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ABSTRACT 

We prove that every locally compact non-discrete abelian group G contains a 
compact subset E such that A(E) --  the restriction algebra of A(G) to E - -  
admits spectral synthesis, although it contains a closed, regular, self-adjoint 
subalgebra which is isomorphic to an algebra of infinitely differentiable func- 
tions oa [ - 1, 1 ]. We also give some general results concerning the failure of 
spectral synthesis in regular Banach algebras. 

Introduetian. In 1959, P. Malliavin [5] proved that for every locally compact 

non-discrete abelian group G,  with dual F ,  the algebra A(G) of Fourier trans- 

forms of elements in LI(F) does not admit spectral synthesis. For  G = R n, n > 3, 

L. Schwartz I-8] proved this result already in 1948. In both cases the proof  seems 

to depend in some way on the fact that A(G) contains a closed subalgebra iso- 

morphic to an algebra of  differentiable functions on some interval on the real 

line. In Malliavin's proof, it is the algebra of  functions operating on some fixed 

element of  A(G). In Schwartz's proof, it is the algebra of  radial functions in 

A(R"), which for n > 3, can be identified with an algebra of  differentiable func- 

tions on (0, oo). Moreover,  if B is a commutative semi-simple regular Banach 

algebra with unit in which the failure of  spectral synthesis follows from the exis- 

tence of  an element f in B,  which is not contained in the closed ideal generated 

by j 2 ,  then B contains a closed subalgebra isometric-isomorphic to an algebra 

of  functions with a bounded point derivation. We discuss this remark in Section 4 

(Theorem 4,5). These observations lead to the formulation of  the following 

general problem: 

* This paper is a part of the author's Ph.D. thesis prepared at the Hebrew University of Jeru- 
salem, under the supervision of Professor Y. Katznelson, to whom the author wishes to express 
his gratitude for his valuable remarks, and the interest he showed in the preparation of this paper. 
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Suppose B is a commutative, semi-simple, regular, self-adjoint Banach algebra 

with unit, which contains a closed subalgebra Bo of the same type, which is 

isomorphic to an algebra of differentiable functions on an interval. Does it follow 

that spectral synthesis fails in B? We show that the answer in general is negative. 

In fact we prove (Theorem 3.1), that for every locally compact non discrete 

abelian group G there exists a compact subset E c G such that A(E) (the re- 

striction algebra of A(G) to E) admits spectral synthesis, although it contains a 

regular, self-adjoint, closed sub-algebra which is isomorphic to an algebra of 

infinitely differentiable functions on [--1, 1] (and which, therefore, does not 

admit synthesis). 

In Section 1 we recall some basic notations and definitions concerning spectral 

synthesis in regular Banach algebras, and discuss the concept of individual symbolic 

calculus. We also give a generalization of the Ditkin-Shilov theorem which we 

need in the sequel. 

In Section 2 we consider tensor products of the form B ~3 C(Y), where B 

is a semi-simple, regular, self-adjoint, commutative Banach algebra with unit, 

and C(Y) the algebra of continuous complex functions on some compact Hausdorff 

space Y. We show that if B satisfies a strong form of Ditkin condition (Condition 

(DI) introduced in Section 1), and has a scattered maximal ideal space, then 
A 

B ® C(Y) admits spectral synthesis. We also discuss in this section, the individual 

symbolic calculus of certain functions in this tensor algebra. 

In Section 3 we use the results of Section 2, to prove our main result mentioned, 

concerning restriction algebras of group algebras. 

The failure of spectral synthesis in a regular Banach algebra, which contains 

a closed, regular sub-algebra which does not admit synthesis, is closely related 

to the problem of extending certain linear functionals, from the subalgebra to 

the whole algebra, with some kind of preservation of support. We investigate 

this problem in Section 4, and give conditions for such an extension to be possible, 

which apply to Schwartz's example and Malliavin's theorem. We conclude with 

a result concerning the connection between the failure of spectral synthesis in 

an algebra, and the existence of a closed sub-algebra with bounded point deri- 

vations. 

1. Same general results. In what follows, B denotes a semi-simple com- 

mutative, regular, self-adjoint Banach algebra with unit, represented as an algebra 

of functions on its maximal ideal space X. For a closed set E c X we denote by 
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I(E) = { f E B ;  f - l (O)  ~ E}, 

lo(E) = { f E B ;  f - t ( 0 )  is a neighborhood of  E} .  

