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Countable models of ~rcategorical theories are classified. It is shown that 
such a theory has only a countable number of nonisomorphic countable 
models. 

A theory (formulated in the predicate calculus) is categorical in power r (r- 
categorical) if it has a model of power x and any two such are isomorphic. In 
[3] I proved the conjecture of Los' that a theory categorical in one uncountable 
power is necessarily categorical in every uncountable power. The example of 
the theory of algebraically dosed fields of characteristic 0 shows that such a 
theory need not be No-categorical. However, one might expect that the isomorphism 
types of countable models of such theories could be classified in some particularly 
neat fashion. In the example mentioned the isomorphism type can be characterized 
by the number of algebraically independent elements. Thus, it is possible to find 
an increasing sequence of length t9 + 1 of models: 

0~o ~ ¢~1 -~ "'" --- %o 

such that every countable model is isomorphic to some member of the sequence 
and, for each n, %+1 is the "next larger" model than %.  The results of this 
paper, together with a more recent result of Marsh [2], show that such a sequence 
of models can be found for every theory which is N1- but not No-categoricaL 
In every known instance of such a theory no two members of this sequence are 
isomorphic. It is an open question whether this is true in general. Indeed, it is 
not known whether a theory which is NI- but not N0-categorial must have an 
infinite number of isomorphism types of countable models. 
We have adopted the following compromise with respect to prerequisites. The 

definitions and statements of theorems assumes only a basic knowledge of model 
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theory but an understanding of the proofs requires an understanding of the 
methods of [3]. Some of the results of this paper were announced in [4]. 

1. Preliminaries. A relation system, 92, is a set A, the universe of 92, together 
with an indexed set of finitary relations, finitary functions and distinguished 
elements. (We shall adopt the now common convention of denoting relation 
systems by Gothic letters, 92, and their universe by the corresponding Roman 
letter A.) Two relation systems are similar if they have the same index set and 
corresponding relations and functions have the same degree. For similar systems 
one defines 92 a subsystem of ~3 (92 _~ ~3) and 92 isomorphic to ~3 (92 ~ ~3) 
in the obvious fashion. Corresponding to each similarity type of relation systems 
there is a first order with identity language having relation symbols, func- 
tion symbols, and individual constants corresponding to the relations, functions 
and distinguished elements of the relation systems. We shall always assume 
that this language is countable. The reader is presumed familiar with 
the notions of formula and sentence in such a language and what it means for 
a sequence of elements of 92 to satisfy a formula in 92 or for a sentence to be 
valid in 92. A relation system 92 is a model of a set of sentences if each of the 
sentences is valid in 92. A complete theory (in a given language) is a maximal 
consistent set of sentences in that language. For each relation system 92 there 
is a complete theory, Th(9.l), consisting of all sentences valid in 92. We write 
92-~3 to indicate Th(92) = Th(~3). 

If 92 is a relation system and X _ A we denoted by (92,x)x~x the new relation 
system formed by taking the elements of X as distinguished elements. The 
language corresponding to (92,x)x~ x differs from that corresponding to 92 by 
the addition of new individual constants corresponding to the elements, of X. 
If the letter a denotes an element of X we shall denote the new individual constant 
by bold face a. 

Suppose 9~ and ~B are similar relation systems, X _ A, and f is a function 
defined on X into B. Then f is an elementary map if (92,x)~ x = (~,f(x)):~ x. 
In particular, if 92~B and the identity map on 92 into ~ is an elementary map 
then 92 is an elementary subsystem of ~ (92 -<~B). 

