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Summary. The problem of hidden variables is examined in the axio-
matic formulation of quantum mechanics based on the algebra of observ-
ables. After a brief introductory survey of the earlier investigations, we
first investigate the structure of O*.algebras which allow dispersion-free
positive linear functionals. The result obtained is a direct generalization
of the well-known result of von Neumann concerning the hidden variables.
In the next Section, we assume, as before, that the observables form
the Hermitian elements of a ('*-algebra. But we now relax the require-
ment on «states» and allow the so-called monotone-positive functionals
{which are not neecessarily linear) to represent states. It is then shown
that even when such generalized states are allowed, a system admits hidden
variables only if its algebra of observables is Abelian; i.e., only if all
observables are mutually compatible. In another Section, we investigate
the question of hidden variables under the assumption that the observables,
instead of forming a C*-algebra, have a certain more general algebraic
structure.

1. — Introduection.

One of the problems that have remained with us from the early days of
quantum mechanics is the problem concerning the possibility of a completely
deterministic description of microsystems in terms of the so-called hidden
variables. A mathematical analysis of this problem was first given by von
NEUMANN (3) who concluded that the existence of hidden variables would be
in contradiction with the empirically verified predictions of quantum mechanics.

(1) J. voN NEUMANN: Mathematische Grundlagen der Quantenmechanik (Berlin, 1932).
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Von Neumann’s analysis, however, has been subsequently criticized on several
grounds (2).

It may be recalled here that von Neumann’s conclusion is based on essentially
two assumptions, one of which is about the structure of physical observables
and amounts to supposing that the set of all observables has the structure of
the set of all (self-adjoint) operators of a Hilbert space. The other is concerned
with the mathematical formulation of the physical notion of «states» of a
system. It was assumed by voN NEUMANN that all states (even the hypothet-
ical dispersion-free states which appear in the formulation of the hidden-variable
problem) are represented by positive linear functionals on the observables.

Both of these assumptions (especially the assumption that states are linear
functionals) have been criticized as being unduly restrictive. It has been
remarked that the so-called uncertainty relation follows immediately from these
assumptions so that in postulating them, voN NEUMANN has in fact tacitly
assumed the universal validity of the uncertainty principle. It is then neither
surprising nor significant (so far as the hidden-variable problem is concerned)
that von Neumann’s assumptions exclude the existence of dispersion-free
« states ». It is this line of argument which has led to the charge of «circular
reasoning » against von Neumann’s analysis (®).

This criticism is all the more devastating because von Neumann’s assumptions
are bereft of direct physical justifications. The only justification of these
assumptions is the a posteriori one that they lead to the usual formalism of
quantum mechanics. Such a justification, which is safficient from an empirical
point of view, has little compelling force in the context of the hidden-variable
problem. For one is now concerned with the possibility of generalizing the
usual formalism of quantum mechanics and the mere fact that a set of postulates
leads to the usual formalism cannot be a sufficient recommendation for these
postulates.

Once one has become critical of von Neumann’s analysis, there remain two
alternative approaches to the hidden-variable problem: one is to attempt at
reformulating quantum mechanics so that hidden variables are allowed and
a completely deterministic description of microsystems is possible in the new
formulation. Such an approach has in fact been adopted and success claimed (4).

A detailed discussion and critical evaluation of the works cited in ref. (*)
is beyond the scope of the present paper. It may however be mentioned that,

(2) Instead of reviewing all criticisms that have been advanced against von Neu-
mann’s analysis, we give below only what seems to be the most pertinent criticism.

() @) L. pE BRoOGLIE: La théorie de la mesure en mécanique quantique (Paris, 1957);
b) D. Boum: Causality and Chance in Modern Physics (London, 1958).

(%) D. BomM: Phys. Rev., 85, 166, 180 (1952); D. Bonm and J. BuB: Rev. Mod.
Phys., 88, 453 (1966); see also the review article: H. Friestapt: Suppl. Nuovo Cimento,
1, 1 (1957).
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from a logical point of view, these works are somewhat obseure. For instance,
the precise sense in which the all-important notion of state of a system is
(presumably) extended for having hidden variables does not emerge from these
works with clarity. Also, the dynamical and «kinematical » aspects of the
theory seem to be mixed in a logically obscure way. Furthermore, the pro-
posed reformulation of quantum mechanics admittedly meets conceptual dif-
ficulties when one treats multiparticle systems. Therefore, it seems to us that
the works cited in ref. (¢) cannot be said to have provided a definitive answer
to the question of hidden wvariables.

The alternative left to us is to proceed axiomatically in the spirit of von
Neumann. Only, one must now start with less stringent postulates than those
assumed by voN NEUMANN, The aim of such an axiomatic approach is to isolate
the weakest possible assumptions which must be violated for having hidden
variables. Once such assumptions have been isolated, one can then decide if
and how they can be altered so as to allow hidden variables. This paper is
concerned with such an axiomatic approach to the problem of hidden variables
and we now briefly outline the results of earlier investigations in this approach.