For any closed ideal I c B we denote by 

Z(I) = f'~ f - l (O) .  
f e l  

It is well known that for every closed set E c X ,  and every closed ideal I c B 

with Z(I) = E,  the relation 

Io(g ) c I ~ I(e)  

holds. 

DEFINITIONS. A closed set E c X is called a set of spectral synthesis (an S-set 

if Io(E) = I(E). 

A closed set E ~ X is called a Ditkin set (a D-set) if for every f E  I(E) there 

exists a sequence g, EIo(E)n = 1 ,2 ,3 . . . ,  such that limn-.o~llgnf-f[lB =0.  
Clearly, every D-set is an S-set. We shall say that the algebra B admits spectral 

synthesis, if every closed set E ~ X is an S-set. 

The following is well-known: 

LEMMA 1.1. Let E ~ X be an S-set. I f  there exists a constant c > O, such 

that for every neighborhood U of E ,  there exists g EIo(E ) such that g = 1 

on X X U, and II g lib Z c, then E is a Ditkin set. 

In Section 2, we shall need the following generalization of the Ditkin-Shilov 

theorem: 

THEOREM 1.2. Let H be a Hausdorff space, and dp:X ~ H a continuous 

function such that for all y EH,  every closed subset of ~b-l(y) is a Ditkin set. 

I f  E is a closed subset of X such that qS(bdryE) is scattered (i.e. does not contain 

any non-empty perfect subset), then E is an S-set. 

REMARK. If  X = H and ~b is the identity map, we get the Ditkin-Shilov 

theorem. 

PROOF. Let I c B be a closed ideal with Z ( I ) =  E,  and f E B  such that 

E ~ f -  1 (0). We shall show that f ~ I .  Let P be the set of  points y E H such that 

f d o e s  not belong locally to I at all points of qS- l(y).  Since f belongs locally to I 

at all points of X / bdry E ,  we have P c ~b(bdryE); hence the theorem will be 

proved by showing that P is perfect. It is easy to see that P is closed, and we turn 



200 AHARON ATZMON Israel J. Math., 

to show that P has no isolated points. In fact, suppose that for some Yo ~ H ,  

there exists a neighborhood U~such that ( U \  {Yo}) n P = ~ .  Put  qS-l(U) = V, 

~b-l(yo) = K, and K n bdryE = Q. Let Wbe a neighborhood of Q such that 

if" c V, and choose g ~ B such that g = 1 on a neighborhood of Q, and g = 0 

on X 1 W. Since Q is a D-set, there exists a sequence g, E Io(Q),  such that 

lim._.~ II r.f-fll .  = 0,  and therefore 

(1.1) lim'[l g, g f  - g f l l ,  = 0 
n---~ t~o 

By verifying local belonging at all points of X ,  we get g, g f ~  I ,  and therefore 

by (1.1), gfE  I .  H e n c e f  belongs locally to I at all points of  q~-l(yo), and the proof  

is complete. 

DEFINITIONS. We say that B satisfies condition (D 0 at a point x o ~ X  if  B 

has no non-trivial primary closed ideals at Xo and there exists a constant c > 0,  

such that for every neighborhood U of Xo, there exists g ~ B  such that: 

a) The support of g is contained in U.  

b) g = 1 on a neighborhood of  Xo. 

c) Ilgll.__< c. 

It is obvious that if B satisfies condition (D1) at xo then {Xo} is a D-set. 

DEFINITION. We say that the algebra B satisfies condition (DI) if  B satisfies 

condition (D 1) at every point xo ~ X .  Let B* be the dual space of  B.  For  v ~ B* 

we denote by ~ (v) its support (1). 

us ing the Hahn-Banach theorem, we get that E is an S-set, if and only if: 

v E B*,  ~ (v) ~ E =~ v ~ I(E) J- . We remark that if B has no non-trivial primary 

closed ideals at Xo E X then every v E B* with • (v) c {Xo} is of the form v = C6~o, 

where c is a constant and 6~o denotes the unit mass concentrated at x o . 