A system 92 is minimal if it has no proper elementary subsystems. It is prime 
if 92 ---- ~B implies that there is an elementary map of 92 into ~ .  If X __q A we say 
92 is prime over X if (92,x)~ x is prime.(2) It can be shown (cf. 17]) that if 9~ is 
prime then it is prime over every finite X~_A. ~ is a minimal elementary 
extension of 92 if ~ is a proper elementary extension of 92 and for all if, 92 -< ~ ~(~B 
implies 92 = E or ~ = ~. ~5 is a prime elementary extension of 9A if ~ is a 
proper elementary extension of 92 and for all other proper elementary exten- 

(2) Strictly speaking, this terminology is ambiguous since the notion depends not only on the 
set X but the formulas satisfied by X. In our usage, however, the meaning will always be clear 
from context. A similar remark applied to the notation S(X) introduced below. 
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sions i f ) -91  there is an elementary map of~3 into ~ which is the identity 
o n  ~l[, 

Suppose T is a complete theory in some language and F the set of formulas 
having no free variable other than some fixed one, say Vo. Let S be the set of  subsets 
of  F maximal consistent with T. S may be given a compact, totally-disconnected 
topology(s) by taking as a basis the sets: 

{p~S; d?ep} (dpeF). 

If  ~3 is a model of T and b e ~3 then the set of formulas satisfied by b in ~3 is some 
p c  S. We say b realizes p or b is of type p. In the particular case where 

T =  Th((91,X)x~X) we shall write S as S(X) and if be~3, ~3 )-91 we shall say 
b realizes p e S ( X )  if b realizes p in (~3,x)x~ x - A  system 91 is saturated if for 
every X _ .4 with the cardinality of X less than that of A, every p e S(JO is realized 
in 91. It can be shown (see [4] or [5]) that if 9.I = ~3, 91 and ~3 are of the same 
power and both are saturated then 9I ~ ~3. 

2. The  Elementary  Tower .  

LEMMA (4). Suppose T is a complete theory, 91 a countable model of T and p 
the only limit point in some neighborhood orS(A). I f  there is a proper elementary 
extension ~ of 91 in which p is not realized then there is an uncountable ele- 
mentary extension of 91 in which only a countable number of elements realize p. 

Proof.  Suppose 91, ~ and p are as in the hypothesis of the lemma. Since 91 
is a model of T every isolated point of  S(A) must be realized in 91 (cf. lemma 4.1 
of  [3]). From this it follows that every isolated point of  S(A) can be realised 
by only one point. Hence no isolated point of  S(A) is realized in ~ -  91. Let 
~b be a formula defining a neighborhood of p in which p is the only limit point. 
Since p is not realized in ~ and no isolated point is realized in ~ - 91 it follows 
that no point in the neighborhood defined by ~b is realized in ~ - 91. Thus, ,~ 
is satisfied by no element of ~ - 91. By Vaught's two-cardinal theorem [5] there 
is an uncountable model of  Th(91, a)a ~w in which only a countable number of  
elements satisfy ~b and hence a fortiori only a countable number realize p .  

THEOREM 1. A complete theory T is N1-categorical if and only if every 
countable model has a prime elementary extension. 

Proof.  Suppose T is Nl-categorical and 91 is a countable model of T. Using 
the results of  [3] we know that T is totally transcendental and therefore S(A) 
is countable and must have a point p which is the only limit point in some 

(3) This is no more than a thinly disguised version of the Stone representation theorem for 
Boolean algebras. For a more detailed discussion see [3]. 

(4) A stronger form of this lemma was announced as theorem 1 of [4l. However there was 
an error (pointed out to me by Charlotte Stark CheU) in my proof of that result. 
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neighborhood of S(A). T is tq~-categorical so by theorem 5.5 of [3] every uncount- 
able model of T is saturated and hence every uncountable elementary extension 
of 9.[ has an uncountable number of points realizing p, From the preceding lem- 
ma it follows that every proper elementary extension of 95 has an element 
realizing p. Let b be such an element in some elementary extension of 9[. Then for 
every proper elementary extension ~ 9 5  there is an elementary map ofA U{b)  in- 
to C which is the identity on A. But by theorem 4.3 of [3] A I,.J {b} has a model 
of T prime over it. This model is the desired prime elementary extension of 9~. 

Conversely, suppose every countable model of T has a prime proper elementary 
extension. Using the axiom of choice we choose for each isomorphism type of 
countable models a type of prime elementary extension. (We have not assumed 
that the prime elementary extension is unique, but see Theorem 2 below.) For 
each countable model 95 then we define an increasing sequence of models 
{95~; ct < to1} by 950 = 95, 95~+ 1 is the prime elementary extension of 95~ and 
for limit ordinals c5, 

956 = ~J__ 95~. 

