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A B S T R A C T  

It is proved that a Banach space is isomorphic to co or to lp if and only if it 
X co has a normalized basis { i}i=l which is equivalent to every normalized 

X co block-basis with respect to { i}i= 1" 

1. Introduction. F. Bohnenblust  gave in [2] an axiomat ic  character izat ion of  
c o and Ip. The following propos i t ion  follows easily f rom his p roof :  

X oo PROPOSITION 1.1. Let { i}/=1 be a normalized basis in a Banach space X .  

I f  for  every normalized block-basis {Y , } i~  (with respect to {xi},~l) and any 
a oo 

real sequence { i}i=1 

a:,lI = i = 1  " =  

X m for  all natural n then the basis { i}i=l is equivalent to the unit-vectors basis 

in c o or in lp for  some p > 1. Moreover, this equivalence of  the bases induces 

an isometric isomorphism of X onto c o or Ip. 

The  following natura l  quest ion arises: I f  we assume only tha t  all normal ized 

block-bases with respect  to { x ~ } ~  are equivalent,  is {x~}~=~ equivalent  
to the unit-vectors basis in Co or Ip? 

In  this paper  we show that  the answer is positive and the equivalence of  all 

normal ized block-bases  characterizes the unit-vectors bases in c o and l~. 

After  the prel iminary l emmas  of  Section 2, we use the me thod  of  the p r o o f  

o f  L e m m a  4.3 o f  [2] to  prove  our  main  result, Theo rem 3.1. A r emark  concerning 

a result o f  A. Petczyfiski and I. Singer [6] concludes Section 3. 

DEFINmONS AND NOTATIONS. A basis {xi}~= ~ in a Banach space is called 

normalized if  II x, II = 1 for  every i. The  sequence {Yi}i:l is called a block-basis 
~o v , ( i +  1) where {p( )}i=~ with respect to the basis {x~}i = ~ if for  every i Yi = ~ j  =pci)+ ~ajxj, 
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is an increasing sequence of nonnegative integers. In this paper we discuss only 
X oo one basis { i}~ = 1 in the Banach space X;  all block-bases mentioned are assumed 

to be block-bases with respect to the basis {xi}~= 1. A basis {xi}~°: 1 in X is equi- 
a oo z ~ in a Banach space Z if for every real sequence { i)i=t valent to a basis { i}~=1 

~i ~= 1 aixi converges if and only if ~ t  aiz~ converges. The closed subspace 
Y oo which is spanned by a sequence { ..}~= t in X is denoted by [yj~O . A sequence 

{y,}~= ~ in X is called a basic sequence if it forms a basis in [yi]~o=;. (Every block- 
basis is a basic sequence in X.)  Following C. Bessaga and A. Petczyfiski [11 we 
call a basis {xi}~ 1 perfectly homogeneous if it is normalized and every normalized 
block-basis {z~}~°:t with respect to {xi}~°=l is equivalent to the basis {xi}~°:~. 

2. Preliminary lemmas. Let {xi}i~=t be a normalized basis in a Banach 
space X and let {f~}~; denote its biorthogonal sequence in X*.  In the sequel 
we shall consider the following property: 

(a) If  S and T are disjoint finite sets of positive integers and Itl ___ lsithen 

E aix i+t"  ~, aix i >= ~, aix t + s  ~, aix i 
t e S  l e T  i e S  i e T  

for every real {a~}, i ~ S U T. 

x ~ s a t i s a e s  (a) then liT, II = l for every i. LEMMA 2.1. I f  a basis { i}i=1 

Proof. II/,ll >--Y,(~,)= 1. On the other hand 

/ c o  \ 

,I,,il-- o up o xj _- o sup l a, l< l ,  Ilj=l'~xJll-~l , ~ = ,  , II~J=, , ,x~ll~l = 

since, by (a), la, I = tl a,x, ll = II ET=x aJx~ll z 1. 
X co LI~MMA 2.2 Assume that { ~}~= t is a basis in a Banach space X which satisfies 

n X (a). I f  [ s, [ < It, [ for 1 <<- i < n then tI ~,i=t s, i II < 1t Z:=I tix, I[" 

Proof. Use (a) n times. 

LEMMA 2.3. Let oo {x~}i=l be a normalized basis in a Banach space X which 
X oo satisfies (a). I f  for some M >  1 11 ~,,~lx, II <:M for every n then { ,},=1 is equiv- 

alent to the unit vectors basis of c o. 

Proof. By (a), Lemma 2.1 and Lemma 2.2 

max (max In, I) II max a,I 
l < i ~ n  i=  1 1 , i ~ n  i=  1 1 ~ f ~ n  

Hence, ]~o= 1 aixi converges if and only if as --* 0. 
f--* o0 
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x ~o perfectly homogeneous basis in a Banach LEMMA 2.4. Let { i}i=1 be a 
space X. Then oo an {xi}~ = 1 is unconditional basis. 