We finish this section with some remarks concerning individual symbolic 

calculus in B.  Let f E B ;  we denote by I f ]  the set of  all functions F ,  defined 

on f ( X ) ,  such that F o f ~ B .  I f  F E [ f ] ,  we say that F operates on f ;  I f ]  is 

called the individual symbolic calculus associated with f .  With norm 

11 F II = II F o f l l .  

I f ]  forms a semi-simple, commutative Banach algebra with f ( X )  as its maximal 

ideal space. 

(1) We refer the reader to [4] for the definition of support of a linear functional, and related 
matters concerning spectral synthesis. 
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We denote by 

[ [ f J ]  = {Fof; F~[f]}. 

[ [ f ] ]  is a closed subalgebra of  B, isometric isomorphic to [ f ] ,  by the corre- 

spondence F ~ F o f ;  F e [ f ] .  It is easy to verify that [ [ f ] ]  consists of  all g ~ B 

which respect the level lines o f f ,  that is: 

xl, x 2 EX; f(xl) = f(x2) =~ g(xl) = g(Xz). 

For a discussion of  the relation between individual symbolic calculus and 

spectral synthesis we refer to [4, p. 243]. For the investigation of  individual 

symbolic calculus in group algebras see [3] and [6]. 

2. The tensor product B ~ C(Y). Throughout this section, B is a semi-simple, 

commutative, regular self-adjoint Banach algebra with unit, represented as an 

algebra of  functions on its maximal ideal space X .  Y will denote a compact 

Hausdorff space and C(Y) the algebra of continuous complex functions on Y 

with the sup-norm. 

We denote by B ~ C(Y) the proiective tensor product of B and C(Y); that 

is, the space of  all continuous functions ~k on X x Y which admit a representation 

of the form 

(2.1) ~O(x,y) = ~ fj(x)gj(y) 
j = l  

with f j  ~ B,  gy ~ C(Y), and ]~°= I II f~ H n ]l gJ [I oo < ~ .  

We shall write ~k = ]~T=I fj ® gi for (2.1). We introduce the norm 

tl El. c,Y  = inf I ,  11. II II 
y = l  

where the infimum is taken with respect to all possible representations of ~k in 

the form (2.1). 

It is easy to check that with this norm B ~ C(Y) is a regular semi-simple com- 

mutative Banach algebra with maximal ideal space X x Y. 

For the general theory of tensor products of Banach algebras we refer the reader 

to [2]. For the application of  tensor products of Banach algebras to harmonic 

analysis see [9]. 

DEFINITION. Let v~B*, #~C*(Y) ;  we define their tensor product v ® / t  as 
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the linear functional on B ~ C(Y), whose value at ~k = ]~o=~fj ® gj is given by 

(2.2) <~k, v ® #> = ~ <fj, v> <gj, kt>. 
j = l  

It is easy to verify that this definition does not depend on the representation 
of ~0. 

LEMMA 2.1. Suppose B has no non-trivial closed primary ideals at Xo EX ,  

and let E be a closed subset of Y. Then every co e(B ~ C(Y))* such that 

]E (co) = {Xo} x E, is of the form co = 6xo ® I ~, where p is a regular bounded 

Borel measure supported by E.  

PROOF. For fixed g E C(Y) let coo be the member of B* defined by 

(2.3) <f, coo) = <f ® g co), f e B .  

Since ~ (o2) = {Xo} x E it follows from (2.3) that • (coo) ~ (Xo), and since B 

has no non-trivial closed primary ideals at Xo, it follows from the remark in 

Section 1 that 

(2.4) cog = c(g)tSx o 

where c(g) is a constant depending on g. From (2.3) we infer that c(g) = <1 @ g,o~>. 

This shows that the map g ~ e(g) defines a bounded linear functional on C(Y); 

that is, there exists a measure #E C*(Y) such that 

(2.5) c(g) = <g, #> 

for all g in C(Y), and it follows by (2.3), (2.4), and (2.5) that 

(2.6) < f ® g ,  6~ o ® # >  = < f ® g ,  co>. 

Since the linear span of the functions f ®  g, f e B ,  g eC(Y) is dense in 

B @ C(Y),  (2.6) completes the proof. 

COROLLARY 2.2. With the assumptions of Lemma 2.1, {Xo} × E is an S-set 

for B C(r). 

PROOF. Lemma 2.1 shows that every functional in (B ~ C(Y))* which is 

supported by (Xo) x E is a measure, and therefore admits spectral synthesis. 