Let us call this the 95-tower. Notice that every member of this sequence is countable 
except the last one, 9~,o~, which has power ~ .  

Suppose ~3 is a countable elementary extension of 95. Letting fo be the identity 
map of 95 into ~ we may proceed inductivity to extend this to elementary maps 
f~ ; 95~ ~ ~ since each 95~+ 1 is a prime elementary extension of 95~. The induction 
will cease exactly at that ~ where f~ maps 95~ onto ~3. This must occur for some 
0e <tox for, otherwise, we would have an elementary map of 9~,ol into ~ which 
is impossible since 95`01 is not countable Similarly, suppose {~3~ ;0~ < ~) is an 
increasing elementary chain of models with 95-< ~30. Then the same argument 
permits us to find a subsequence of the 95-tower isomorphic to the increasing 
chain of ~ 's .  

Next, suppose ~3 ;>-95 and ~ has power ~1- ~B is equal to the union of an 
increasing chain of countable models {~3~ ;~ >col}; so it is isomorphic to the 
union of a subsequence of length to i of the 95-tower. That is, ~3 is isomorphic to 95,0 l- 

Finally, suppose ~3 and ~3' are two models of T of power 1'¢1. From the results 
of the preceding paragraph it follows that there must be countable models 9/ 
and 95' such that ~B and ~3' are isomorphic to the last member of the 95-tower 
and 95'-tower respectively. There exists a countable model ~ such that both 95 
and 9~' may be mapped by elementary maps into ~ (cf. lemma 1.2 of [5]). So 
isomorphic images of ~ must appear in both the 95-tower and ~'-tower. 
Then ~3 and ~3' are both elementary extensions of isomorphic images of 
so they are both isomorphic to the last member of the g-tower. This shows 
that T is Nl-categofical and Theorem 1 is proved. 

Trmov,~M 2. Suppose T is Nlcategorical and 9~ a countable model of T. 
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Then every prime elementary extension of 9~ is also a minimal elementary 
extension of 9~ and a prime elementary extension is therefore unique up to an 
isomorphism leaving 9~ fixed. 

Proof. Suppose 9/had a minimal elementary extension E and ~3 was a prime 
elementary extension of 9;[. By definition there would be an elementary map of 
~3 into ~ which was the identity on ~.  But this map must be onto ~ for otherwise 

would not be a minimal extension. Thus, in order to prove the theorem it will 
suffice to show that 9/has a minimal elementary extension. Consider the prime 
elementary extension ~3 of 9/constructed in the proof of Theorem 1. Suppose 
it were not a minimal elementary extension. Then there would be some model 
"interpolated" between ~ and ~3. But since ~3 is a prime extension of 9.[ there 
would be an elementary map f of ~3 into this interpolated model such that f is 
the identity on 9)[. A fortiori, the image o f f  is not all of ~3. To complete the proof 
we shall show that the assumption that such an f exists leads to a contradiction. 
The argument is somewhat lengthy. 

So, as in the proof of Theorem 1, assume that ~3 >- ~ are countable models of 
Nl-categorical theory T, p is the only limit point in some neighborhood of S(A), 
b ~ realizes p, and ~3 is a model prime over X = A [,.J{b}, f is an elementary 
map of ~3 into a proper subsystem of itself and f is the identity on ~.  Let 
~3' =(~3,x)x~x and T ' =  Th(~3'). The theory T' is Nl-categorical since X is 
countable and every model of T of power N1 is saturated. The theory T' is not 
No-categorical since by a result of Ryll-Nardzewski [6] no No-categorical theory 
can have an infinite set of distinguished elements. By definition ~3' is a prime 
model of T' .A theorem of Vaught 17] says that a prime model of an N~-categorical 
but not No-categorical theory is also a minimal model so ~3' is a minimal model 
of T'. Denote by ~ the image of~B under f. I assert that b ¢~.  For if b e(~, then 
X ___ C and E' = (~, x)x ~ x would be a proper elementary subsystem of ~B'. 