In a recent paper (°) GLEASON starts with essentially the same assumption
regarding the observables as voN NEUMANN. More specifically, GLEASON con-
fines his attention to a special class of observables, viz. those representing the
so-called «yes-no experiments ». He assumes that the set of all such observables
has the structure of the lattice of all projection operators of a (separable)
Hilbert space H. As for the states, however, he does not identify them with
positive linear functionals but represents them by « generalized probability
measures » on the lattice of projections in H. The interpretation of projection
operators as « yes-no experiments » and the interpretation of states as proba-
bility distributions of obtaining the answer «yes» in such experiments, almost
compel us to adopt Gleason’s postulates concerning the states (¢). From these
postulates, GLEASON deduces that states can indeed be represented by positive
linear functionals on the set of operators in H and thus there are no dispersion-
free states and, a fortiori, no hidden variables. Gleason’s result may therefore
be said to dispose of the criticism against the assumption that states are linear
functionals. One may, however, still object that Gleason’s postulates regard-
ing the observables are too restrictive (7). One may even suspect that Gleason’s

(®) A. M. GrLrasoN: Jowrn. Math. and Mech., 6, 885 (1957).

(%) See, however, the remarks in the concluding Section of this paper.

(") First, there is the objection that Gleason’s assumption does not allow for the
existence of super-selection rules. Existence of the so-called commutative super-selection
rules can, however, be taken into account by slightly relaxing Gleason’s assumption.
Specifically, the lattice of « yes-no experiment » may be identified with the lattice of
projections of a disvrete von Newmann algebra. In this case, Gleason’s results will still
be true. It is, however, not known if Gleason’s theorem holds when more general super-
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success in deducing the linearity of states is due to his restrictive assumption
about the observables.

Except in some special cases, such as the generators of symmetry groups
like space translation, rotation, etc., there is at present little theoretical ground
for deciding if a given operator of the Hilbert space represents an observable
or not. The assumption of von Neumann, or its modified version which allows
the existence of « commutative super-selection principles » is accepted mainly
for its mathematical simplicity and for the fact that it does not seem to
contradict empirical facts. But these reasons, as pointed out before, are not
sufficient in the context of the hidden-variable problem.

It is thus desirable to examine the question of hidden variables in a more
general mathematical setting for the observables. With this motivation,
JavucH and PrroN have recently analysed the hidden-variable problem in the
lattice-theoretical formulation of quantum mechanics (8).

In this formulation, there is no need of introducing a Hilbert space. The
basic object of this approach is the set of all yes-no experiments (called «pro-
positions ») pertaining to the physical system and the basic assumption is that
this set has the structure of a (complete) orthocomplemented, weakly modular
lattice (8). This axiom is rendered physically plausible by providing appro-
priate physical interpretations of the lattice-theoretical operations. The assump-
tion regarding the system of propositions is already true for classical systems
where the propositions arein one-to-one correspondence with classes of equivalent
subsets in the phase space and the lattice of propositions is therefore Boolcan.
The Boolean property can, in fact, be taken as the characteristic property of
classical systems. For quantal systems, the Boolean property does not hold.

The essential result in ref. (*) is that a physical system admits of hidden
variables only if every pair of « propositions » (i.e. observables corresponding
to «yes-no experiments ») satisfy a special symmetrical relation which is the
appropriate mathematical expression of the physical relation called « compati-
bility » between the « yes-no experiments ». This result leads to an easy empir-
ical refutation of hidden wvariables by exhibiting physical systems with pairs
of incompatible propositions. Such a system is for instance the spin of an
electron and the two incompatible propositions are the polarization of the spin
in two different (but not opposite) directions.

In order to obtain such a result, JAUCH and PIRoON had to assume certain
properties for states. Like GLEASON, they identified the states with generalized

selection rules are allowed so that the algebra of observables is not necessarily a discrete
von Neumann algebra.

(®) J. M. Javcn and C. Piron: Helv. Phys. Acta, 36, 827 (1963); a detailed account
of the lattice-theoretical formulation of quantum mechanics is given in C. PIRON: Helv.
Phys. Acta, 37, 439 (1964).
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probability measures on the lattice of all propositions. Now, a certain property
forsuch generalized probability measures, which could be deduced in the restricted
mathematical setting of Gleason, no longer follows from other postulates and
has to b2 admitted as an independent axiom. This is the axiom denoted as (4)°
on p. 833 of rof. (8): if p(-) is a state and a and b are two propositions such
that p{a) = p(b) =1, then p{anb) = 1. Physically it means that if for a certain
state p(-) the “ proposition ” « is true with probability 1 and the * proposition > b
also is true with probability 1, then the “proposition” « ¢ and b » is also true
with probability 1. This interpretation, combined with an examination of the
opsrational procedure of measuring propositions, makes this axiom very plausi-
ble indeed.

However, this plausibility extends only to the physically realizable states.
In the problem of hidd=n variables, one is considering states which are not
necessarily physically realizable and therefore one may defend the point of
view that one may admit properties for such states which, for physically real-
izable states, would be inadmissible. Tndeed it is easy to construct examples (?)
of systems with hidden variables if one admits states which violate condition (4)°.
If one adopts this point of view, then the problem of hidden variables does
not exist. One simply admits states of such generality so that hidden variables
arve always possible and this can always be done. But, if one admits arbitrarily
general states, the resulting formalism is then devoid of any useful structure
8o that no useful conclusion can be derived from such a formalism.,

The quest for « hidden variables » becomes a meaningful scientific pursuit
only if states, even physically not realizable states, are somehow restricted by
physical considerations. We feel that these conditions should describe essentially
the «minimal » properties which are observed on physically realizable states,
since without such a restriction the problem of hidden variables dissolves
into a fog of mysticism. If under such restrictions one could somehow introduce
« hidden variables » consistently into the desecription of microsystems, then
one could say that a major progress in the formal development of guantum
mechanics would be aecomplished. 1f, on the other hand, it can be shown that
such a road is not possible, then such attempts at generalization of quantum
mechanics cannot lead to any useful extension of the formalism. For this
reason, we have found it useful to pursue the question further.