LES~VIA 2.3. I f  B satisfies condition (Dr) at Xo E X and E is a closed subset 
A 

of Y, then (Xo} x E is a D-set for B ® C(Y). 

PRoov. By Corollary 2.2, {Xo} x E is an S-set; using Uryshon's lemma for 

C(Y) and the assumption that B satisfies condition (D1) at x o, we infer that all 

of the conditions of Lemma 1.1 are satisfied. 
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THEOREM 2.4. I f  B satisfies condition (D1) , and X is scattered, then B ~ C(Y) 

admits spectral synthesis. 

PROOF. The theorem follows from Lemma 2.3 and Theorem 1.2, with ~b as 

the projection map of X x Y onto X .  

COROLLARY 2.5. I f  X is countable, then B Q C(Y) admits spectral synthesis. 

We turn now to some results on individual symbolic calculus in B ~ C(Y) 

We begin with an observation, which uses an idea introduced in [3]. Fo? 
^ 

h ~ B  ® C(Y), and y ~  Ywe denote by h r the function defined on X by 

hy(x) = h(x,y),  x ~ X .  

It  is easy to check that the map 

y -~ hy, y ~  Y 

is a continuous map of  Y into B,  and 

[1 h~ ][B < 1[ h I1~ c,~,. 

Let f e B ,  g s C ( Y ) ,  and ~k = f ®  1 +  1 ® g .  The preceding remarks show 

that for any F e [~] the map 

(2.7) y ~ F ( f  + g(y)), y ~ Y 

is a continuous map of Y into B,  and 

(2.8) l lf(f + g(Y)]l, =< l[ F °  ~l[.~c(,) 
for all y ~ Y .  

We denote by K the range of g; we claim that 

(2.9) t ~ F( f  + t); t E K  

is a continuous map from K into B.  This follows from the continuity of the 

map (2.7), and the continuity of  g .  

LEMMA 2.6. Let g ~ C ( Y )  with range [-0, 2re], f a real function in B and 

= f ® 1 + 1 ® g. I f  F is a function defined on the real line with period 2n 

which operates on ~,  then 

le(n) I __< clle"~ II; 1 . = 0, + 1, +2 , . . .  

where f'(n) denotes the n-th Fourier coefficient o f F ,  and c a constant. 

PROOF. By (2.9) the map 

t ~ F( f  + t), tE[0,2~z] 
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is continuous from [0, 2n] into B and (2.8) implies that 

(2.10) sup [ I F ( f +  t)ll. = liFo g'[I.  c(r) 
0__<t<2~t 

Using integration of continuous B valued functions, we have 

1 f2~  = - -  F ( f  + t) e ~"I" dt. -P(n)ei"S 2~ o 

Hence (2.10) implies that 

1 fo 2" II F(n) e'"s II, = II F( f  + t)]]Bdt <= 11F o ~ lln~ c(r)- 

This proves the lemma with c = I1 F o It.  , , ) .  

REMARK. It follows from (2.9) that F is a continuous function on R.  

LEMMA 2.7. Let F be a function defined on [ -  1,1] and F (cosx) = ]~,~ o a, cos nx, 

for all real x.  I f  

nk[a,[< oo k = 0 ,1 ,2 ,3 , . . . ;  
. = i  

then F ~ COO[ - 1, 1] (where C ® [ -  1,1] denotes the space of infinitely differen- 

tiable functions on [ -  1,1].) 

PROOF. Since F'(cos x)sin x = ~7=  t n a, sin nx, we have 

sin nx 
F'(cosx) = na, for x # krc k = 0, + 1, + 2 , . . . .  

,= t sin x - - 

Keeping in mind that 

sin__.nx = 2 cos2jx + 1 for n = 2m + 1; sin nx - 2 ~ cos(2j - 1)x for n = 2m; 
sinx j= l  sinx j=l  

we obtain 

oo 

F'(cosx)= Z b.cosnx with ~ n k [ b . [ < ~  for all k > 0 .  
. = 0  . = 1  

Thus F ~ C I [ - 1 , 1 ] ,  and by induction we get FECm[--1 ,1]  for all m > 0. 

