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S u m m a r y .  - -  The problem of hidden variables is e~amined in the axio- 
matic formulation of quantum mechanics based on the algebra of observ- 
ables. After  a brief in t roductory survey of the earlier investigations, we 
first investigate the structure of C*-algebras which allow dispersion-free 
posit ive linear functionals. The result obtained is a direct generalization 
of the well-known result  of yon Neumann concerning the hidden variables. 
In  the next  Section, we assume, as before, tha t  the observables form 
the Hermit ian elements of a C*-algebra. But we now relax the require- 
ment on ~ states )) and allow the so-called monotone-posit ive functionals 
(which are not  necessarily linear) to represe~t states. I t  is then shown 
that  even when such generalized states are allowed, a system admits hidden 
variables only if i ts  algebra of observables is Abelian; i.e., only if all 
observables a re  mutual ly  compatible. In  another Section, we investigate 
the  question o f hidden variables under the assumption that  the obserw~bles, 
instead of forming a C*-a|gebra, have a certain more general algebraic 
structure.  

1. - I n t r o d u c t i o n .  

One of  t h e  p r o b l e m s  t h a t  h a v e  r e m a i n e d  w i t h  us f r o m  t h e  e a r l y  d a y s  of 

q u a n t u m  m e c h a n i c s  is  t h e  p r o b l e m  c o n c e r n i n g  t h e  p o s s i b i l i t y  of  a c o m p l e t e l y  

d e t e r m i n i s t i c  d e s c r i p t i o n  of  m i c r o s y s t e m s  in  t e r m s  of  t h e  so -ca l l ed  hidden 

variables. A m a t h e m a t i c a l  ~n~lys i s  of  t h i s  p r o b l e m  was  f i rs t  g i v e n  b y  vo• 

~IiIUMANN (1) who  c o n c l u d e d  t h a t  t h e  e x i s t e n c e  of  h i d d e n  v~ r i ab l e s  w o u l d  be  

in  c o n t r a d i c t i o n  w i t h  t h e  e m p i r i c a l l y  ve r i f i ed  p r e d i c t i o n s  of q m m t a m  mechan ic s .  

(1) j .  vo~ NEU~IANN : Mathematische Grundlagen der Quante~mechau.ik (Berlin, 1932). 
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Von ~ e u m a n n ' s  analysis, however,  has been subsequent ly  criticized on several 
grounds (3). 

I t  ma y  be recalled here tha t  yon  ~ e u m a n n ' s  conclusion is based on essentially 

two assumptions, one of which is about  the s t ructure  of physical  observables 

and amounts  to supposing tha t  the set of all observables has the s t ructure  of 

the set of all (self-adjoint) operators of a Hi lber t  space, The other  is concerned 

with the mathemat ica l  formula t ion  of the physical  not ion of (~ states ~) of a 
system. I t  was assumed by  vo~ ~ N E u ~ A ~  tha t  all s tates (even the hypothe t -  

ical dispersion-]tee states which appear  in the formula t ion  of the hidden-variable  
problem) are represented by  posi t ive l inear functionals on the observables. 

Both  of these assumptions (especially the assumption tha t  states are linear 

functionals) have been criticized as being unduly  restr ict ive.  I t  has been 
remarked tha t  the so-called uncer ta in ty  relat ion follows immedia te ly  f rom these 

assumptions so tha t  in posttflating them~ vo~ ~ E V ~ A ~  has in fac t  tac i t ly  

assumed the universal  va l id i ty  of the unce r t a in ty  principle. I t  is then  nei ther  

surprising nor  significant (so far  as the hidden-variable problem is concerned) 

tha t  yon  Neuznann's assumptions exclude the  existence of dispersion-free 

(( states ~). I t  is this line of a rgument  which has led to the charge of (, circular 

reasoning ~> against  yon  Neumann ' s  analysis (3). 
This criticism is all the  more devasta t ing because yon Neumann ' s  assumptions 