Besides the lattice-theoretical approach, there exists yet another axiomatic
approach to quantum mechanies: the so-called algebraic approach. In this
approach, the basic objects are not the « propositions » but rather the set of
all (bounded) observables. One now postulates certain properties for this set
(of observables) which furnish it with the structure of a (not necessarily asso-

(®) J. S. BELL: Rev. Mod. Phys., 38, 447 (1966).

54 — Il Nuovo Cimenfo A.
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ciative) normed algebra (111, A familiar and imporfant example of the alge-
braic structure thus defined is provided by the set of Hermitian elements of
a C*-algebra (*?). There are, of course, mathematical objects other than the
(Hermitian elements of) C*-algebras which realize the algebraic structure
properties postulated for the observables (**). But it is doubtful whether these
additional mathematical possibilities have any physical relevance. We shall
therefore suppose, in the greater part of this paper, that observables of a physical
system are represented by the Hermitian elements of a C*-algebra and only
in Sect. 5 shall we briefly consider the more general algebraic setting for
quantum mechanics.

It is not our purpose to discuss here the relative merits of the two axiomatic
formulations of quantum mechanics: the C*-algebraic and the lattice-theoretic;
nor to justify on physical bases the C*-algebraic formulation. We should,
however, note that the C*-algebraic approach cannot be subsumed under the
lattice-theoretic approach nor vice versa. Consequently, the general results
of JAucH and PIroN (®) cannot be directly transferred to the C*-algebraic
setting of quantum mechanics. Because of this, the hidden-variable problem
merits a fresh examination in the algebraic approach and the present paper
has this for its task. Such a re-examination of the hidden-variable problem
may have also some «topical » interest, for in recent years the C*-algebraic
formulation of quantum mechanics has proved to be useful in the problems
of the so-called axiomatic field theory.

If we examine the problem of hidden variables in the algebraic approach,
we are again confronted with the question concerning the properties of states,
in particular, unobservable states. We shall define states, as usual, as certain
positive funectionals defined on the elements of the algebra R of observables.
The property of positivity for a functional ¢(-} means that for all positive
observables A (i.e. for every observable A whichis the square of a certain other
observable B: (4 =B?)) ¢(4) assumes only nonnegative values. This property
is so intimately connected with the interpretation of states in terms of expec-
tation values of observables that it seems quite natural to assume it even for
physically not realizable states which may appear in the formulation of the
hidden variables.

All previous investigations of the problem have assumed additional pro-
perties of states which usually amount to the further assumption that states

(19 J. vox NEUMANN: On an Algebraic Generalization of Quantum Mechanical
Formalism, Collected Works, vol. 3 (London, 1961).

(Y I. E. SeEcaL: Ann. of Math. (2), 48, 930 (1947); Mathematical Problems of
Relativistic Physics (New York, 1963).

(12) For information ahout C*-algebras, see J. DIXMIER: Les C*-algébreset leurs
représentations (Paris, 1964).

(3®) S. SHERMANN: Ann. of Math., 64, 593 (1956).
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are linear functionals. This assumption is however open to attack for two
reasons: firstly, linearity together with positivity imply the so-called uncertainty
relation so that one is again open to the charge of « circular reagoning » men-
tioned earlier in this Intreduction. Secondly, it is hard to justify this property
especially for the incompatible observables. It is therefore of interest to see to
what extent linearity can be replaced by weaker conditions. T'his is one of the
main objects of this paper.

2. — Basic notions.

We shall be dealing with a j hysical system of which we assume that its
bounded observables are the Hermitian clements of an abstract C*-algebra (12) R.
We can also assume without loss of generality that R contains a unit element I,
The justification for such an assumption may be found, for instance, in ref. (11),
A Hermitian element 4 of R is said to be positive (in symbols 4 >0) if it is
the square of another Hermitian element: A~ 0 if A= B? with B Hermitian.
A positive element T of I is said to be greater than a positive element §
(in symbols 7'>8>0) if T— § is positive. We shall denote by R+ the set of
all positive elements in K. The bound (also called the norm) of any element
T of R is denoted by |T']. All the topological notions which are subsequently
used are always meant with respect to the topology defined by this norm in R.

A functional p(T) on B is a function from R onto the complex-number
field C. We shall be dealing with bounded functionals, ¢.c. functionals ¢(T)
for which there existsa finite positive number K such that

lp(T)| < K| T for all T.

Such functionals can be normalized to have (I} =1 and this we shall hence-
forth do.