In particular, letting f ( b ) =  c we have c # b. Since f is the identity on A, c 
realizes the same point p ~ S(A) as b does. Indeed ~ is the prime and minimal 
model of T " =  Th((~,x)x~) .  where Y = A L J { c  }. Since x ~ 3  and ~3 is prime 
over X, c must realize an isolated point is S(X). That is the formulas satisfied 
by c in ~3' are exactly the formulas of a principle dual ideal determined by a 
formula ff(Vo). Of course, ~/ is a formula in the language of the theory T'; but 
this language differs from the language of the theory T only in the addition of 
new individual constants. Thus there is no loss of generality in assuming there 
is some finite sequence a2, ..., a n in A such that ~b(v0)= ~(vo,b , a2, "",an) where 
~(Vo, ..., vn) is a formula in the language of the theory T. For typographical con- 
venience we shall henceforth show only the first two arguments of ~b explicitly, 
viz. ~(Vo, Vl). = ~k(Vo, Vl,. a2, " ' ,  an). 

I assert that if d E ~ and satisfies in ~ the formula ~(e, %) then d does not realize 
the same point p e S(A) which is realized by b. For suppose it did. Then the 
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mapping of A U (b, c} onto A U {d, c} which is the identity on A LJ {c} would be 
an elementary map. Since ~ is prime over A U {b} it is also prime over A U {b, c}, 
so there would be an elementary map g : ~ ~ ff which is the identity on A U {c}. 
But g maps ~ onto a proper subsystem of itself and so the same argument given 
above to show that f (b )~  b shows that g(c)~ c, a contradiction. 

On the other hand, c does realize the point p in S(A) and hence c has all the 
same first order properties with respect to 9~ that b does. In particular, any element 
satisfying ~(Vo, e) must realize p. Combining this with the result of the last parag- 
raph we have the following anti-symmetry property, X(Vo), satisfied by c; 

X(Vo) = (vl)(¢(Vo, vl) --, -7¢(vl ,  Vo)). 

Let U be some neighborhood of p in S(A) which contains no other limit point. 
Then there is some formula p(vo) such that U consists of all prime dual ideals 
containing p. (Of course, p may involve individual constants corresponding to 
the elements of 9~). The formula: 

X(Vo) & p(vo) & g/(e, Vo) 

is satisfied by b so, since ~-<~a; it must be satisfied by some element, say do, 
in ~. We have already shown that this implies that do does not realize the point 
p E S(A). Therefore do must realize an isolated point of S(A) and as mentioned 
in the proof of Lemma 1, therefore do e ~.  Then the formula ~(Vo, do) determines 
a neighborhood of p in S(A). Repeating the above argument we can find a dl eg~ 
which satisfies: 

X(Vo) &p(Vo) & ¢(Vo, do) & ~(c, Vo). 

Proceeding inductively we may find a sequence {dn ; ~ ~o} of elements of A such 
that m > n implies ~(d/, dn) and z(dn). This says that ~ determines a linear ordering 
of the dn's which contradicts theorem 3.9 of [3]. Theorem 2 is now proved. 