COROLLARY 2.8. Let f be a real function in B such that for some ~ > 0 

(2.11) Ile"sll.>=  n = 1 , 2 , 3 , . . . ,  

and let g be as in Lemma 2.6. I f  lp = f ® l + 1@ g and h =cos~k ,  then 

[h] = C~[ - 1 , 1 ] .  
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PROOF. Let F ~ [ h ] ;  define Fl(x  ) = F(cosx) .  Then F 1 ~[~,] ,  and it follows 

from Lemma 2.6 and (2.11) that F(cosx) = ~,~=oa,,cosnx with la l --< e 

n = 1,2,3,- - - ,  and by Lemma 2.7, F ~ C ~ ° [ - 1 , 1 ] .  

In Section 3 we shall also need: 

LEMMA 2.9. Let f ,  g ,~  be as in Lemma 2.6 and h = cos~k. I f  

09 

(2.12) ~ log ~ ei"~'][_n < m 
.=_® 1 + n  2 

then [hi is a regular self-adjoint Banach algebra with maximal  ideal space 

[ - 1 , 1 ] .  

PROOF. Since B ~ C(Y) is self-adjoint it follows that [h] is self-adjoint. Since 

the range of  h is [ - 1 ,  1], the assertion about the maximal ideal space is 

clear. 

We prove now the regularity of [hi.  Let 

o,. = II ei"0 [1~ c(r), n = 0, ___ 1, + 2 , - . . .  

Since II I1,  --< II II, it follows from (2.12)that 

(2.13) ~ log a~, 
.= -m 1 + n 2 <  " 

Consider the space A(co.) of continuous functions on R which admit a re- 

presentation of the form ~ '  " '  la.lo,. < u(t) = ~ ,  _ _ oo a,e , t ~ R ,  with l[ u II = ]~ ~= - ~o oo. 
A(o9,) is a commutative Banach algebra which is contained in [ i f] .  

It is proved in [1] that (2.13) implies the regularity of A(w,). Let now E be a 

closed subset of [ - 1 , 1 ]  and X o ~ [ - 1 , 1  ] \ E .  Let t o = arcos Xo, and 

H = { a r c o s x ; x ~ E } .  H is a closed subset of  [0 ,n ] .  Define - H  = {t; - t ~ H } .  

Since the algebra A(c9,) is regular there exists u e A(e),) such that u(t) = 0 for 

t e H W - H  and U(to) = u ( -  to) = 1. Let F~(t) = [u(t) + u ( -  0]/2 for t ~ [ -  re, re] 

and F(x) = Fl(arcos x) for x e [ -  1, 1]. Then F e [h], F = 0 on E and F(xo) = 1. 

This shows that [hi is regular. 

3. Group algebras. In what follows, G denotes a locally compact, non-discrete 

abelian group. For  a closed set E c G, we denote by A(E) the restriction algebra 

of A(G) to E ,  which is canonically identified with A(G)/I(E). 

The main result of this section is the following: 

THEOREM 3.1. There exists a compact set E c G such that A(E) admits 

spectral synthesis, although it contains a regular, self-adjoint, closed sub- 
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algebra, which is isomprhic to an algebra of infinitely differentiable functions 

on [ - 1 , 1 ] .  

We begin with some remarks and notations. We denote by D the denumerable 

complete direct sum of groups of order two. We identify the elements of D, 

as sequences (e,,), e, = 0, 1; the group operation being coordinate addition mod 2. 

Denote by Xm the element in D ,  all of  whose coordinates except the ruth are zero. 

Denote by Gm the sub-group of D generated by Xm, that is G m= {0,xm}. Finally 

we denote by ~m the character on D, defined by ¢, , (x)= ( -1)~% x = (e~,). 

Let u? = ~ , ~ a , ~ , ,  ~ , , ~  la,,[ < o~; then q ~ A ( D )  and it is easy to check 

that for every real number u,  and k positve integers m~,m2,. . . ,  ink, we have: 

k 

(3.1) []eiUVl]a(o...ore2 ' ~...,~,,k)= H (Ic°sa  ul ÷ [sinam u[) • 
j = l  

Let X be a compact Hausdorff space, we use the notation V(X) = C(X) ~3 C(X). 

For  a closed set E c X, the restriction algebra of V(X) to E x E is V(E) = C(E) Q C(E). 