are beref t  of direct physical  justifications. The only justif ication of these 
assumptions is the a posteriori one tha t  t hey  lead to the usual formalism of 
quan tum mechanics.  Such a justification, which is sufficient f rom an empirical 
point  of view, has l i t t le  compelling force in the context  of the hidden-variable  
problem. For  one is now concerned with the possibility of generalizing the 
usual  formalism of quan tum mechanics ~nd the  mere  fac t  t ha t  a set of postuI,~tes 
leads to the usual  formalism cannot  be a sufficient r ecommenda t ion  for these 

postulates.  
Once one has become critical of yon Neumann ' s  analysis, there  remain two 

a l ternat ive  approaches to the hidden-variable problem: one is to a t t e m p t  a t  

reformulat ing quan tum mechanics so tha t  hidden variables are allowed and 
a completely determinist ic  description of microsystems is possible in the new 

formulat ion.  Such an approach has in fact  been adopted  and success claimed (4). 

A detailed discussion and critical evaluat ion of the works cited in ref. (4) 

is beyond  the  scope of ~he present  paper.  I t  m a y  however  be ment ioned  that ,  

(3) Instead of reviewing all criticisms that have been advanced against yon Neu- 
mann's analysis, we give below only what seems to be the most pertinent criticism. 

(3) a) L. DE BROGLIE: ~a th~orie de la mesure en mgcanique quantique (Paris, 1957); 
b) D. Bo~Iy[: Causality and Chance in .Modern Physics (London, 1958). 

(4) D. BooM: Phys. ~ev., 85, 166, 180 (1952); D. Boom and J. BuB: t~ev..Mod. 
Phys., 38, 453 (1966); see also the review article: It. FRI~STAD~: Suppl. Nuovo Cimento, 
1, 1 (1957). 



W I t E N  CAN HIDDEN VARIABLES BE EXCLUDED IN QUANTUM MECHANICS? 843 

f rom a logical poin t  of view, these works are somewhat  obscure. Fo r  instance,  

the  precise sense in which the a l l - impor tan t  not ion of s ta te  of a sys tem is 

(presumably)  ex tended  for hav ing  hidden var iables  does not  emerge f rom these 

works wi th  clari ty.  Also, the dynamica l  and  <( k inemat ica l  )> aspects  of the 

theo ry  seem to be mixed  in a logically obscure way.  Fur the rmore ,  the pro- 

posed re formula t ion  of q u a n t u m  mechanics  admi t t ed ly  mee t s  conceptual  dif- 

ficulties when one t rea t s  mul t ipar t ic le  systems.  Therefore,  i t  seems to us t ha t  

the  works ci ted in ref.  (4) cannot  be said to have  provided  a definitive answer  

to the question of h idden variables.  

The a l t e rna t ive  lef t  to us is to proceed ax iomat ica l ly  in the spirit  of yon  

Neumann .  Only, one mus t  now s ta r t  wi th  less s t r ingent  pos tu la tes  t han  those 

assumed  b y  v o ~  ~]~u~A~_~. The a im  of such an ax ioma t i c  approach  is to isolate  

the weakes t  possible assumpt ions  which mus t  be v io la ted  for hav ing  hidden 

var iables .  Once such assumpt ions  have  been isolated, one can then  decide if 

and  how they  can be a l te red  so as to allow hidden variables.  This pape r  is 

concerned wi th  such au  ax iomat ic  approach  to the prob lem of hidden var iables  

and  we now briefly outline the  results  of earlier inves t igat ions  in this approacb.  