States of the physical system shall be represented by functionals with
appropriate properties. If ¢(-) represents a state and T a Hermitian element
of R, then o(7) is interpreted as the expectation value of the observable T
in the state @(-). It is thus natural to suppose that functionals representing
states assume only real values for Hermitian elements of R. Such functionals
are said to be real. The functionals ¢(-) representing states should also be
positive in the sense that if 4>0, then p(4)>0. These two requirements on
states are however as yet much too general to allow any useful conclusion to
be derived. One thus usually requires further that states ¢(-) are linear:

(AT 4 uS) = Ap(T) + up(8),

for all 7, §, in R and complex A, u. The last requirement is however much
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too stringent espzcially in the context of the hidden-variable problem and it is
also difficult to justify it on purely physical grounds. We shall therefore not
always require this property but find a substitute for it in Sect. 4.

Of special interest in connection with the hidden-variable problem are the
dispersion-free functionals o(-) defined by the property

o(A42) = [p(4)]? for all Hermitian 4 of R.

Roughly speaking, the meaning of a dispersion-free functional is a «state»
for which every observable has an exact value. Positive functionals are a convex
get since for any pair of real numbers 4,>0, 1,0 such that 1,+4,=1 and
any pair of functionals ¢, and ¢,, we verify that

(1) P(T) = Loy (T) + A,9.(T)

is again a positive functional. More generally, if » is a variable in a measure
space M, du(z) a positive normalized measure and @.(T) a positive functional
for every x€ M, then

©) (1) = f AT) du(e)

is again a positive functional. We call such a state a mizture. A functional
@(T) and the state which it represents is said to be pure if it cannot be rep-
resented by such a formula as a mixture of other functionals representing states.

A gsystem is said to admit hidden variables if every functional representing
a physical state has the form (2) with dispersion-free states @ (T). '

In the next Section, we shall need the mathematical concept of an ideal
in an algebra R and also that of the quotient algebra R/#. A subset . of the
algebra R is called an ideal of R if: a) S is a linear subset of K and b) for
every Te# and any Se€R, both TS and ST belong to 4. Kvery algebra
has at least two ideals, the first consists of only the zero element and the other
is the entire algebra. These two ideals will be called the trivial ideals. If an
algebra has no other (two-sided) ideal, it is called simple.

Every two-sided ideal J of R defines classes of equivalent elements mod-
alo £. Two elements 7, and T, in R are said to be equivalent (modulo )
it T,— T,ef. If Ris a O*algebra and S a closed two-sided ideal of R, it
can be shown that the set R/ whose elements are the classes of equivalent
elements (modulo #) is a C*-algebra too.

3. — Algebras of observables which admit dispersion-free positive linear funetionals.

With the preliminary matters out of the way, we can now proceed to prove
an immediate generalization of the old result of von Neumann concerning
hidden variables.
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THEOREM 1. — A (*-algebra R (with unit element I and containing at
least one element other than multiples of unity) admits a dispersion-free posi-
tive linear functional if and only if it has a (nontrivial) closed two-sided ideal S

such that the quotient algebra R/# is Abelian. For the proof of this theorem,
we need the following lemmata.

Lemma 1. Let ¢ be a dispersion-free positive lincar functional on E. Then
the set & of all elements T in R for which ¢(Z)= 0 is a (nontrivial) closed
two-sided ideal of I

Proof of Lemma 1. We first observe that . must contain elements other
than the zero element. In fact, let 7' be any element of & which is not a multiple
of the identity. Then 7 — (1)1 0, but ¢(T'—@(T)I) =0 and T— (T
belongs to .#. On the other hand, J cannot be the entire algebra R for the
unity I cannot belong to ..

Since ¢ is a linear functional, it easily follows that £ is a linear subset.
We now show that if T'e. and 8 belongs to R, then ST and T'S belong to #.
Tor this, we first observe that if Te then I*e/. In fact, for any positive
linear functional ¢, one has @(I*) = [g(1)]* so that (1) = 0 implies (1%*) = 0.
It follows from this remark that 7' belong to  if and only if the Hermitian
clements

I/ LENB N At 3 ”m 1
T, = 1 t = and T, = 1 ;il*
also belong to J. Since any element of /¢ can be written as alinear combination
of such Hermitian elements, it now suffices to show that for any Hermitian X
in # and any S in R, both XS and SA” belong to #. But if X is Hermitian
and belongs to £, it follows from Cauchy’s inequality that

|p(8X)]2 = @(S8%) p(X?) = @(S5%)[g(X)]2= 0

for every SeR. Thus ¢(8X)=0 or SX e for all Se k. Similarly, one can
show that X8 also belongs to £. This completes the proof that # 1s a nontrivial
(two-gided) ideal.

We now verify that . is closed. Let T, (n=1,2,...) be a sequence of
elements in # such that |7— T, —0 a8 n->co. We have to show that
Tef, i.e. (1) =0. Since ¢ is a normalized positive linear functional on a
(C*-algebra, we have

|p(T — T,)| < |T—T,] -0 a8 N — oo.
Thus

lp(T = To)| = [p(T)] = 0,

With this, the Lemma 1 is proved in full.
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Lemma 2. If ¢ is a dispersion-free positive linear funectional on R, then
p(8T) = @(8) p(T) for all 8, TeR.

Proof of Lemma 2. Since T — ¢(T)I €S for all T, we have ST — (L) €S,
hence p(8T) — @(S)p(T)=0.

