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ABSTRACT 

Sufficient conditions for generalized absolutely monotone functions to possess 
a Taylor-type expansion in terms of the corresponding Extended Tchebycheff 
systems were found by Karlin and Ziegler. The question of necessary con- 
ditions, however, was left open. In this paper we solve this question by finding 
necessary and sufficient conditions for the validity of the expansion. The 
structure of the cone of generalized absolutely monotone functions and its 
extreme rays are also discussed. 

We start by recalling briefly some definitions and basic results which will be 

used in the sequel. For a more detailed discussion of the results quoted here the 

reader is referred to the first paper on the topic [2] and to the monograph by 

Karlin and Studden [1]. 

Let {u~(t)}i~o be an infinite sequence of functions belonging to C°°[a,b] 
and such that for all n, n = O, 1,...,{Uo,Ut,...,u,} constitutes an Extended 

Tchebycheff system on [a, b]. With no loss of generality we may assume that 

the ul's are of  the form ul(O = ~bl(t;a) where 

/.t /,~t t' ¢ , -  
{~o(t) Jaw,( ' l )Ja  w2( '2)""Ja w ' ( " ) d ' i ' " d "  x < t < b 

(1) q~i(t;x) = a -< t < x 

for i = O , 1 , . . ,  x c [ a , b ]  
and {wk(t)}~°=o is a sequence of positive functions, each of class C~°[a,b]. 
With these functions we associate the sequence of first order differential operators 

d 1 
(2) Dif(t) = d-'{ wi(t--'-3 f ( t ) '  i = O, 1, ... 

and the k + 1-st order differential operators 
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L _ l f ( t )  = f ( t ) ,  Lkf(t)  = (DkDk_t.. .Do)f(O k = 0,1,. . .  

DEFINITION 1. A function ~b(t) defined on (a, b) is called "generalized absolutely 

monotone" (abbreviated G.A.M.) with respect to {u~(t)}~ o provided q~(0 is of 

class C°°(a,b) and satisfies the inequalities 

(3) dp(t) > O, LkdP(t) > 0 for all t e (a ,b ) ,  

The concept of "generalized absolute monotonicity" is intimately connected with 

the concept of "generalized convexity cones". 

DEFINITION 2. A function ~,(x) belongs to P(uo, "", un) (and is called "convex 

with respect to (Uo, '" ,u ,)"  if  for every set of points " ~,+2 txd, = t satisfying 

a < xl  < "" < Xn+2 <~ b 

Uo(XO "" Uo(X.+ 2) 

u~(x).., u~(x.÷2) 
(4) : : > 0 

u . ( x O  "" u.(x.+ 2) 

~ ( x ~ )  . . .  ~(x.+2) 

prevails. 
It is proved in [21 that the cone of G.A.M. functions coincides with the inter- 

section cone 

PA = P + ~ ?(Uo, " ' ,  u,) 

where P+ denotes the cone of continuous non-negative functions defined on 

(a, b). It is also shown that, i ff(x)  is a G.A.M. function, then for all n, n = 0,1, . . .  

the following Taylor-type formula holds" 

(5) f ( t )  = qb.(t;x)L.f(x)dx + L Lk - l f (a+)  Uk(t). 
k =o wk(a) 

Having all these facts at our disposal, we are prepared to state the first major 

theorem. We note that with no loss of generality we may take a = 0, b = 1. 

THEOREM 1. I f  the sequence u~(t), i = 0 ,1 , . . . ,  generates the totality of the 

extreme rays of the cone Pa, then the expansion 

the determinant inequality 
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oO 

(6) f(t) = ~ Lk-~f(°+)uk(t ), t~(0,1) 
k = o  wk(o) 

is valid for every bounded G.A.M. function. 

REMARK. The convergence in (6) is uniform on every compact subset of  (0,1). 

furthermore, i f f ( t )  is continuous at t = 0 and t = 1, the convergence is uniform 

over [0,1].  (See [2]). 