I n  a recent  pape r  (s) GLEASO~ star ts  wi th  essent ial ly  the  same assumpt ion  

regarding the  observables  as u ~ NEV~A~-~. More specifically, GLEAS0:N con- 

fines his a t t en t i on  to a special  class of observables,  viz .  those represent ing the 

so-called <~ yes-no exper iments  >). He  assumes t ha t  the set of all  such observables 

has the s t ruc ture  of the  la t t ice  of all  project ion operators  of a (separable) 

Hi lbe r t  space H.  As for  the  states,  however,  he does not  iden t i fy  t h e m  wi th  
posi t ive l inear  funct ionals  but  represents  t h e m  b y  (( general ized probabi l i ty  

measures  ~> on the  la t t ice  of project ions in H.  The in te rp re ta t ion  of project ion 

operators  as (( yes-no exper iments  >> and  the in te rp re ta t ion  of s ta tes  as proba-  
bi l i ty  distI~ibutions of obta ining the answer  (( yes ~> in such expe~iments,  a lmos t  

compel  us to adop t  Gleason's  postula tes  concerning the  s ta tes  (6). F r o m  these 

postulates,  GLEAS0~" deduces t ha t  s ta tes  can indeed be represented  b y  posi t ive 

l inear funct ionals  on the set of operators  in H and  thus there  are no dispersion- 

free s ta tes  and,  a ]ort iori ,  no hidden variables.  Gleason's  resul t  m a y  therefore  

be said to dispose of the cri t icism against  the assumpt ion  t ha t  s ta tes  are l inear  

functionals.  One may,  however,  still object  t ha t  Gleason's  postula tes  regard-  

ing the  observables are too res t r ic t ive  (7). One m a y  even suspect  t h a t  Gleason's  

(5) A. M. GL]~ASON: Journ.  Math.  and .Mech., 6, 885 (1957). 
(6) See, however, the remarks in the concluding Section of this paper. 
(7) First, there is the objection that Gleason's assumption does not allow for the 

existence of super-selection rules. Existence of the so-called commutative super-selection 
rules can, however, be taken into account by slightly relaxing Gleason's assumption. 
Specifically, the lattice of (( yes-no experiment )) may be identified with the lattice of 
projections of a discrete yon ~ e u m a n n  algebra. In this case, Gleason's results will still 
be true. I t  is, however, not known if Gleason's theorem holds when more general super- 

"3 
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success in deducing the l ineari ty  of states is due to his restr ict ive assumption 
about  the observables. 

Excep t  in some special cases, such as the generators  of s y m m e t r y  groups 

like space translat ion,  rotat ion,  e t c ,  there  is a t  present  l i t t le theoret ica l  ground 

for deciding if a given operator  of the Hi lber t  space represents  an observable 

or not.  The assumption of -con Neumann,  or its modified version which allows 

tile existence of (~ commuta t ive  super-selection principles >> is accepted mainly  
for its ma themat ica l  simplicity and  for the fact  tha t  i t  does not  seem to 

contradic t  empirical  facts. But  these reasons, as pointed  out  befor% are not  
sufficient in the contex t  of the hidden-variable problem. 

I t  is thus desirable to examine the quest ion of hidden variables in a more 
general  mathemat ica l  set t ing for the observables. Wi th  this motivation~ 
JAucr~ and  P m o ~  have recent ly  analysed the hidden-variable  problem in the 

la t t ice- theoret ical  formulat ion of quan tum mechanics (8). 

In  this formulation,  there  is no need of in t roducing a Hi lber t  space. The 

basic object  of this approach is the set of all yes-no experiments (called ~< pro- 

positions >7) per ta in ing to  the physical  sys tem and  the  basic assumption is t ha t  

this set has the s t ructure  of a (complete) or thocomplemented,  weakly modular  

lat t ice (s). This axiom is rendered  physical ly plausible b y  providing appro- 
pr ia te  phys ica l in te rpre ta t ions  of the la t t ice- theoret ical  operations.  The assump- 
t ion regarding the system of propositions is a l ready t rue  for classical systems 
where the propositions are in one-to-one correspondence with classes of equivalent  
subsets in the phase space and the lat t ice of proposit ions is therefore  Boolean. 
The Boolean proper ty  can, in fact~ be t aken  as the  character is t ic  p rope r ty  of 
classical systems. For  quanta l  systems, the Boolean p roper ty  does not  hold. 