{ai} i= t where a i _ ~o Proof. Since for any sequence oo = + 1 the sequence {aixi} i= 1 is 
a normalized block-basis, ~ 1 a ibix~ converges if and only if ~ i~  1 bixi converges. 
Hence, ~ 1 bix~ converges unconditionally whenever it converges. This proves 
Lemma 2.4. 

X oo Assume, now, that { ~}~=1 is a perfectly homogeneous basis in a Banach 
space X .  By Lemma 2.4 {x~}~ 1 is an unconditional basis. Assume, further, 
that {xi}~= t satisfies (a). Denote by {{y~}i~ t}~z the set of all normalized block- 

X oo bases with respect to the basis { ~}~= ~, I being the suitable index set. The as- 
sumed equivalence of  the bases induces, for each a e I ,  an isomorphism T~ from 

oo defined by T~(~,~°=la~xi)= ~°=la~y~.(This follows f romthe  X o n t o  [ Y i ] i = l ,  

closed graph theorem.) 

L~MMA 2.5. There exists a real M >= 1 such that for  every a e I both H T, I1 <=M 
and II r,-'  il <= M 

Proof. Let us first show the existence of a finite bound for the set {11T~ [l:a e I}. 
If  {ll T, l l :aeI}  is not bounded, then by the theorem of  Banach and Steinhaus 
there is an x =  ~ i ~ t b , x t 6 X  such that llx[I--1 and the set {llT~xl[:c(eI} 
s not bounded. Hence, we can select a sequence {~t(n)}~=l c l so that 

for every n II z , ~  b,YT(')l[ ---- n + 1. We construct inductively three sequences of 
positive integers {n(i)}, {p(i)} and {q(i)} in the following way: n(1) = 1, p(1) = 1 
and q(1) is so large that [1 vq(1) I. ,,~(.(1)) ,.,i =p(1) ~'iy~ I[ > 1. Suppose that n(1), n(2), ..., n(k), 
p(1),p(2),. . . ,p(k) and q(1),q(2),. . . ,q(k) were chosen such that 

qz(i) biY~ ('(~)) > 1 for l ~ j < k  (2.1) 
i = p(j) 

(2.2) q(j - 1) < p(j) <-_ q(j) for 2 < j =< k 

(2.3) If  Mj (respectively, N j) is the least (respectively, the largest) 
index of the xis' which appear in the representations of 
ya(a(j)) ,,a(a(j)) ,,a(n(j)) then N j  < M j +  1 p(j)  , Y p ( j ) +  l ,  " " ,  Yq( j )  

for l _ = j = < k - 1 .  

Choose n(k + 1) > max {Nk, q(k)} + 3, and put p(k + 1) = max {Nk, q(k)} + 1. 
By ( a ) a n d  Lemma 2.1, for j >_-1 [bj[=[fj(  ]~=lbiXl)[ <= [[ x N = 1, and since 
l[ y~(n(k+l)) H = 1 it follows that II--J'~"~P(k+ 1)-1/~= 1 ujyj"~("(k+a))ll ~- "~ V~'~'t1'"1" x).'' Therefore 

~ o  b • ~(.(~+1)) > n(k + 1) - p(k + 1) > 2. {1 z , .a j=p(k+l)  j.,vj .~. = 

Choose q(k + 1) so large that l] vq(k+ 1) t..~(.(k+ 1)) ~.~j=p(k+l)ujyj  11 > 1. Since the representa- 
tion of  each block y~(~(k+1))contains at least one xi, the choice of  p(k + 1) 
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ensures that (2.3) is satisfied for j = k. By (2.3) the sequence {y7 ("(k)) }v~k)~,s~(k). k~ 1 
forms a normalized block-basis. By (2.1) Ek=l(,.q=v(k)°° S'q(k) b~yz"~"(k)h not con- 
verge while ]~o= 1(~~q(k) K ~" "~ X oo ,-,g=p(k)'q*V converges, since, by Lemma 2.3, { ~}~=t is an un- 
conditional basis. This contradicts the equivalence of the block-bases. 