Proof of Theorem 1. Suppose ¢ is a dispersion-free positive linear functional
on R. Then J,={T|TeR, ¢(T) =0} is a nontrivial closed two-sided ideal
of B (Lemma 1). Let 7' be any element and {7} the class of all elements T}
such that I'— T, €F,. This class is one of the elements of the residue class
algebra R/SF,. If 8 € {I} then ¢(8)= ¢(T). Thus {T}— ¢(T) defines a mapping
from R/7, onto the field of complex numbers. It follows from the definition
of £, that it is one-to-one, and the linearity of ¢ implies that it is linear.
Furthermore ¢(T8) = ¢(T)(S) (Lemma 2), thus {I}-{8} = {I'S} is mapped
into ¢(T8) = ¢(T)p(8). We have thus verified that the mapping {T} — @(T)
is an algebraic isomorphism of R/#, onto the complex numbers €. Thus R/%,
is Abelian. This proves the «only if » part of Theorem 1. The «if » part follows
from the well-known fact that every Abelian (C*-algebra admits a dispersion-
free positive linear functional. The theorem is thus proved in full.

A rather typical example which illustrates this theorem is constructed as
follows. For the algebra R we take the subset of 3X3 matrices which are of the
form

o B 0
T=\|v ) 0
0 0 2

The dispersion-free linear functional is then given by ¢(T)= 2. The two-
sided ideal £, consists of all the matrices of the given form with 2= 0. The
equivalence classes R/, consist of all matrices T' for which z has the same
value. The lemmata and the theorem are easily verified on this example. An
immediate consequence of Theorem 1 is

Corollary 1. A simple C*-algebra with unit element has no nontrivial
dispergion-free positive linear functional.

We also have

Corollary 2. A factor in a separable Hilbert space has no dispersion-free
positive linear functionals.

The proof of Corollary 2 follows from the following observations: the factors
of type I.(n < o), II, and III, are known to be simple, so that Corollary 1
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is applicable in these cases. As for the remaining two types I, and II,, their
closed two-sided ideals are known and one can verify that the residue class
algebras defined by their ideals are not Abelian.

For factors of type I, we recover thus easily the theorem of von Neumann
concerning hidden wvariables in quantum mechanics.

4. — Monotone-positive funectionals.

In this Section, we shall investigate the question of hidden variables without
assuming that states are linear functionals. Before doing this, it will be well
to comment briefly on the meaning of hidden wvariables.

The important question, with which the hidden-variable problem is con-
cerned, is whether there are dispersion-free functionals with appropriate pro-
perties so that they may be usefully considered as «states», albeit unobserva-
ble «states», of the system and whether the physical states of the system
can be obtained from such dispersion-free « states » by suitable averaging pro-
cedures. If the answer to this question is yes, one may then say that the
physical system in question admits hidden variables. Somewhat more precisely,
we have

Definition 1. A physical system specified by the C*-algebra R of observables
and the set X' of physically realizable states is said to admit hidden variables
if every state ¢ € X' is of the form

(3) (1) :fgz(T) dug() ,

for all Hermitian T of E.

Here, » denotes the variable element of a set M, u, a positive measure
defined on (a suitable class of subsets of) M and p,(-) (for each 2 in M) is a
dispersion-free functional (on R) with appropriate properties.

Definition 1 is still imprecise; for we have not yet specified the properties
that are required of the dispersion-free funectionals g, occurring in relation (3).
Admittedly, these functionals need not represent physically realizable states
and we are therefore not allowed to assume for them all the properties common
to functionals in 2. Yet, we cannot allow these functionals to be completely
arbitrary; for nothing useful will be gained by admitting such arbitrary objects
in the theory. The problem of hidden variables may therefore be said to revolve
around the central question: whatproparties should onerequire of the dispersion-
free states?

Evidently, it is quite reasonable to suppose that the functionals are positive.
But the condition of positivity alone still leaves us with too wide a class of

1~
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objects and there is no hope that a useful theory can be constructed with
them. Therefore, the condition of positivity must be supplemented by further
restrictive conditions.

In the last Section, we took the supplementary condition to be linearity
and obtained, as was to be expected, a generalization of the earlier result of
von Neumann. But the condition of linearity, as mentioned earlier, is too
stringent a condition in the context of the hidden-variable problem. Thercfore,
we search now for a weaker condition which could replace linearity. One such
condition, which suggests itself naturally, is a strengthened form of positivity,
the so-called monotone-positivity.

Defingtion 2. A functional ¢(T') on a C*-algebra R is called monotone-
positive if the conditions 7, §€ B+ and T'>§ imply that ¢(T)> ¢(8)>0.

It is obvious that every positive linear functional is monotone-positive
whereas the converse is not true. It also seems to be a minimal conditicn which
one should impose on functionals so that they can be usefully considered as
« states » of the system. The physical meaning of monotone-positivity is the
following: we recall that the value of a funectional ¢ for a Hermitian element
T of R is the expectation value, or mean value of the cbservable 7' in the
state @. If 7'>S then there exists another positive observable A such that
T—8=A.1f T and S were compatible observables (that is if they commuted),
then one would have p(7T)>@(8) for every state as required by the condition
of monotone-positivity since then 7' and § could be measured in principle by
the same apparatus and every value of T is necessarily greater than a simul-
taneously measured value of §. We extend this requirement to observables
which are not necessarily compatible.