The essential  resul t  in ref.  (s) is tha t  a physical  system admits  of h idden 

variables only if every  pair  of (< proposit ions >> (i.e. observables corresponding 

to (~ yes-no experiments  >)) satisfy a special symmetr ica l  relat ion which is the 
appropria te  mathemat ica l  expression of the physical  relat ion called (( compati-  
bi l i ty  >) between the (( yes-no exper iments  >>. This result  leads to an easy empir- 

ical re fu ta t ion  of hidden variables by  exhibi t ing physical  systems with pairs 

of incompatible  propositions. Such a sys tem is for instance the spin of an 
electron and the two incompatible  proposit ions are the polarizat ion of the spin 

in two different (but not  opposite) directions. 
In  order to obtain such a result,  JAucK and  PI~o~ h~d to assume certain 

propert ies for  states. Like Gnnaso~,  t hey  identified the states with generalized 

selection rules are allowed so tha~ the algebra of observables is not necessarily a discrete 
yon Neumann algebra. 

(8) 5. M. JAUCH and C. PIRO~: Helv. Phys. Acta, 36, 827 (1963); a detailed account 
of the lattice-theoretical formulation of quantum mechanics is given in C. PrRo~: Helv. 
Phys. Acta, 37, 439 (1964). 
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probabi l i ty  measures on the lat t ice of all propositions. Now, a cer ta in  p roper ty  

for such generalized probabi l i ty  m,.~asures, which could be deduced in the res t r ic ted  
mathemat ica l  set t ing of Gleason, no longer follo~s f rom other  postulates and 
has to b3 ad~t i t ted as an independent  a~iom. This is the axiom denoted  as (4)0 
on p. 833 of r~f. (s): if p(-) is a s tate  and a and b are two propositions such 

tha t  p(a) = p(b) = 1, then  p(a n b) = 1. Physical ly  it  means tha t  if for a certain 
s ta te  p(- ) the " p r o p o s i t i o n "  a is tru'.~ with probabi l i ty  t and the " p r o p o s i t i o n "  b 

also is trtt~ with probabi l i ty  1, then  the "prop~)si t ion" <( a and b ~) is also t rue 
with wob~bi l i ty  1. This in terpreta t ion,  combined with an examinat ion  of the 

op~r,~ti~aal procedttr~ of m~;asurin~ prop~)sitions, makes this %xiom ve ry  plausi- 

ble indeed. 
However,  this plausibil i ty extt~nds only to the physically realizable states. 

In  the problem of hidden variables, one is eonsi:l~ring states which are not  
necessari ly physical ly realizable and therefore  one may  defend the point  of 

view tha t  one may  admit  propert ies  for such states which, for physically real- 
izable states, would be inadmissible. Indeed  i t  is easy to construct  examples (9) 

of systems with hidden variables if one admits  states which violate condition (4)o. 

I f  one adopts  this p:~int of view, then  the problem of hidden variables does 

not  exist.  One simply admits  states of such general i ty  so tha t  hidden variables 

are always possible and this can always be done. But ,  if one admits  arbi t rar i ly  
general states, the result ing formalism is then devoid of any  useful s t ructure  
so tha t  no useful conclusion can be derived f rom such a formalism. 

The quest for <~ hidden va r i ab les ,  becomes a meaningful  scientific pursuit  
oltly if states, even physical ly not  realizable states, are som~how restr icted by  

physical considerations. We feel tha t  these conditions should describe essentially 

the <~ minimal ~> prop,,rties which are observed on physically reMiz'~ble states, 
since wi thout  such a restriction the problem of hidden variables dissolves 

into a fog of mysticism. I f  under  such restrictions one could somehow introduce 
~ hidden variables,> consis tent ly into the description of mierosystems, then  

one could say tha t  a major  progress in the formal  development  of quantum 
mechanics would b(~ ~ecomplished. If ,  on the other  hand, i t  can be shown tha t  
such a road is not  possible, then  such a t t empt s  at  generMization of quan tum 
mechanics cannot  lead to any  useful extension of the formalism. For  this 
reason~ we have found i t  useful to pursue the quest ion fur ther .  