3. The number of countable models. Suppose T is Nt-categorical. Vaught 
has proved that T must have a prime model, 9.L As in the proof of Theorem 1 
we may construct an 9A-tower {9~ ;a < o~1} such that ~[o = ~,  9A~+1 is the prime 
elementary extension of 9A~ and for non-zero limit ordinals ~, 9~ 6 = [,.J~<~9~. Since 
9A is a prime model the arguments used to prove Theorem 1 shows that every 
countable model of T is isomorphic to some member of this tower. It remains 
to consider which members of the tower are isomorphic. One possibility is that 
T is No-categorical so that all members of the tower are isomorphic. Let us 
exclude this case and suppose that T is Nl-categorical but not No-categorical. 
Vaught [7] has shown that under this hypothesis the prime model is also minimal. 
Hence 9~o is not isomorphic to 9A~ for any ~ > 0. Vaught [7] has also shown that 
no complete theory T can have exactly two isomorphism types of countable 
models. In doing so he proves that: if T is not No-categorical then no model 
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prime over a finite set is saturated. From this it follows that in our tower 
of  models, 9/, is not saturated for any n e o9. On the other hand, Vaught 
has also shown that there must be a countable saturated model of T. So 
there is a countable ~ > o9 such that 9i~ is saturated. Since the saturated 
model is isomorphic to a proper elementary subsystem of itself there is a 
countable fl such that 9~= --- 9.I~+p. By induction therefore 9~=+~ ~ 9i=+#+~ for 
all countable 7. In particular, ! assert that 9I= ~ 9I=+p, for all countable 3. The 
proof is by induction on 3. The only difficulty in the induction occurs at limit 
ordinals; there we use the fact [5] that the union of a countable elementary chain 
of countable saturated models is a countable saturated model. Thus from 0t on 
the tower repeats isomorphism types with period ft. We have proved: 

THEOm~M 3. I f  T is Nl-categorical but not No-categorical then the number 
of isomorphism types of countable models is countable, i.e.,finite or denumerably 
infinite. 

There are no examples known where the number of isomorphism types is finite, 
but whether any such exist is an open question. 

We may sharpen the results of  the last theorem by: 

THEOREM 4. I f  T is an N 1- but not No-categorical theory and {9~;~t < o91} 
the tower described above, then 9~ is saturated for every limit ordinal fi > O. 

Proof. We shall prove something slightly stronger, namely, if t~ is a limit 
ordinal and ~ < t5 then every point of  S(A~) is realized in 9ia. To do this is it suf- 
ficient to prove the following: If {~, ;  n ~ co) is an increasing elementary chain 
of  countable models of Tthen every point of S(Bo) is realized in ~,.J, ~ , ~ , .  From 
[3] we know that S(Bo) is countable and hence must contain a point Po which 
is the only limit point in some neighborhood. This point must be realized in ~ .  
As discussed in [3] the identity map i: ~ o ~  induces a continuous, onto 
projection i*:S(B1)~S(Bo). Since S(B1) is countable and compact i*-l(po) 
must contain some point p~, which is the only limit point in some neighborhood 
of S(B~). Then there must be some element of ~B2 which realizes p~ and therefore 
also realizes Po. Proceeding inductively we may find for each n ~ to a p. ~ S(B,) 
and an element b , e  ~.+~ such that b. realizes p, and p,+~ projects onto p. .  
By Lemma 4.4(a)(i) of 1-3] there is an no e o9 such that all the p, 's with n > no 
have the same transcendental degree and rank. It is shown in the proof of theorem 
4.6 of [3] that this implies that the corresponding b,'s are indiscernible over B o . 
Thus, U .  ~ , ~ ,  is a model of Tcontaining an infinite set of indiscernibles over 
Be. It is shown in Theorem 5.4 of [3] that underthese circumstances if some 
q~ S(Bo)were not realized in ~ ,  ~ , ~ ,  then T would have an uncountable model 
which is not saturated. But this is impossible by Theorem 5.5. 

While this paper was in preparation the following theorem was proved by 
Marsh [2]. 
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TrmOREbi. I f  T is Nt-categortcal then every elementary extension of a saturated 

model is saturated. 
Combining this with Theorem 4 we see that in our tower of  countable models 

they are all saturated and hence isomorphic to each other from the coth step on. 

The remaining open question is whether the first co models of  the tower must 

all be distinct isomorphism types. In every known example of  NI- but not  No- 
categorical theories they are distinct. 

Suppose T is an N1- but not N0-categodcal theory in a countable language 
L, L' a language which extends L by the addition of  a countable number of  indivi- 
dual constants and T '  a complete extension of  T in L' .  Then T '  is also N l- but 
not No-categorical. Marsh [2] has proved the following theorem, 

THEOREM. I f  T is N~- but not No-categorical then there is a complete extension 
T" of T in a language which extends the language of T by only a finite number 
of new individual constants such that in the tower of countable models of T '  the 
first co models are of distinct isomorphism types. 
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