Proof. Let D be the linear space C°°(0,1) with the topology defined by the 

family of seminorms 

II ~,ll n = sup{lL, g,(t)[; t~z~, p <_ n} 

[ 2 , k -  1]. k = 2,3,..." n = - 1 , 0 , 2 , . - . .  where Ik = [FC ~ J '  

With this topology D is a complete metrizable locally convex space. We show 

that it is also a Montel space, i.e., every bounded set in Dis relatively compact 

(cf. [5]). The proof  is analogous to the standard proof  that the space of  infinitely 

dilferentiable functions on (0, 2) is Montel: Let F be an infinite bounded set in 
t Oo D, and let ( i}j=1 be a dense sequence in [0, 2]. Choose a sequence {f~-l.t)} 

from F such that {fit-t ' l)(tt)  } converges, a subsequence {f[0,1)} of {fi ~-1'1)} 

such that {Lof~°'l)(tO) converges, a subsequence {f~-1,2)) of  {f~0,1)) such that 

{fi t-1"2 (t2)} converges, etc. A diagonal process yields a subsequence (f,} such 

that (Lpf~(tj)} converges for every p > - 2 and every j > 2. We proceed to show 

that {f~} is a Cauchy sequence. 

Given p and k, choose r such that {tl, t,) is r/-dense in I~, and no such that 

l Lpf,(tj) - Lpfm(t~)] < e, for m, n > no and j < r.  

Then, for m, n > no, t ~ Ik and j =< r chosen so that I t - tj I < ~/' we obtain 

On the other hand, for SSlk and f e F ,  we have 

d 
d Lpf(s) ]wP+l(s)-~sLpf-w'P+l(s)Lj I 

IIFII~+I-> ] ds w,+~s) I = w2-S÷S • 

Hence, we deduce that 



140 D. AMIR AND Z. ZIEGLER Israel J. Math., 

{I } (8) sup as ( s ) l ' ~ / " ' f ~ F  - <  .... " l l l e l l ~ + l  +M'+"IIFIi~ 
mp+l 

I t where Mp=max{w,(s); 0 < s < 1}, mp=min{w,(s); 0 < s < 1}, mp = max{w,(s); 

0 < s < 1}. Relations (7) and (8) imply that {fn} is a Cauchy sequence in D. 

Let A be the set of GA.M. functions satisfying f ( t )  < Wo(t ) on (0,1). Since 

f]wo is a monotone increasing function for every G.A.M. function f ,  A = {f~ Ca; 

z( f )  < 1}, where z is the extended real-valued functional. 

z(j) = lim f ( t )  
. .1  Wo(O 

which is finite, additive and positively-homogeneous on the cone of bounded 

G.A.M. functions. 

A is closed and convex in D. We show next that it is bounded, hence compact. 

By definition we have, for everyf~A and k > 2" 

II/llz" ~ Az ~ = Mo. 

The other bounds are found by induction. Suppose that we already have 

The relationship 

Ilfll~ ~ A~, k = 2,3,... 

d Lv+l f  
dt wp+z 

implies that for any s elk,  we have 

= Lp+zf > 0 

(9) L,+if(s) < L,+tf(t) k- I _ _ - -  
wp+2(s) - w~+2(t) k 

< t <  
2k - 1 

By transposing sides and recalling the definitions, we have 

(10) 
d Lpf(t) 
dt wp+l(t ) 

rap+ 2 _.~lf(s) k - -  1 
-- Lp+lf(t)  >= it1 L~,_ , k - - -  ~wtp+2 

- - < t <  
2 k -  1 

2k 

Since Lpf/wp+ l is a positive function, (10) implies 

(11) mp+2Lv+tf(s) < 2k 
Mp+2 w,+l 

Thus, we finally obtain the new bound 
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(12) ilfll +l 2gM,+ A2k_ A¢+I. 
rap+imp+2 

We turn next to the question of  extreme points of  A. We first show that all 

extreme points have to be of  the form auj(t), j = 0, 1, ..-. Indeed i f f ~ A  is not 

of  the form auj it does not lie, by our assumption, on an extreme ray of Pa- 

Hence f possesses a representation 

(13) f = f l  + f2 f l , f2  e Pa; f t , f2  are linearly independent. 

Observing that z(fl)  + z(f2) = z ( f )  __< 1 since f e  A and that z(f3 > 0, i = 1,2, 

we deduce that (13) can be rewritten in the form 

z(f l)  z ( f ) f l  + z(ft)  z(f)[2 
(14) f = (z f )  z ( f  l) z ( f )  z ( f  z) " 

Since z ( f ) f / z ( f ~ ) e A ,  (i = 1,2), relation (14) shows that f is not an extreme 

point of A. 

Since the functions auj(t), j = 0 1,... are obviously extreme points of  A if 

and only if, a = 0 or a = 1/z(u~), we conclude that the extreme points of  A 

are exactly the function 0 and uflz(uj), j = O, 1, . . . .  

By the well known theorem of Choquet (cf. e.g., [4]), there exists, for every 

f e  A, a probability measure # on A which represents f and is supported by the 

set e(A) of extreme points of A. Since e(A) is countable, such a probability measure 

is discrete, i.e. 

p = g j > 0 ,  ] = 0,1, . . - .  