Let H be a compact group; for any q~ e A(H),  the function W* defined on H x H 

by W*(x,y) = W(x + y),  x , y  e H ,  belongs to V(H),  and by [9] we have: 

(3.2) 

LEMMA 3.2. There exists a denumerable closed set S c D ,  and a real 

function f ~  V(S) such that for some positive constant ct 

(3.3) II e'"s > e~4" v(s) = , n = 1,2 , . . . ,  

and 

(3.4) ~ log II e'nS IIv,s, < 
n=-oo 1 + n  2 

PROOF. We define a sequence of sets Hk = ~=k___,<ak*10 G,, k = 1 ,2 , - ' - ,  

and put S = ~..j~o= 1 Hk. S is a closed denumerable subset of D .  Define a sequence 

of positive numbers 

1 2k 2 k + 1 (3.5) a m -- for < m < . 
2.4 k 

Put W = ~ ~= 1 amain, and let f be the function defined by f ( x ,  y) = W(x + y) ,  

x, y s S .  We claim that S and f satisfy (3.3) and (3.4). In fact, let n be a positive 
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integer; consider the positive integer k such that 4 k-1 ~ n < 4 k. Using (3.1), 

(3.2) and (3.5) we get 

(3.6) [I e'"q v , , ,  >= 11 e~'y 11 v,rt~) = II e'°~' I[A~,,~, = 04 
= 1-I (I cos nam I + I sin nam 1) > [ I  + ~ nam > ; 

2k__<m<2k+l 2kNm<2k+t 

this proves (3.3). To prove (3.4), note first that for any character ~ on D,  and 

a real number u we have: 

Ile"llA~o) = Icosu[ + Isinul _-< (1 ÷ 2lul)~; 

hence, for any integer n, we obtain: 

(3.7) 1 ~ 21 lain)" log 11 e''v Ila,., ---- ~ mZllog(l= + n 

By an elementary computation we get 

(3.8) ~. log(1 + 2amlnl) < CamioN 1 
,=-oo 1 + n 2 a m 

for some positive constant c. It follows from (3.5) that 

hence, (3.8) implies that 

m = 1,2, . . . ,  

~ . ~ = l a m l o g ( 1 / a m )  < o0; 

(3.9) ~ ~ log(1 +2amln[) = ~. ~2 log(1 +2amln l )  
,=-~o m=l 1 ÷ n 2 1 ÷ n 2 

m = l  r t :  ~ o 0  

Remembering that II e"SI] v(s~ =< il e~"v IIA,.,, (3.4) follows from (3.7) and (3.9). 

PROOF OF THEOREM 3.1. Take S and f which satisfy (3.3) and (3.4). Let g be 

a continuous function from D onto [0, 2n]. Consider the algebra V(S) ~ C(D), 

and define ¢ = f ®  1 + 1 ® g, and h = cos¢ .  It follows from Corollary 2.8 

and Lemma 2.9 that [h] is a regular, self-adjoint Banach algebra, contained in 

C°° [ -1 ,1 ] ;  hence [[h]]  is a regular, self-adjoint closed sub-algebra of 
A 

V(S) @ C(D), which is isomorphic to an algebra of infinitely differentiable func- 

tions on [ - 1 ,  1]. Since V(S) satisfies condition (D 0 it follows from Corollary 2.5 
A 

that V(S) ® C(D) admits spectral synthesis. Noticing that V(S) ~ C(D) is the 
A 

restriction algebra of  V(D) ® C(D) to S x S x D the theorem follows from 

the fact ([9], Theorem 4.2.2), that every locally compact, non-discrete, abelian 

group G contains a compact subset K ,  such that A(K) is isomorphic to 

V(D) ~ C(D). 
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4. Extension of linear funetionals. We give now some sufficient conditions 

for the failure of spectral synthesis in some Banach algebras. In what follows 

we assume that the algebra B satisfies the conditions of  Section 2. 

Suppose now that B contains a closed, regular sub-algebra Bo with unit, which 

does not admit spectral synthesis. Denote by Xo the maximal ideal space of Bo. 

There exists a continuous map a: X ~ Xo which associates with each complex 

homomorphism of B its restriction to Bo; this map is onto, since B o being regular, 

any of  its maximal ideals can be extended to a maximal ideal of  B. Since spectral 

synthesis fails in B o there exists a functional Vo ~ Bo*, and a function f ~  Bo such 

that ]g (Vo) c (x ~ Xo ; f (x )  = 0} and 

(4.1) ( f ,  Vo> # 0. 