We shall then suppose in this Section that the dispersion-free « states»
0,(T), in terms of which the notion of hidden variables is formulated, are
monotone-positive functionals on K. With this stipulation, Definition 1 acquires
a precise meaning and we may now ask the basic question: when does a phyrical
system admit hidden variables in the sense of Definition 1% To answer this
question, we need an assumption about the set X of all physically realizable
states.

Assumption. The set X of physically realizable states is a full set of func-

tionals in the sense that if 7' and § are any two observables and

P(T)>p(8)>0 for all e,

then T>8>0.
Roughly speaking, this assumption guarantees that the set X of physical
states is not too small. It is thus a reasonable property to require of the set 2.

™
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We now prove the

THEOREM 2. — A physical system characterized by the C*-algebra R of
observables and a full set X of physically realizable states admits hidden varia-
bles only if the algebra I2 is Abelian.

Proof of Theorem 2. Since the system admits hidden variables, every physical
state @(7') is of the form

(D)= f 0:(T) duylt)

where 0,(7"), duy(®) and M have the meaning mentioned in Definition 1. Now
let 7' and § be two elements of R such that 7> 8>0. For every ¢ € 2, we have

() — f 0 1) i) — f Lo T) duy()
and

(4) P(8%) = 0.(8%) dpg () ‘:f[ox(ﬁ)]zd/w(a?) .

M M
Since 0,(T) are assumed to be monotone-positive, we have o,(7) > 0,(8)>0

and therefore

() lo(T)]2>[0.(8)]? for all xe M.
It results from (4) and (5) that
p(T?) > @(82) >0 for all g2

Since 2 is a full set, we obtain 72> 82>0. We have thus proved that if the
physical system specified by the C*-algebra I of observables admits hidden
variables, then the conditions 7, S € I+ and 7'>8 imply that 72> 82 The-
orem 2 can now be easily proved by applying the following mathematical

THEOREM 3. — Let I be a C*-algebra. If, for every pair T, § of elements
in B with the property 7'>8>0, we also have 7282 then the algebra R
is Abelian (14).

Theorem 2, then, excludes hidden variables whenever the physical system
has noncompatible observables. One could, of course, plead for dropping the

(*) T. OGAasaWARA: Journ. Se. Hiroshima Univ., 18, 179 (1954).
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requirement of monotone-positivity on disparsion-free states. There is, however,
no weaker postulate in sight which would allow hidden variables and yet
introduce sufficient structure into the set of dispersion-free states, so as to
give an useful and «nontrivial » theory.

In the earlier investigation (®), the meaning assigned to hidden variables
is essentially the same as that given by our Definition 1. Hidden variables
may however be given a somewhat wider meaning in the sense of the following

Definition 3. A physical system with C*-algebra R of observables and the
set X of physical states is sald to admit « generalized hidden variables » if,
for every ¢ in X and any Hermitian T of R, there exists a positive measure ug
on & measure space M, such that

@(T) :fgx(T)d/l;((U) .

M

Here, # denotes the variable element of M and o,(T) denotes dispersion-free
functionals with appropriate properties.

The «generalized hidden variables» are more general than the hidden
variables of Definition 1 in that the averaging process (mathematically sym-
bolized by the measure y;) by which the physical state ¢ is obtained from
the dispersion-free « states », is now allowed to depend not only on the physical
stabe @, but also on the observable T whose expectation value is being measured.
It is such generalized hidden variables which seem to be alluded to in several
remarks of BoHM (%),

Now, neither the results of this Section nor the «proof» (1) of ref. (%),
as it stands, can exclude such generalized hidden variables. 1t is however
interesting that the proof of ref. (8) can be modified so as to exclude even this
possibility in the lattice-theoretical setting of quantum mechanics (**). But

(%) Ct. D, Boum: 1. c.

(16) If the physical system admits of no super-selection rules and if a strengthened
form of the property (4)° (viz. that denoted as (4) in ref. (#)) i8 required of the states,
then Corollary 1 to Theorem 1 of Janch and Piron is, of course, sufficient to exclude
the « generalized hidden variables». The question is if «generalized hidden variables »
can be also excluded without resorting to the stringent assumption (4) about the states.

Now, Theorem 2 of Jauch and Piron does not depend on axiom (4) for its proof
and exeludes hidden variables in the sense of Definition 1 of this paper. The proof
of Theorem 2. however, needs to be modified before it can exclude « generalized hidden
variables ». The required modification follows from adopting a definition of « compati-
bility » which is different from, though equivalent to, that adopted in ref. (8). This is:
the propositions a and b are compatible if and only if (and) U (a' N bu(and')Uula'nb')=1.
The equivalence of this definition with that in ref. (}) is shown in the already cited work
of PimoN. The details of the proof of the slightly generalized version of Theorem 2
of ref. (!) which excludes « generalized hidden variables» is left to the reader.
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no such result is available in the C*-algebraic frame unless one assumes the
too stringent condition of linearity.

5. — Hidden variables in the general frame of quantum mechanies.