The fact that g represents f means that, for every continuous linear functional 

h on D,  

(15) h( f )  = ha# = #jh(uflz(uj)) = ~, h(u 9 .  
j=o 1 =o tuff 

In particular, for the evaluation functionals h(f)  = f ( t ) ,  t e ( 0 , 1 )  we obtain 

oo ( gJ > 0 )  
(16) f ( t )  = ~, a~uj(t) aj = . 

j=o z(uj) = 

Since, in a Montel space, weak and strong sequential convergence are equivalent, 

we conclude that the generalized derivatives L p f  converge uniformly on each Ik. 

This validates the term by term generalized differentiation of (16), and thus 
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proves the validity of the expansion (6) for everyfe  A, hence for every bounded 

G.A.M. function. This completes the proof of the theorem. 

We turn now to the main result of the paper, expounding the necessary and 

sufficient conditions for the validity of the expansion (6). 

THEOREM 2. Let {ui),= o be an infinite Extended Tchebycheff system on 

[0,1]. Then, a necessary and sufficient condition for each G.A.M. function to 

possess the representation (6) is that for each t,  0 < t< 1, there exist an s, t < s < 1, 

for  which 

(17) lim u,(t) = O. 
.-.oo u~(s) 

Proof. Let ~(t) be an arbitrary G.A.M. function. Then relation (5) holds 

for all n. Furthermore, since ui(t)L~_lqb(O+)/wi(o) is nonnegative for all k and 

so is the integral, we deduce that 

(18) s,(t) = ~ L'-t~b(0+) "" 

is a nondecreasing sequence bounded above by ~b(t). Hence, it converges for all 

t 6 [0,1] to a function s(t) < 00. Moreover, since s,(0 is a G.A.M. function and 

the cones P(uo, "",uD are closed with respect to pointwise convergence, we con- 

clude that s(t) is a G.A.M. function and thus belongs to C~°(0,1). This implies, by 

Dini's theorem, that the convergence is uniform on compact subsets of [0,1). 

This argument was adopted from [2]. 

We note next that the same reasoning applies to the sequences {Lks~(t), n > k} 

(19) Lks,(t) = ~ Li- lq5(0+) Lkui(t), k = O, 1,... 
~=~+t  w,(o)  

albeit with respect to the "k + 1-st reduced Extended Tchebycheff system" (see 

[1], p. 394). It follows that 

co L ,_14 (0  + ) .  . .  
(20) Lks(t) = i=k+l~ ~ Lkui(t)' 

Define now the function 

k = 0,1,.. . ,rE [0, 1). 

(21) 
fO 

g(t) = ~(t) -- s(t) = lira dp,(t;x)L, cJ~(x) dx .  
n.-~ O0 
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We note that ~bn(t;x) is non-negative and belongs to P(uo, "",Uk) for all n => k 

(see [3]). Since we also have L,dp(x) >= 0 for all n _>_ - 1 ,  it follows that g(t) is 

a G.A.M. function. We further note that (18) and (20) imply that 

(22) g(0+) = 0; Lkg(O+)=O, k = 0,1,..-. 

We deduce that in order to prove that the expansion (6) is valid it sut~ces to 

show that if g(0 is a G.A.M. function for which (22) holds then it must vanish 

identically. Conversely, for the expansion (6) to be valid it is clearly necessary 

that each G.A.M. function satisfying (22) vanish identically. 

Thus, the assertion of Theorem 2 is equivalent to the assertion of the following 

Lemma, which deserves a separate statement. 

LEMMA. A necessary and sufficient condition for all G.A.M. functions g(t) 

satisfying (22) to vanish identically in (0, 1) is that (17) hold. 

Proof• a) Sufficiency. We start by assuming that (17) holds. Let g(t) be a 

G.A.M. function satisfying (22). Let x be an arbitrary point in (0,1), and let 

y, x < y < 1, be the point for which 

(23) lira u,(x) -_ O. 
.-.o~ u . (y )  

Since g(t) is a G.A.M. function, the system 

{Uo(t),ut(t),...,un(t),g(t)} 
is a Weak Tchebycheff system for all n, n = 0,1, ...,. Hence, by making n points 

coalesce with 0, choosing x as the n + 1-st point and y as the n + 2-nd point, 

we have the following determinant inequality: 

(24) 

wo(O) 0 . . .  0 Uo(X) uo(y) 

0 w~(O) 0 ... u~(x) u~(y)  

o , .  . , ,  

o e l  

• 0 w ._  1 (0) 

0 u.(x) u.(y) 

0 0 0 g(x) g(y) 

~__ O, 
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which is valid for all n. (Note that the zeros in the last row are a consequence 

of (22)). Inequality (24) is equivalent to 

. . u . ( x )  
(25) g(x)< gty) u- ~ O < x < y < l ,  n=O, 1,.... 

