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ABSTRACT 

In 1936 the author showed that the function sin(n(x+l)/4) is the entire func- 
tion of least exponential type (=n/4) among all entire functions f(z) with the 
property thatf  (n)(z) vanishes somewhere in the real interval [ -  1, 1 ] (n =0, 1,2,...). 
Now more precise results of this kind are obtained by working within the class 
C°~[--1, 1]. 

Introduction and statement of results 

In  [3] the au thor  proved  long ago the following 

THEOREM 1. I l l ( x )  is an entire function of exponential type less than 7r/4 

and is such that every one of its derivatives f (x) ,  f ' (x) ,  i f (x ) , . . ,  vanishes some- 

where in the interval I = l- - 1, 1], then f ( x )  = 0 identically. 

Since the funct ion f ( x )  = sin (n(x + 1)/4) satisfies the condit ions of  T h e o r e m  1 

and is precisely of  type  = 7r/4, it follows tha t  the cons tan t  rc/4 can not  be improved .  

In  1936 Theorem 1 was a per iphera l  contr ibut ion towards  the p rob lem of  

determining the so-called Whi t taker  constant  W (see [4, 45]). Fo r  the impor t an t  

more  recent  results o f  Evgrafov and Buckhol tz  concerning the Whi t t aker  constant  

see [2], also for  references. I do not  pursue here this funct ion- theore t ic  p roblem,  

but  wish to poin t  out  tha t  the contents  o f  Theo rem 1 can be sharpened by working 

within the context  o f  functions f ( x )  that  are infinitely differentiable in the interval  

I = [ - 1,1].  Accordingly,  the app rop r i a t e  setting of  our  discussion is the class 

~" of  real  or  complex-va lued  functions defined by 

(1) ~" = { f ( x ) ; f ~  C~(I), f(')(r/~) = 0 (v = O, 1, . . .),  - 1 < ~/~ < 1}. 
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THEOREM 2. 

(2) 

where 
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In terms of the L~ (or supremum) norm in I we may state 

I f  f ( x ) • . ~  and Ilsll > o, then 

IIF"'II > <,,.llfll, (n = 1,2, . . . )  

365 

theorem. 

THEOREM 3. 

(8) 
then 

I f  n>= land 

f(x)  e ~ .  

l[f'"' [I -~ ~.ilfi[, 

I n !  if n even, 
1 

is 2" T~.r 
(3) co.=~ (n+l)! 1 

2z"+1(2 " + * -  1) 1B~+q [ if n is odd. 

Here E, and B.+, are the Euler and Bernoulli numbers, respectively. The 

constants co, in (2) are sharp for every n, i.e. none can be improved. 

We find that 

1 1 3 3 15 45 
('01 = 2 -~' ('02 : -2  -'(D3 = 8 -'( '04 = ~ 6  - '0)5 = "-64 -' O')6 = 244" 

In §4 we show that Theorem 1 is an easy consequence of Theorem 2. In §2 we 

derive Theorem 2 from a result to be now described. 

For  every natural number n we denote by ~-, the class of funct ionsf(x)  satisfying 

the following two conditions: 

(4) f (x)  e C"- ' (I),  and f ( " -  °(x)  satisfies a Lipschitz condition, 

(5) f(V)(x) (v = 0, 1,.. . ,  n - 1) vanishes at some point of  I.  

A particular element of ~ .  is the polynomial 

(6) s.(x) = dx, dx2"'" dx,, 
- 1 , a (  - 1 ) n  

in view of the relations 

(7) s , ( -  1) = 0, s;(1) = 0, . .. , s,("- ')(( - 1)") = 0. 

In terms of the class ~ ,  and the polynomial (6) we may state the following 
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with the equality sign if and only if 

(10) f (x)  = Cs,(ex), where C is a constant and e = ± 1. 

The constant to, is given by (3) and may also be defined as 

(11) co,--[sn(l)[ -~. 

In §3 we show that Theorem 3 can be stated (Corollary 1) as an apparently new 

characteristic property of the Euler polynomial E,(x), in the interval I* = [0, ½]. 