In this Section, we shall briefly discuss the hidden-variable problem in a
more general algebraic setting of quantum mechanics than the C*-algebraic
one (1011), The set of postulates outlined by SEGAL (**) will be our starting point.
We shall not describe this general algebraic approach in full, but only mention
the relevant assumptions. For a fuller discussion of the postulates and their
physical motivations, the reader may see the cited references,

The basic objeet of this approach is again the set O of all (bounded) observ-
ables of the system. However, we no longer suppose that O forms the set of
Hermitian elements of a C*-algebra. We shall rather postulate:

1) The set O is a real linear space, so that if 4 and B are any two observ-
ables and & a real number, then the sum A + 5 and the multiples A are defined.

2) O contains a unit element I and to every 4 in 0, there is an element
A% in O: the square of A.

With the help of squaring operation, one can introduce a quasi-product
A= B in O by setting AoB =1 [(A4-B)*— (4 — B)?]. The quasi-product thus
defined is now required to have the following property:

3) (cd)r=0A"r and A= A70A45
where A7 is defined recursively by the following relations:
A°=I and A= Ao.Ar! (rys=0,1,2,..).

It should be noticed that the quasi-product ix not necessarily associative i.e.
Ao (BoC) is not necessarily identical with (AoB)o(. Nor does the quasi-
product necessarily satisfy a distribubive law with respect to the operation of
taking sums of observables.

The following postulate now introduces a topological structure in O:

1) A bound |A| is assigned to every 4 in O such that:
a) [A]=0, and |4} =0 if and only if 4 =0,
b) ladl = |2|[A] and [A+B]<]4] +]B].

¢) If A, is a sequence of elements in O such that |4, — 4.] —0 as
n, m — oo, then there exists an element of 0, say A4, such that
[4,— Al—0 as »— oco.
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d) [4*] = |4]* and [A4*— B*|<max[[A4]? |B]*].

¢) A* is a continuous function of 4 in the topology defined by the
bound.

5) For every observable 4 in O, there exists a pair of positive elements
A4 and A_ such that 4 =4, —A_ and 42= 43 1 A%. In this connection,
an observable is called positive, as before, if itis the square of another observ-
able.

It is easy to verify that postulates 1) through 5) are satisfied by the set
of Hermitian elements of a C(*-algebra. These postulates define, however, a
more general algebraic structure than that of the (set of Hermitian elements
in) C*-algebra.

Postulate 5) was not explicitly assumed by SEGAL. It seems however to
be a property which one may reasonably require of the observables. It says
that every observable can be thought of as linear combination of two compat-
ible positive observables: the so-called positive and negative « parts» of the
given observable.

The mathematical structure of the set O of observables is, then, defined
by postulates 1) through 5). As to the states, we shall suppose that they (whether
physically realizable or not) are all represented by (normalized) positive linear
functionals on R. We shall, of course, not suppose that every positive linear
functional is a physically realizable state. But we shall suppose that the set X
of physical states is sufficiently large so that if p(4)=0 for all p € 2, then 4=0.

We now ask the question: when is it possible to represent cvery physical
state pe’ in the form

(6) p(T) :few(T) dpg(®) 5

where o, arve dispersion-free positive linear functionals on 07

Tn order to answer this question, we need the concept of a « derivation »
on O.

Definition. A mapping T'— D(T) from O into O is called a derivation if:

1) D(el)=oD(T), DT, + T:) = D(T)) + IT),
and
2) DI =2T-D(T).
The answer to the previous question is contained in the following

THEOREM 4. — Every physical state o(T) of the system is of the form (6)
only if O has no (nontrivial) derivation.
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Proof of Theorem 4. We first show that if o(7) is a dispersion-free positive
linear functional on O and D(T) a derivation, then o(D(1)) = 0.

Now, it can be easily shown that D(I) = 0. Tt will henee suffice to show
that o(D(8)) =0 where =T — o(T)I.

Let 84 and S_ denote the positive and negative parts of § (see postulate 5)).
We then have S =8, —8_ and §2= 8% 4 S2. Since p is dispersion-free and
o(8) =0, we have

¢

0(8) + o(8%) = a(82) = [2()]*=0.

Further, 8% and 82 are positive so that o(8%)>0 and o(8%)>0. Thus, the last
equation implies that o(8%) = 9(S%) =0 from which it also follows that
o(81) = o(8_) = 0.

S+ being positive is the square of some observable, say Bj; 8§, =: B2
Sinee ¢ is dispersion-free and o(84) = 0, it follows that o(B) = 0. Now D(S,) =
=D(B?) = 2BD(B). Therefore,

o(D(8,)) = 20(BoD(B)) = 1o((B +D(B))*— (B — D(B))?) =

=3 {{o(B +D(B))]*—[o(B —1D(B)}]*} = 20(B)o(D(B)) = 0.
Similarly, it can be proved that Q(D(S_)) = 0. Hence
o(D(WY)) = o(D(84)) — o(D(8_)) =0.

The proof of Theorem 4 can be now easily completed. If every physical
state @ can be expressed by relation (6) in terms of dispersion-free positive
linear functionals, then

p(D(T)) =0 for all physical states.

But this implies that D(Z) =0. Hence there is only the trivial derivation
on O which maps every 7' onto the zero element.

In order to understand the physical meaning of Theorem 4, we should
remember that, when we specialize to the case of (C*-algebra, the typical examples
of derivations are the mappings which assign to elements 7' of the C*-algebra
their commutator with some given element of the algebra. The absence of (non-
trivial) derivations on O may thus be taken as an appropriate mathematical
characterization of the physical situation that all observables of the system
are mutually compatible.

