 implies that (~o,~0r/)E BR~(rt). 

CLAIM 2. Let 6p = r I f  r = x, then [or every j E Z, +(x,+j) = x,_j. 
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PROOF. Let  4)(x,) = x~. Then  qS(a , )E(a~) , ,  and so for some r E Z, , ~ ( a , ) =  

0 ' ( a , )  = ~" ' ( a , ) .  By Claim 1, ~5~ j = ~-J~  and so: 

~(o~,.~) = ,~,]J(o,,)= ~ '~ (a , )=  ~-J~'(,~,)-- "~(o~,_j)= ~'(a, ,). 

Thus  (~(a,§ and so (~"(a,+j)~ n (a ,_ j )~  Q. Hence  by T h e o r e m  2.0, 

"(a,+~)~ = (a,_,)o, that  is, 4)(x, +j) = x,_ i. [] 
Consider  now the set T~ = B = {x_2, xo, x,}. Since (~, ~ ) E  BR~(t~), B must  be 

invar iant  under  4). Since every  orbi t  of 4) contains  at most  two e lements ,  B 

contains  at least one  fixed point  of 4). But  by T h e o r e m  4.8 4) has at most  two 

fixed points,  so ~b~ contains  precisely one fixed point  of 4). Now by Claim 2: 

If 4) (x-2) - -x-2  then 4)(xo)= x-4. 

If 4)(x,,) = xo then 4)(xi) = x_~. 

If 4)(xz) = x~ then 4)(x0) = x2. 

But since q > 5  and x, ,=xm,  iff q l m - m '  we have {x_,_,xo, x~}n 

{x-4, x_p, x2} = O,  and so B cannot  be  an invariant  set of 4). [ ]  

4.11. THEOREM. Assume that for some l < p < to, (p, k, ) = l for all n @ to. Let 
T be a k-tree and 0 a minimal automorphism of T. Then there exist an augmented 

k-tree T = T U A such that 0 defined by 0 I T = O, 0 I A = O IA  is a minimal 
automorphism of T admitting no bireflection. 

PROOF. Let  q be any natural  n u m b e r  satisfying (q, k . )  = 1 for  every  n E to. 

By the p roof  of T h e o r e m  4.10, T h e o r e m  4.11 will follow if we find a minimal  

a u t o m o r p h i s m  "O such that  0 = ~?q. For  every  n ~ to let p,  be a natural  n u m b e r  

satisfying t. I q P . -  1, where  t. = I/~<. k~. The  existence of p. is gua ran teed  by 

(t., q ) =  1. Now define a pe rmuta t ion  r/, of T. by r/. = 0 p-. Then  we have for 

a E T . :  

71~(a ) = ov.q(a)= O(a) 

and so 77 defined by - 0 I T ,  = ~. satisfies -0 q =  O. It  is left to show that  

77 E A u t ( T ) .  Since ~. is a pe rmu ta t i on  of T. it is enough  to show that:  a < b 

implies ~ ( a ) <  ~ (b ) .  Indeed ,  let a < b, a E T, ,  b ~ Tin. Then:  

n ( a ) = n ~ ( a ) = O ~ . ( a ) ,  n ( b ) = n ~ ( b ) = O P ~ ( b )  
so  

r / ( a ) <  n(b)  iff t. IP,. - P , .  

Now t ~ l q p . - l ,  tmJqp~,-1 and t~ It,., so t, l q p , - I  hence  t, l q ( p m - p , ) ,  
and since (t., q)  = 1 we have  t. I pm - p . .  []  

4.12. THEOREM. No augmented k-tree has the bireflection property. 
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PROOF. By the Isomorphism Lemma 4.2 it is enough to show that there exists 

an augmented k-tree having an automorphism 0 with BR<(0 )=  Q. 

Let T be the k-tree of all finite sequences a satisfying 0 =  < a ( i ) <  ki for 

0<= i < la. Let T~ T be the tree of all finite.sequences satisfying 0_--- a ( i ) < 2 ,  

and let 0" be a minimal automorphism of T". We extend 0 ~ to an automorphism 
0 of T as follows: 

For a E T let r~ = min{i :2_- < a ( i )  or i = la}, and let a 'j= d(r~). Then a ~  ~ 

for every a E T and a" = a iff a E T ~ Define a z E T by the equality a = a".  a z, 

where �9 denotes concatenation. Finally, define O(a) by: 

O(a ) = O"(a~ a '. 

Clearly, 0 I T"=  0". Also, (a)o = {O'"(a"). a "  m E Z} = (a")o,," a ', so I(a)o I= 

2'~ for e v e r y a E T .  N o w f o r a E T , , r ~  = n i f f a E T ~ ,  '. Thus {x E T.  ~  

(T',') ~ Hence (T~) ~ is invariant under every dO E Ro. It follows from Theorem 3.4 

that if (~, 4') E BR~(0) and ~" = ~ I T", 4'o = ~O I T" then (r 4'o) is a bireflection 

of 0 ~ Hence "i ~~ is q3-invariant and ~-invariant. 

We now make T into an augmented k-tree T as follows. By Theorem 4.11 

pick a countable A~ T", dense in ~o and invariant under ~o such that do 

defined by 0 " I T  ' '= 0", d"lA ''=  "IA" is a minimal automorphism of T " =  
T" U A" with BR<(0") = Q. 

Let A ~ = { a E T : 3 i [ a ( i ) > - 2 ^ V j > i [ a ( j ) = O ] ] } .  Then A z is clearly 0- 

invariant, A ~ A t =  Q and A ~ A ~ is a countable dense subset of "it. 

Let A = A  ~  and " / ~ = T U A .  Define 0 E A u t ( T )  by 0 I T = 0 ,  01A = 
01A. We show that 0 admits no bireflection in Aut(T).  

Indeed, let (~b, ~)  ~ BR<(0). Let q~ = ~b I T, 4' = ~ I T, ~b" = ~b I T", ~" = q~ I ~'''. 
Now (~ ,4 ' )EBR<(0) ,  and so by the previous remarks ,/~0 is gS-invariant and 
~-invariant. Hence (~b ~ ~'~) E BR<(0~ a contradiction. [] 

Let us say that a tree T has hereditarily the bireflection property iff every subset 

of T, considered as a tree in the broad sense, the partial order being < ,  has the 

bireflection property. We conclude with the following characterization of the 
class of trees with this property. 

4.13. THEOREM. Let T be a tree. The following are equivalent: 

(i) T has hereditarily the bireflection property. 

(ii) ~o is not embeddable in T, where ~,o is the tree of all zero-one sequences of 

length <= to with only finitely many ones. 

PROOF. (i) ~ (ii). Indeed, if (ii) fails, and z is an embedding of ,~o in ~-, then 

~-"T~ T is a tree in the broad sense failing to have the bireflection property so 

(i) fails. 
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(ii) f f  (i). Assume T fails to have hereditarily the bireflection property. Let 

T, C_ T testify to it. Let 0 E Au t (T , )  fail to have the bireflection property. By 

Theorem 3.12, 0 cannot be a bounded automorphism. Let x E T ~ satisfy 

{ly[ : lyl  < x} is infinite. By discarding a subset of T ,  if necessary we may 

assume that {y:y<x}={y,:n~oo} where ly,[<ly.+ll. Let t, =IY, I. By 

Proposition 3.2 and Corollary 3.3, k, = t,+Jt, is an integer greater than one, for 

every a E y, the set {b E y.+~ : a < b} has precisely k, elements, and {b E x : a < 

b} is nonempty. Thus x U U , ~ y ,  is isomorphic to an augmented k-tree. [] 
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