Assume that the set {ll T~xI[ : ~ I} is not bounded; so there exist sequences 
Z oo n {~(n)}~=~ = I and { ,}.=1 = X such that if z, = Z~o=~ bjxj then for every n 

V oo b.,,~(.) 2-"  II --,S=l ,yj  II -<- and I[ ] ~  °=lbjx s [ { > = n + l .  
We choose, again, sequences {n(j)}, {p(j)} and {q(j)} such that (2.2) and (2.3) 
are satisfied in addition to the following 

q(k) 

(2.4) ~, b~(k)xj [1 > 1 for k >_-1. 
j = v ( k )  

Put n(1)= 1 p(1)= 1 and choose q(1) so large, that I] v q o )  ~,.(J)~ II > 1. , / '~ j  =p(1)  ~ j  "~j [[ 

n(k + 1) and p(k + 1) are also chosen as in the first part, and q(k + 1) is so large 
that [[ ~'~q(k+l) Kn(k+l )  --j = p(k+ 1)uj Xj [[ > 1. (This construction is possible since {y~(")}~°= 1 
is a basis in [y~t,)]~o=~ and satisfies (a). By Lemma 2.1, if {g~}~°°= 1 denotes the 
sequence of biorthogonal functionals of {yTtn)}°°=~, then [] g[' [] = 1. It follows that 
for all natural i and n Ibm' I = I gT(Eb~Y](")) [ < 2 -"  < 1 .) By (a) and Lemma 2.2 

q(k) oo 

z b "y; II <= II z <= 
j = p(k) j = 1 

vq(o b "(°,,~("(°)~ converges while ]~=1(  ~ = p ( o  ~ "'J] It follows that ~z~ 1 ( ~ =p(O ~ yJ ~ oo x'~(o b,(O~ 
certainly does not, by (2.4). But by (2.3) the sequence ~y,(n(O)X )~ j 5p(i)  ~_ j ~_q(i),i>= 1 ,  

forms a normalized Nock-basis; it follows that the last block-basis is not 
equivalent to the basis { ~}~ = 1 a contradiction. This completes the proof of 
Lemma 2.5. 

3. The main theorem. 
X oo THEOREM 3.1. Let { /}/=1 be a normalized basis in a Banach space X .  Then 

{ z}i=ix o~ is perfectly homogeneous if and only if  it is equivalent to the unit-vectors 
basis of Co or of lp for some p > 1. 

Proof. The " i f "  part is obvious, since the unit-vectors bases in Co and lp 
are perfectly homogeneous. Let us prove the other part. By Lemma 2.4 

X oo { z}z = 1 is an unconditional basis. By [3] p. 73 Theorem l(v) we may assume that 
{x/}/~l satisfies (a), hence, by Lemma 2.5 it satisfies the following property: 

(b) There exists a real M > 1 such that for every normalized block basis 
Z oO ~--" { ~}z=l, n > 1 and real al,a2, '" ,an 

" aizz _" ~ ] 

Define for k > 1 
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It follows that 
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k 

(3.1) 2k = ~ x~ 
t =  = 1  

It follows from (a) that for k > 1 

(3.2) 2k+i > 2,. 

i " of positive integers By (b), for every increasing sequence {p( )}i = 1 

PERFECTLY HOMOGENEOUS BASES IN BANACH SPACES 

n ilk I l k -  [ 

[ =  

(We substitute for z i in the right side inequality of (b) the normalized block 
[I .k-1 , . Ilk-, ~i=1 xy+(,_l)ilk- []-1 ( ~ y = l  xj+(,-i),k-~) and use (3.3).) 

Using 3.4 we can prove by induction that for every natural n and k 

(3.5) M2k. xi k > xi . 
i = l  i=  

On the other hand, by the left-side inequality of (b) and by (3.3) 
n ii k ilk - 1 

~ l  x' < M2" ZlXJ " ~1 X/ -1 . 

i -  i=  j =  

Again it follows by induction that for every natural n and k 

i i ,  " (3.6) ~1  x' < M2k" ,Yl x, 

(3.1), (3.5) and (3.6) yield 

(3.7) M -2k" 2nk < 2~ < M 2k" 2ilk for every n and k. 

For any natural N, n and k let h = h(N ,  n, k) be the non-negative integer for 
which Nh<= nk < N h+l' 

By (3.2) and (3.7) 

h.log2~ < log(M 2h. 2~h) = 2h"  logM + 1og2Nh __--< 2h" logM + log2ilk < 

< 2h"  logM + log(M 2k. 2~.) = 2h.  logM + 2k.  logM + k . log2, .  

Since h < k" log n" (logN)-1 =< h + 1, we have 
( k . l o g n . ( l o g N )  -1  - 1).log2s < 2k . logn . logM(logN)  - i  + 2k. log M + 
+ k- log2. .  

269 
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Dividing by k log n and passing to the limit as k ~ oo we get 

(3.8) (log 2u)" (log N)- i < (2 log M)" ((log N) - 1 + (log n)-  1) + (log 2~). (log n)- t .  

By interchanging the rfles of n and N we get 

(3.9) (log 2n) (log n)- 1 < (2 log M)- ((log N) -  1 + (log n)- 1) + (log 2u) (log N)- 1 . 