1. Proof of Theorem 3. We require a 1emma concerning the function 

..., i I 
~o 

This expression being somewhat cumbersome, we write it out completely for 

the case when n = 3: 

(I)a(x; r/o,rh,~h) = dxl dx2 dx3 
( ~ rio 

In [3, 14-18] the author established a lemma concerning the function (1.1) which 

implies readily the following 

LEMMA 1. I f  

(1.2) -- 1 -- x -- 1, -- 1 =< ~/~ _--< 1 (v = 0, 1,-.., n -- 1), 

then 

(1.3) (I),(x; ~/o, "",~/,-~) --< (I),(1 ; - 1,1, . . . , ( -  1)"), 

with the equality sign if and only if 

(1.4) x = l , ~ l v = ( - l f + l ,  o r x =  - 1 , ~ / ~ = ( - 1 )  ~, (v = 0, ..-, n - 1 ) .  

In other words: Within the (n + 1)dim.  cube (1.2) the function (I)(x; ~/) 

assumes its absolute maximum only in two opposite vertices of the cube that are 

described by (1.4). 

Let now (8) hold and let us establish the inequality (9), where we define to, 

by (11), hence 

(1.5) co~ 1 = Is,(1)l = (i),(1; - 1 , 1 , . . . , ( -  1),). 

From the assumption (8) we know that 

(1.6) f(')(~/,) = 0, (v = 0,. . . ,  n - 1), 
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for appropriate points ~/, in 1. It follows that we may express f ( x )  in terms of 

f(")(x) by the repeated integral ; ?-, (1.7) f ( x )  = dxl dx2"" f(")(x.) dx.. 
#10 7 1  7 n  ~ 1 

Let ~ be such that 

(1.8) Is(e)l = IIslI" 
Using Lemma 1 and (1.8) we may write the following string of equations and 

/S . ' ;  ' s? llsll = Is(¢)l = ex, axe.. 
0 71 n - I  

f(")(x,)dx, 

f ° iI i J < dx 1 dx2.. .  [f(")(x,,) [dx, ... 
v 7 0  1 7 n  -- 1 

(1.9) 

--- I If ("'I1" ax, ... d x . . . .  
7 0  t l~  ~ 1 

= llf("~[l~,(¢; ~0, ..., ~ , -  ,) -<_ life"' I1~ , (1 ; -  1 , 1 , . . . , ( -  1),). 

But then (1.5) implies that 

(1.1o) llfll --< tlf <" 11 • <o:', 
and the inequality (9) is established. 

Let us now assume that (9), or (1.10), holds with the equality sign. It follows 

that the extreme terms of (1.9) are equal. Let us now analyze the consequences of 

this fact. In particular we obtain that 

O,(4; ~o, "" ,q,-1)  = ~ ( 1 ;  - 1 ,1 , - . . , ( -  1)"), 

and by Lemma 1 we conclude that one of the two alternatives 

(1 .11 )  ¢ = 1 , q ,  = ( -  1) v+x, or  ~ = - 1, ~/~ = ( -  1) v 

must hold. Let us assume that the first one holds. We consider now the relation 

(1.12) ( _  1)t.,:, ] dxq ax2.. ,  r(x.)ax. = K(x)r(x)ax 
' a - 1  '-' 1 - 1 )  n ~ - 1  

which transforms the repeated integral on the left into the single integral on the 

right hand side. This relation is to be valid for an arbitrary continuous function 

F(x), while In/2] has its usual arithmetic meaning. A moment's reflexion will 

inequalities 
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show that K(x) ~ C(I), in fact K(x) ~ r~._ 1 (the polynomials of degree n - 1), and 

that 

(1.13) K(x) > 0 if - 1 < x < 1. 

In terms of K(x) the equality of all members of (1.9) furnishes the relation 

j-,: r (x)S("'(x)dx = IIs (:'1t K(x)dx, 
- -  ¢ - - 1  

which in turn implies the relation 

(1.14) [If (") I[ - ef(')( x)} dx = 0, (5 = 1 or - 1). 