Hence, relation (23) implies that g (x) = 0, and since x was arbitray, g (t) = 0, 

0 < t < l .  

Necessity. We will show that if (17) does not hold then there exists a G.A.M. 

function which satisfies (22) but is not identically zero. 

We note first that by substituting in (25) the G.A.M. function g(t) = u,+ 1(0, 
we find that 

(26) {u,(x)/u,(y)}~,=o is a monotone decreasing sequence if x < y. 

Assume now that (17) does not hold. Then there exists a point to, such that for 

all s, to < s < 1, the sequence {u,(to)[U,(S)} does not tend to 0 as n ~ oo. Since it is 

monotone decreasing by (26), it is bounded from below. 

Consider the sequence of functions 

By (26), and by the boundedness of the sequence for each fixed t, which is a con- 

sequence of (17), we find that this sequence converges pointwise, for all 0 < t < 1. 

Let the limit function be denoted by v(t). We can easily deduce that v(t) is a 

G.A.M. function, which does not vanish identically. We now show that it satis- 

fies (22). 

Let s and t be two points such that 0 < t < s < 1 and let k be an arbitrary 

integer such that k _>_ - 1. Using the construction of  Theorem I and observing 

that for some I the points s and t belong to I~, we deduce the existence of  a sub- 

sequence of  natural numbers {m},,~ such that Lj[um(x)/u,,(to)] converges uni- 

formly in I l for al l j .  Hence, it converges to L jr(x). In particular, 

[ u.(t) ] = Lkv(t) ' lira Lk lure(s) ] = Lko(s)" 
lim L k [Um-~J L Um(to)J 

/n-,~ oO /n---i, 00 

Noting that Lku,(O is a " reduced"  ECT-system, we deduce, like in (25), the 

inequality 
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LkUm(t ) < LkUm(S ) LkUk+2(t) for m > k + 2. 
= LKUk+2(S)' = 

Dividing throughout by Us(to) and then letting m -o oo, we obtain the inequalities 

0 < Lkv(t ) <- LkV(S ) LkUk+2(t) 0 < t < S < 1. 
= - LkUk+2(s) '  

Keeping s fixed and letting t ~ 0 +, we find that the expression on the right- 

hand side tends to 0, and thus also Lkv(O +) = 0. This is true for all k so that v(0 

indeed satisfies (22) while not being identically zero. 

This completes the proof of  the Lemma and of  Theorem 2. 

The present, simplified proof of  the necessity part of  the Lemma was suggested 

to us by Professor Karlin. 

The following theorem, concerning the extreme-rays structure, is an easy 

consequence of  the Lemma, and will therefore be stated without proof. 

THEOREM 3. I f  (17) holds, then the sequence of functions ui(O, i = 0 , 1 , . . . ,  

generates the totality of the extreme rays of the cone PA of G.A.M. functions. 

REMARK. If we restrict ourselves to the cone P a n B  of bounded G . A . M .  

functions, then condition (17) should be replaced by 

(17') lim u,(t) _ 0, for all t, 0 < t < 1, 
~ o o  u~(1) 

and Theorems 2 and 3 as well as the Lemma will still hold. The proof of the Lemma 

follows similar lines and is, in fact, slightly simpler. Thus, the following statements 

are equivalent: 

(i) Each function of  P A n  B has a representation (6). 

(ii) {ui(t)} satisfies condition (17'). 

(iii) The extreme rays of  PA n B  are exactly those generated by {u,}~=o. 

Making use of  Theorem 2, we immediately obtain a characterization of the 

cone dual to Pa - -  the cone of  G.A.M. functions (see [2]). 

THEOREM 4. Let {ui}~ be an Extended Tchebycheff system such that (17) 

holds. A signed measure dlz belongs to the dual cone of P A if and only if 

~0 
1 

(22) uid # >= 0, i .= 0, 1, . . . .  
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We conclude this paper  by observing that the sufficient conditions given in [2] 

have to imply that (17) holds. This implication is by no means easy to verify,  

even in the simple cases, and may be therefore considered as corollary of  our 

present results. 
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