We can extend Vo by the Hahn-Banach Theorem to a bounded linear functional v 

on B; if an extension is possible such that 

(4.2) Z (v) = { x ~ X ;  f ( x )  = 0} 

then it follows from (4.1) that spectral synthesis fails in B.  The possibility of 

such an extension is equivalent to the following problem: Is it possible to extend 

v to a bounded linear functional v on B such that 

(4.3) ~] (v) = a -  2( Z (Vo)) ? 

The results of  Section 3 show that such an extension is not always possible. In 

the next theorem we give a condition for such an extension to be possible. 

THEOREM 4.1. A necessary and sufficient condition that voEB ~ admits an 

extension v~B* such that (4.13) holds is that for some positive constant c 

(4.4) I ,'o(f) I __<c IIf + h 11. 

holds, for all f ~  B o and h ~ Io(E ) ,  with E = tr- l( ]~ (Vo)). 

PROOF. It is obvious that condition (4.4) is necessary and we therefore prove 

only the sufficiency. Let v o ~B* such that (4.4) holds. We first extend v o to a 

functional v I on B o + Io(E ) , which is defined by: 

(4.5) v l ( f  + h) = vo(f ) ,  f ~ Bo, h ~ Io(E) . 

One checks easily that vl is well defined and (4.4) implies that it is bounded by c. 

Let v E B* an extension of v 1 to B,  which exists by the Hahn-Banach Theorem. 

It follows from (4.5) that ]~ (v) c E and the theorem is proved. 
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We consider now, in a general setting, a situation which occurs in the disproofs 

of  spectral synthesis by Schwartz and Malliavin. 

Let B,  Bo, X ,  Xo and a ,  be as in the preceding discussion. For  f ~ B o ,  we 

denote by f its Gelfand transform. Denote by/~o,  the algebra of Gelfand trans- 

forms, of  elements of B o . 

Let B1 be a semi-simple, commutative, regular, Banach algebra with unit, 

represented as an algrbra of  functions on its maximal ideal space E ,  which is 

a closed subset of X o. 

In what follows, we suppose that there exists a bounded linear transformation 

T : B  ~ B1 such that: 

(4.6) T( fg)  = f leTg,  f e B o ,  g ~ B .  

(4.7) T1 = 1 

It follows that the restriction algebra of/~o to E ,  is contained in B1, and there- 

fore to every functional o9 ~ B~ is associiated a functional v o ~ Bo* defined by 

<f, Vo> = <fie, t°>, f ~ B o "  

Keeping the same notations we have: 

THEOREM 4.2. The functional v = T*o9 is an extension of Vo to B,  which 

satisfies 

(4.8) Z (•) c o'-1( X ((.o)) 

PROOF. It follows from (4.7) that v is an extension of Vo. To prove (4.8), 

consider a function g ~ B which vanishes on a neighborhood U of a -1  (Z (09)). 

Let V be a neighborhood of ~(o9) in X o , such that a -  1(V) c H .  Since Bo is 

regular, there exists h ~ B o such that h = 0 on a neighborhood of Z(o9), and 

= 1 on X o / F; hence h =1  on X \ U, and therefore g = hg. 

Hence, using (4.6), and keeping in mind that the support of  ft is disjoint from 

Z (o9), we obtain 

<g, v) = ([~IETg, to) = O, 

and the proof  is complete. 

COROLLARY 4.3. I f  there exist og~B~ and f ~ B o ,  such that 

f - '  (o); o9> o 

then spectral synthesis fails in B. 
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COROLLARY 4.4. I f  ~o = B1, then every vo~B o has an extension v~B*,  

such that (4.3) holds. 

SCHWARTZ'S EXAMPLE. Consider the algebra A(R") n > 3, and its closed 

subalgebra ~ , ,  of radial functions. Let 

K =  X = ( x l , x 2 , . - . , x , ) ~ R  "', 1 =< =<2 
J 

and denote by A(K) and N(K) the restriction algebras of A(R ~) and N, to K res- 

pectively. Let M be the radial mean operator on A(R"). The conditions of 

Theorem 4.2 are satisfied for B = A(K), with Bo = N(K), Bx = Cl[1,2], and 

the operator r defined by Tflr= Mflrt,zj, f eA(R~) .  

