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ABSTRACT 

It is shown that irreflexive Banach spaces are imperfect: thus the "perfect" 
spaces are exactly the reflexive Banach spaces and "mixed" spaces do not exist. 

Recall the following definitions of S. Goldberg and E. O. Thorp [1]. 

Definition 1. A linear operator T from X to Y, where X and Y are normed 

linear spaces, is called "perfectly compact" if it is compact as an operator from 

X to TX. 

Definition 2. A B-space X is called "perfect" if all compact operators from 

X to every B-space Y are perfectly compact. 

Definition 3. A B-space X is called "imperfect" if for any infinite dimensional 

B-space Y, there always is an imperfectly compact operator, T: X ~ Y. 

B-spaces which are neither perfect nor imperfect are called "mixed". Thorp [2] 

observed that every reflexive space is perfect, while Arteburn [3] showed that 

every irreflexive B-space with separable conjugate is imperfect. Arteburn's proof 

is modified in this paper to extend this result to all irreflexive B-spaces. 

A normed linear space X will be called "semiseparable" if its conjugate X* 

contains a sequence {f,} total over X. If X is separable, then both X and X* 

are semiseparable. 

Theorem 1, Every irreflexive, semiseparable B-space is imperfect. 

PROOF. Let {f,}~=l be a sequence in X*, total over X and such that ]If, [] = 1. 

If the closed subspace Z spanned by the {f,} is X*, we refer to [3]; otherwise 

we can choose 
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So x *  - z ,  lifo II -- 1. 

Hence, there is a q5 ~X** such that  

qS(fo) = l[ q5 I1 = 1 

~ ( z )  = 0.  

Clearly q~ ~ U * * - J U ,  where U and U** are the unit balls of  X and X**. 

Since J U  is dense in U** [5, p. 424], there is a net {x,} in U such that:  

W* 
J x~  "-'-~ ~ 

In particular:  

f , ( x , )  = J x , ( f , )  --+ (a(f ,)  for n = 0, 1 , . . . .  

Hence, there is an ~o such that  ~ > ~o implies I q~(fo) - f o ( x , )  [ < 1. 

Inductively we find ~k (k = 1,2,- . .)  such that  o~ k > o~t_l, and ~ > ~k implies 

1 
[ ~b(f,) - f , ( x ~ )  I < -~kfor n = 0, 1, . . . ,k.  

Denote x k = x,~, then 

f , ( x , )  = J X k ( f , )  ~ ~b(f,) for n = 0, 1, ..-. 

Now let Y be an infinite-dimensional B-space. According to [4], take in Y 

a basic sequence {y,} ~=o with I[ Yi [1 = 1. Let {el} =~ be any sequence of  positive 

numbers with Z~Zoe~ < oo. 

Define an operator 

by 
T : X - - + Y  

T = ~ e i f i ( ' ) Y i .  
i=O 

m oo Z,=o ~, l[ y, T[ = Z,:o , <  ~ ,  and Iff, l[ = 1; therefore T is obviously a compact  

operator. A simple estimate shows that:  

Tx~--+ E e~qa(f3y~. 
i=O 

Recalling that  we chose q5 such that  qS(fo) = 1 

~(f,) = o ~= 1,2,... 
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we get 

DINA FRIEDLAND 

TXk ~ eoYo 

Israel J. Math., 

Suppose T is perfectly compact, then there is an x such that 

oo 

TXk ~ Tx  = Z ei f~(x)y 
i = 0  

and it folows that ~ ~fi(x)yi = eoyo. 
i = 0  

{Yi}~l is a basic sequence; therefore 

T o ( x )  = 1 

f , (x )  = O n = l , 2 , . - .  

which contradicts that {f,)~= 1 is total over X. 

We generalize Theorem 1 using the following characterization of reflexivity. 

Theorem 2. A B-space X is reflexive if and only i f  every semiseparable 

quotient space of X is reflexive. 

PROOF. It is known that the condition is necessary (['6, p. 56]). To see that it 

is sufficient, suppose X is not reflexive. Then X* is not reflexive and it contains 

a separable irreflexive subspace Y (16, p. 56]). Let Yj. be the annihilator of O in X, 

X 
and define: Z = y." 

According to [-5, p. 72] Z* is isometrically isomorphic to Y.L-L( the annihilator 

of I11 in X*). Y_tLcontains the irreflexive subspace Y, hence Z* is irreflexive. Clearly 

Y is total over Z. 

Thus Z is an irreflexive, semiseparable quotient space of X. 

Theorem 3. Every irreflexive B-space is imperfect. 

PROOF. As observed in [3], if a quotient space of X is imperfect, so is X. Thus 

the proof follows directly from Theorems (1) and (2). 
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