By (3.8) and (3.9) 

](log 2~) (log n)- 1 _ (log 2N) (log N) -  1 I =< (2 log M) [(log n) - t + (log P0-1]  

therefore the sequence {(logX,)(logn)-l}~=l converges to a limit c, and since 
1 < 2~ < n, we get that 0 <_ c <_ 1. Passing to the limits as N -+ oo in (3.8) and 
(3.9) we get: 

clog n < 21ogM + log2~ = log(M22,) 

and log(M-2"2n)=< c logn,  hence, for every n 

(3.10) M - 2  n c ~ ;L n ~ M 2 . n c " 

If c = 0 then oo {2.}.= x is a bounded sequence, therefore by Lemma 2.3 X is iso- 
morphic to Co. If  1 __> c > O, put c = 1/p. We have 

(3.11) M-2"nl /P< il ~ xs li <= M2" n l/P" 
i = 1  

Let rs be any positive rational number for I < i _< n and assume that r1 = m -  x- ks, 
where m and ks are positive integers. It follows from (a), (b), (3.11) and (3.3) that 

n 

o1 ) II , : , , x ,  = 
II 1--1 

kl 

= U S = l  S = I  j = l  

> M -3 • ~ xj+ X k. " j+Z=t. 
i = 1  j = l  j = l  m=t  

(We substitute in (b) for zs the normalized block 

j = l  , . = t  \ j = l  m - t  

By (3.3), (3.12) yields 

(3.13) ]l 1~ r~'px' l] > M-*" m -x/ ' '  il xs 
1=1 S =1  

n k where k = 2~=1 s. By (3.11) 
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[ ~ r~i'xil > M-6"(~ ki)l/P'm-l/'2M -6(~ )'/" 
I - -  = - -  = 1 r i  " 

Hence, using (a), it is easily proved that for any real ai, a2, "", a. 

271 

(n) 
(3.14) II ;~ a'x'll ~ M - 6 "  ~ la'l' 1,,. 

i = 1  t 1 

Similar arguments yield the following 

t = I  1 

<_-M 2 .m- l /p .  "xl __< 
i = 1  

<M3"m-'IP'II ~ [[l'j~_-' [1 ii" '- li-' (k' ' - ' ' ]  = , : ,  , x ,  . r .  x , +  x , .  " ~.7 
j = l  m = l  1 XJ+ 

k ( [ . ,ll/p 
__< M,., , , - , , , .  ,,, Mo., , - , , , .  ,<,)" = Mo. iS , , , :  

(The notations in (3.15) are the same as in (3.12).)Again, by (a), for any real 

a l , a l , " ' , a n  

t = 1  i=1 

(3.14) and (3.16) show that {xt}l~=l is equivalent to the unit-vector basis in Ip. 
This completes the proof of Theorem 3.1. 

REMARK. Using the deep result ofA. Dvoretzky [4] A. Petczyfiski and I. Singer 
proved in [6] the following 

PROI'OSmON 3.2. Let E be an infinite-dimensional Banach space with an 
unconditional basis in which all normalized unconditional basic sequences are 

equivalent. Then E is isomorphic to 12. 

Proposition 3.2 has the following alternative proof: By Theorem 3.1 E is iso- 
morphic either to Co or to Ip for some p > 1. For 2 ~ p > 1 one can construct 
in lp a subspace isomorphic to the space (El 0) E2 ~)...)p, where Ek denotes the 
k-dimensional euclidean space. This can be done without using [4] (see e.g. 
[5].) The space Y = (El @ E2 0)"')p has an unconditional basis non-equivalent 
to the unit-vectors basis in Ip, l < p # 2 .  In fact, if s~'~"("+t) t " " iS  i = { r ( n -  1 ) n +  1 

X oo plays the r61e of the unit vectors basis in E, c Y, n = 1, 2,... ,  the sequence { i}i = 1 
forms an unconditional normalized basis in Y. If it were equivalent to the unit 
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e oo vectors  basis { ~}i=1 in lp we would get that ,  for  some fixed M > 1, every natura l  

n and  any  real a l , a 2 ,  . . . , a  n 

1 n a e  M- II Z,=I , ,  _-< I1 Z7=1 a,x,+~,n 1,o II ~ M rl Z7~1 aiei [1' which is known 
n e to  be false, since ~ , = l a i  ,ll = ~ r = l l o ,  lP) ~ ' '  while II ~7=la,x,+~,~-.olJ is 

equal  to ( ~ 7 = 1  [a,l~) ~ I t  follows that  there exist normalized uncondit ional  
basic sequences in Ip which are not  equivalent to the unit vectors basis. Similar 

basic sequences can be easily constructed in c o and in I t .  I t  follows tha t  E is 

i somorphic  to 12. 
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