Besides the lat t ice- theoret ical  approach,  there  exists ye t  another  axiomatic 

approach to quan tum mechanics:  the so-called algebraic "~pproach. In  this 

approach,  the basic objects are not  the <(propositions ~) bu t  ra ther  the set of 

all (bounded) obserw~bles. One now postulates certain propert ies  for this set 

(of observables) which furnish i t  with the s t ructure  of a (not necessarily asso- 

(9) j ' .  S .  B E L L :  R e v .  M o d .  Phys., 38, 447 (1966). 

54 - I l  Nttovo Cimento A .  
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ciative) normed algebra (lo.~). A familiar  and importan$ example of the  alge- 

braic s t ructure  thus defined is provided by  the set of Hermi t i an  elements of 

a C*-algebra (~2). There are, of co~n's% mathemat ica l  objects o ther  t han  the 

(Hermit ian  elements of) C*-algebras which realize the algebraic s t ructure  

propert ies  postula ted for the observables (~3). But  i t  is doubtful  whether  these 

addit ional  mathemat ica l  possibilities have any  physical  relevance.  We shall 
therefore  suppose, in the gTeater par t  of this paper, t ha t  observables of a physical 

sys tem are represented by  the Hermi t i an  elements  of a C*-algebra and  only 

in Sect. 5 shall we briefly consider the more general a lgebra ic  sett ing for 
quant~lm mechanics.  

I t  is not  our purpose to discuss here the relat ive meri ts  of the two axiomat ic  
formulat ions of quantum mechanics:  the C*-algebraic and  the lattice-theoretic.; 

nor to just i fy  on physical bases the C*-algebraic formulat ion.  We should, 

however, note  tha t  the C*-algebraic approach cannot  be subsllmed under  the 
lat t ice-theoret ic  approach nor  vice versa. Consequently,  the general  results 

of JAvcg  and  PIno~ (s) cannot  be direct ly t ransferred to the C*-algebraic 

set t ing of quan tum mechanics.  Because of this, the  hidden-variable problem 

merits a fresh examinat ion in the algebraic approach and  the present  paper  
has this for its task.  Such a re-examinat ion  of the  hidden-variable  problem 
ma y  have also some (( topical  ~) interest ,  for  in recent  years  the C*-algebl~uic 

formulat ion of quan tum mechanics has proved to be useful in the problems 

of the so-called axiomat ic  field theory.  
I f  we examine the problem of hidden variables in the algebraic approach,  

we are again confronted with the question concerning the propert ies  of states, 

in particular,  lmobservable states. We shall define states, as usual, as certain 

positive functionals defined on the elements  of the algebra R of observables. 
The proper ty  of posi t iv i ty  for a funct ional  ~( .)  means tha t  for  all posit ive 
observables A (i.e. for every  observable A whichis  the square of a cer ta in  o ther  
observable B:  (A--~B~)) ?(A) assumes only nonnegat ive  values. This p roper ty  
is so in t imate ly  connected with the in te rpre ta t ion  of states in terms of expec- 

ta t ion  values of observables tha t  i t  seems q~ite na tura l  to assume it  even for 

physically not  realizable states which m a y  appear  in the fo~mulatien of the 

hidden variables. 
All previous invest igat ions of the problem have assumed addi t ional  pro- 

perties of states which usually amount  to the fur ther  assumption tha t  states 

(10) J. VOlT ~EU)/IA1N~ : On an Algebraic Generalization o] Quantum Mechanical 
Formalism, Collected Works, vol. 3 (London, 1961). 