The integrand of (1.14) being non-negative almost everywhere we conclude that 
f(")(x) = IIf (") [I, or perhaps f(")(x) = - [If (") ]l, almost everywhere in I. Moreover, 
the first relations (1.11) and (1.6) show that 

f ( -  1) = O, f ' (1)  = O, ...,f(,-2)((_ 1)") = 0, 

which imply that 

S(x) = +_ Ils <", Its,,(x). 

Similarly the second alternative (1.11) will imply that f ( x ) =  ___ IIs<" I lso(-x) .  
This concludes a proof of Theorem 3. 

2. Proof of Theorem 2. Let f (x)  ~ ~ and IIf[I > 0. Evidently f (x)  e ~ . ,  for 

every n, and Theorem 3 shows that llf(.,ll __ ~.llfll. Since (10) can not hold 

because then f°)(x)  would not vanish anywhere in I, we conclude that the strict 

inequality (2) must hold, and the inequalities (2) are thereby established. 

We are still to show that the constant co. is best possible. This requires to 

show the following: I f  5 > O, then there exists a function f (x)  ~ such that 

(2.1) IIs <°' II < (<,,, + a)Itfll. 
This we do as follows. We already know that the polynomial 

(2.2) 

has the properties 

(2.3) 

whence 

f*fj F s,(x) = dx 1 dx2"'" dx, 
- 1 ~ ' a  ( -  1 )  n 

r] s~ .) l] --- 1, l] s, ]] = co, --1 , 
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(2.4) II s':'ll = o,.11 s. II. 

We shall now perturb the function s,(x) slightly so that it will become an element 

of o~, while the relation (2.4) will be disturbed only slightly. 

To do this we use the auxiliary function 

; f; (2.5) h(x) = e -t- ' (1-t)-~ dt /  e - t - ' ( 1 - t ) - '  dt ,  (0 < x <- 1), 
o 

having the properties 

(2.6) h(V)(0) = 0 

(2.7) 

(2.8) 

(v = 0, 1, 2,.. .) 

h(a) = 1, h(~)(1) = 0 (v = 1, 2,-..), 

h(x) increases from 0 to 1 in [0,1]. 

Let e be a small positive number and let us define the even function 

(2.9) g,(x)  = 

Evidently 

I 
1 if e _ < x < l ,  

h(x/c 0 if 0 < x - < e ,  

} g , ( - x )  if - l < x < 0 .  
k .  

g,(x) e 

It follows that an n-fold integralf~(x) of g,(x) will also be in ~ ,  provided that each 

of the functions 

f~(x) , f : (x) ,  .",f(~"- l)(x), 

vanishes somewhere in I. An n-fold integral satisfying these conditions is evidently 

(2.10) fi,(x) = dxl  dx2 "" g,(x,) dx,. 
~ ' - 1  ( - 1 )  n 

From f(~")(x) = g,(x),  (2.8) and (2.9), it is clear that 

(2.m [If: °) II = 1. 
From (2.9) we see that i f x  ~ 0  then g~(x)~ 1 as ~--* + 0. From (2.2) and (2.10) 

it follows that 

Ill= II ~ II s .  ll = ~ "  as =--> + 0,  

and therefore 
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1t (2.22) IPTo II > ~ provided that ~ is sufficiently small. 

For such small ~ we therefore have that 

Ils: <", II = 1 < +  )llf: II. 
Since f , (x)~ ~ ,  the inequality (2.1) is established. 

3. Determination of the constants t~, and an extremum property of the Euler 

polinnmials. The constants o9, were defined by (11) and (6). Let us sketch the 

derivation of the explicit expressions (3). In (6) we reverse the order of the lower 

limits of integration and define the new polynomials. 

(3.1) rn(x) = dxl dx 2 ... dx,, (ro(X) = 1). 
- 1 ) n  ( - 1 ) n -  

These form an Appell sequence of polynomials having the generating function 

2e t .,, 
(3.2) e2 t + e_zte = Z,o rn(X)t n 

(See [3, 19]). They are related to the Sn(X) by 

(3.3) s,(x) = + r~((- 1) "+1 x). 