MALUAVIN'S THEOREM. The principle of Malliavin's disproof of spectral syn- 

thesis in group algebras, can be stated in the general setting of regular Banach 

algebras, as follows [4, p. 231]: 

If there exists a real function f e  B, and a non-trivial bounded Borel measure # 

on X such that 

(4.9) u[ l[ < oo 
L 

then spectral synthesis fails in B. By replacing if necessary /~ by W# for some 

E B, and f by f + ~, for some real constant c~, (4.9) is not altered, and we may 

therefore assume (see [4], p. 232) that 

f_~(1 ,  (4.10) e~"S#)du ¢ O. 

Consider the continuous function on R 

v(t) = (1, ei"S#)e-i"tdu, t • R; 

By (4.10), there exists a positive number r, such that v(t) ¢ 0 for t • [ - r ,  r] .  

Suppose now, in addition, that the algebra I f ]  is regular (this is the case in 

Malliavin's construction). The conditions of Theorem 4.2 are then satisfied for 

B with Bo = [ [ f ] ] ,  B1 = C l [ - r , r ] ,  and the transformation T, defined by 

Tg(t) = v(t---) (g, e~"J'#)e-"du, t ~ [ -  r, r] 

for g e B .  

Another example, in which the same principle holds, is in the disproof of 
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spectral synthesis for the algebra V(G) = C(G) Q C(G), where G is a compact  

infinite group [9], 

Let Vo be the algebra of  functions f E  V(G) such that f ( x , y ) = f ( x  + y,O) 

for all x, y E G. The conditions of  Theorem 4.2 (in fact of Corollary 4.4) are 

satisfied for V(G) with Bo = Vo, B1 = A(G) and the transformation T (intro- 

duced in [9]) defined by 

Tf(x) = f~ f ( x  -- y, y)dy, x ~ G, f ~  V(G). 

We finish this section with a result in the opposite direction. Recall that a 

bounded point derivation on B at a point xo ~ X is a linear functional D ~ B* 

such that:  

D(fg) = f(xo)D f + g(xo)Dg , 

for all f and g in B. 

THEOREM 4.5. Suppose that there exists a function f e b  such that the closed 

ideal generated by f z  in B does not contain f. Then B has a closed subalgebra 

B o which is isomorphic isometric to an algebra of functions B 1 which has a 

non-trivial bounded point derivation. 

PROOF. Let B o be the closed algebra generated by f i n  B; denote by K the range 

o f f ;  K is a compact  set in the plane. To each polynomial P(z) = ~,"k=Oak zk 
5", a rk  on K we associate the function P ( f ) =  ~ k = 0  kJ in Bo; we define 

11P I1 = I[ P(f)II.; and denote by B 1 the completion of the algebra of  polynomials 

on K with respect to this norm. B 1 is an algebra, isomorphic isometric to B o . 

Let (f2) be the closed ideal generated by f in B.  Since f(~ (f2) there exists a func- 

tional v ~ B* which annihilates (f2)  and ( f ,  v) = 1. By replacing v by v -  (1, v)6~o, 

for some xoef-~(O) we may assume that (1, v) = 0. Let D be the functional 

in BI* which corresponds to v by the canonical map of B* into Ba*. D annihilates 

the ideal generated by z 2 in B1, ( z ,D)  = 1, and ( 1 , D )  = 0; hence for any 

polynomial P ~ B1 we have (P,D)  = P'(0);  since the polynomials are dense in 

B1, D is a non-trivial bounded point derivation on B1, at z = 0. 

REMARK. Theorem 4.5 shows that whenever spectral synthesis fails in B for 

principal ideals (that is, there exists an f e  B such that ( f )  ¢ (f2)) there exists a 

functional v e B* which does not admit spectral synthesis, which is an extension, 

of  a bounded point derivation on a closed subalgebra of  B.  One can show that 

if  for all r e a l f ~ B  we have []ei"f][ = O ( I n l k ) ,  ( I n [  ~ : ~ ) ,  where k is a 
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posit ive integer depending on f ,  then a necessary condit ion,  for  spectral  synthesis 

to fail in B is, tha t  it fails for  principal  ideals. 

In all known cases in which spectral synthesis fails for  a regular  Banach  algebra 

B ,  it fails a l ready for  principal  ideals. The following problem,  therefore,  arises: 

Suppose tha t  for  a l l f E  B ,  we h a v e f ~  ( f 2 ) .  Does  it follow that  B admits  spectral  

Synthesis? 
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