Theorem 4, then, excludes hidden variables in the general algebraic setting
of quantum mechanics if one assumes that the dispersion-free «states» have
the properties of linearity and positivity. Unfortunately, we have now no

such result if linearity is replaced by a weaker condition, for instance, monotone-
positivity.
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6. — Coneluding remarks.

We conclude this paper with a brief remark about the notion of «state ».

Underlying the accustomed representations of states as functionals (or
probability measures) defined on all (hounded) observables (or propositions),
there are two tacit assumptions. These are:

1) Any of the (bounded) observables of the system can be measured
irrespective of the state in which the system is. In other words, the possibility
that there may be states of the system such that certain of the observables
cannot be measured on them is excluded by this assumption. Yet it is not
difficult to imagine states of physical systems such that measurement of certain
observables would be beyond the reach of available experimental technique.
In all such cases, it is assumed that one can at least think of an ideal « thought
experiment ».

If this assumption is not made, then one cannot represent states by fune-
tionals defined on all bounded observables and one would have to face the

task of finding criteria that would single out the observables which can be
measured on a given state.

2) The second assumption lies somewhat deeper and its denial would
call for a radical revision of our conception of «states» and « observables ».
According to our present conception, an observable represents, in general, not
one but a whole class of experimental arrangements. What is more, the mathe-
matical representation of observables as operators of a Hilbert space (or elements
of g lattice, ete.) permits the possibility that the class of experimental arrange-
ments corresponding to a given observable may contain mutually incompatible
or exclusive experimental arrangements. For instance, if we suppose that every
self-adjoint operator of a Hilbert space represents an observable, thenit is not
difficult to find observables 4, B and € such that 4 and B do not commute
and C(sal) is a function of A alone and also of B alone. The observable ¢
(being a function of 4 alone and also of B alone) can now be measured either
by an experimental arrangement corresponding to 4 or that of B. Since 4
and B are incompatible, the class of experimental arrangements corresponding
to ¢ would thus contain mutually incompatible elements. Yet, in spite of this
possibility, it is generally assumed (and this is the second tacit assumption)
that the measured value of a given observable does not depend on the choice
of experimental arrangement. Without some such assumption, « expectation
value of an observable » would have no unambiguous meaning and the accus-
tomed mathematicsl description of states in terms of «expectation valune»
of observables (or « propositions ») would not be possible.

1178



WHEN CAN HIDDEN VARIABLES BE EXCLUDED IN QUANTUM MECHANICS? 859

Therefore, if one questions these two assumptions, all the «impossibility
proofs » of hidden variables would thereby be put in question (7). But this
line of thought can be pursued profitably only when an alternative mathematical
description of states, which does not suffer from the limitation of the above
tacit assumptions, has been outlined.

This, however, has not yet been seriously attempted.

Finally, we should recall that there exists also the possibility of « approx-
imate hidden variable» (¥) as alveady mentioned by JavcE and PiroN (3).
None of the known «impossibility proofs » are strong enough to exclude such
possibilities.

I am indebted to Prof. J. M. JaucH for his encouraging interest in this
work and for many suggestions by which I have profited. I also thank Dr.
C. Piron for several hours of instructive discussions.

() BELL ref. (°) has in fact taken recourse to similar arguments for refuting
the «impossibility proof» flowing from the Gleason’s theorem.

{1®) A system characterized by the algebra of observables ® is said to admit of
« approximate hidden variables» if, for any given ¢ 0 (1o matter how small), every
physical state ¢ can be represented in the form ¢(7) =[fgz(T) dug(n), where g (T) are

g

functions on R (with appropriate properties so as to be usefully considered as « states »)
such that |g,(1%) — [o(T)]*| <& for all T with ||7]/<<1. In other words, if a system
admits « approximate hidden variables», then every physical state of the system is a
mixture of «states» with arbitrarily small (although nonzero) « dispersion ».

RIASSUNTO (%)

Si esamina il problema delle variabili nascoste nella formulazione assiomatica della
meccanica quantistica basata sull’algebra degli osservabili. Dopo una breve rassegna
introduttiva degli studi precedenti, si analizza dapprima la struttura delle algebre C*
che consentono funzionali lineari positivi privi di dispersione. Il risultato ottenuto &
una diretta generalizzazione del ben noto risultato di von Neumann riguardante le
variabili nascoste. Nella successiva Sezione si suppone, come prima, che gli osservabili
formino gli elementi hermitiani di un’algebra C*. Ma ora si indeboliscono le condizioni
sugli « stati » e si lascia che 1 cosiddetti funzionali monotoni positivi (che non sono neces-
sariamente lineari) rappresentino gli stati. Si dimostra allora che, anche quando sono
ammessi questi stati generalizzati, un sistema ammette variabili nascoste solo se la sua
algebra degli osservabili & abeliana, ciot solo se tutti gli osservabili sono mutuamente
compatibili. In un’altra Sezione si studia la questione delle variabili nascoste nell’ipotest
che gli osservabili, invece di formare un'algebra O*, abbiano una certa struttura algebrica
pit generale.

(*) Traduzione a cura della Redazione.

Pesrome He nonyueHo.
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