Now (11) and (3.3) show that 

fir.(- 1) I if n is even, 

(3.4) (o9,) -~ ---is,(1)l = "[I r,(1) I if n is odd. 

From these results and the generating function 

(3.5) et + e----------7 = o nt 

of the Euler numbers E,, we easily obtain the expressions (3) for even values of n. 

Details may be omitted. 

Similarly, the generating function 

2 e X t ~  
_~ t n 

(3.6) 1 + e t o 

of the Euler polynomials En(x), and the known relations 

2 
(3.7) E~(0) = - 1(2 "+i - 1)B,+l 

n +  
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easily furnish the relations (3) for odd values of n. 

We also mention that (3.2) and (3.6) show that 

n4" ( ~ - ~ )  (3 .8)  r . (x)  = ( -  l) ~ e,, . 

These relations show that our Theorem 3 may be interpreted as describing a new 

characteristic extremum property of the Euler polynomial E,(x) in the interval 

[0,½]. We state it as 

COROLLARY 1. Let ~ *  denote the class of functions F(x) defined in I* = [0, ½] 

and satisfying the three conditions 

(i) F(x)~ Cn-l(I*), and F(n-1)(x) satisfies a Lipschitz condition, 

(if) F(V)(x) (v = O, ..., n - 1) vanishes at some point of I*, 

( i i i )  II r . ,  II = n~. 
I f  F(x) ~* e~'n, then the inequality 

II e I1 --< II e°(x)II 
holds, with the equality sign if and only if 

F(x) = 4-En(x ) or F(x)= +_ en( ½ - x ) .  

Finally, we shall need below the following 

LEMMA 2. The constants o)n satisfy the relation 

(3.9) lim (o)n) TM zc 
n..@ CO 4 

A proof follows immediately from the estimate of  r,(x) given in [3, formula 
(29)]. 

4. Proof of Theorem 1. Let f (x)  be an entire function of exponential type 

= 7. It is known (see [1, 11]] that 

(4 .1)  

We first establish 

LEm~A 3. I f  

(4.2) 

then 

(4.3) 

l ira [f(")(o) I ' t "= ~,. 
n - - }  oO 

11/<:, !1 = maxlf(">(x) 1 in the interval 1= [ - 1 , 1 ] ,  

lim llf,°>ll , : - -  v. 
11 -,,I, ~0  
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PROOF. I f71  > 7, then (4.1) shows that  

If(")(0) I < ? ~ i f n  > N. 

The  expansion of  f (")(x) in powers  of  x shows that,  i f  n > N,  then 

IIs(.,ll'," ~ (Is(o,(o)l ÷ ~ls("+I,(o)l + ½1s,"+:,(o)l +...),,. 

~,~ + y~+l + . . . .  ~'1 (1 + ~-!71 + ... 

whence 

Israel J. Math., 

_= 71 e;'l/n, 

l im IIs'" II 1,n ~ 71" 

Let t ing 7t "--> 7 we obta in  (4.3). 

A p r o o f  o f  Theo rem 1 now follows immediate ly .  Indeed,  let f ( x )  be o f  expo-  

nential  type 7, and l e t f ,  f ' , . . ,  have the required zeros in I = [ -  1,1]. By Theorem 2 

whence 

L e m m a  

rJz <"' rl > ~.llzlr 

IIs ''~ II '," > (oml"llsll " .  
2 and 3 show that  i f  n ~ oo we obta in  tha t  

Y > 1r/4. 

REFERENCES 

1. R. P. Boas, Entire functions, Academic Press Inc., New York, 1954. 
2. J. D. Buckholtz, The Whittaker constant and successive derivatives of entire functions, 

J. Approximation Theory, 3 (1970), 194-212. 
3. I. J. Schoenberg, On the zeros of successive derivatives of integral functions, Trans. Amer. 

Math. Soc., 40 (1936), 12-23. 
4. J. M. Whittaker, Interpolatory function theory, Cambridge University Press, 1935. 

MATHEMATICS RESEARCH CENTER 
UNIVERSITY OF WISCONSIN 

MADISON, WISCONSIN, 53706 