(11) ~. ]~. SEGAL: Ann. o] Math. (2), 48, 930 (1947); Mathematical Problems o] 
Relativistic Physics (New York, 1963). 

(12) For information about C*-algebras, see J. DIXMI]~R: Zes C*-alg~breset leurs 
reprdsentations (Paris, 1964). 

(la) S. SH]~RMAl~l~: Ann. o] Math., 64, 593 (1956). 
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are linear funetionals .  This assnn~ption is however  open to a t t a c k  for two 

reasons : firstly, l inear i ty  toge ther  wi th  pos i t iv i ty  imp ly  the so-called nnce r t a in ty  

re la t ion so t h a t  one is again open to the charge of ((circular reasoning }> men-  

t ioned earlier ill this In t roduc t ion .  Secondly, i t  is ba,rd to jus t i fy  this p rope r ty  

especial ly for the  incompa t ib le  observables.  ] t  is therefore  of in teres t  r see to 

what  ex ten t  linearit?! can be replaced b y  weaker  conditions. This is one o/ the 
main  objects of thi.~, paper. 

2 .  - B a s i c  n o t i o n s .  

We shall be deMing with  a ~ hysieal  sys tem of which we assume t h a t  i ts  

bounded  observables  are the Hermitian element,~ of an abs t r ac t  C*-algebra (~2) R. 

We can Mso a.ssume wi thout  loss of genera l i ty  t]~at R contains  a uni t  e lement  I .  

The just if icat ion for  such "rn assumpt ion  n~ay be fonnd, for instance,  in ref. (n). 

A H e r m i t i a n  e lement  A of R is said to be positive (in symbols  A > 0) if  i t  is 

the square of ano the r  t t e r m i t i a n  e lement :  A :  0 if  A = B ~- wi th  B Hermi t i~n .  

A posi t ive e lement  .T of R is said to be grea te r  t han  a posi t ive  e lement  S 

(in symbols  / ' ~ S > 0 )  if 2 r ~  S is posit ive.  We shall denote  b y  R+ the  set of 

all  posi t ive e lements  in ~ .  The bound (also ~alled the norm) of any  e lement  

T of R is denoted  b y  ]ITII. All the topological  not ions which are subsequent ly  

used are a lways  m e a n t  wi th  respect  to the  topology defined b y  this norm in R. 

A Junctional q~(T) on R is a funct ion f rom R onto the  complex-number  

field C. We shall  be  dealing wi th  bounded  funct iomds,  i.e. fnnct ionals  ~(:T) 
for  which there  exists  a finite posi t ive m l mbe r  K such tha t  

I <T)I<KIITI[ for all T. 

Such funct ionals  can be normal ized to have  ~v(I )= 1 and  this we shall hence- 

for th  do. 
Sta tes  of the  physical  sys tem shall be represen ted  b y  funet ionals  wi th  

appropr ia te  propert ies .  I f  ~v(.) represents  a s ta te  and  T a He rmi t i an  e lement  

of R, t hen  ~(T) is i n t e rp re t ed  as the  expec ta t ion  wflue of the observable  T 

in the  s ta te  ~v(.). I t  is thus na tu ra l  to suppose t ha t  funct ionals  represent ing  

s ta tes  assume only real  values  for He rmi t i an  e lements  of R. Such f lmctionals  

are said to be real. The funct ionals  ~( . )  represent ing  s ta tes  should also be 

positive in the  sense t ha t  if  A>~0, then  ~(A)>~0. These two requi rements  on 

s ta tes  are however  as ye t  much  too generM to allow a n y  useful conclusion to 

be derived. One thus usuMly requires fur ther  t ha t  s ta tes  F(.)  are linear: 

for  all T, S, in R and  complex  ~, /~. The last  r equ i rement  is however  much  
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too str ingent  especially in the contex t  of the hidden-variable  problem and  i t  is 
also difficult to jus t i fy  i t  on pure ly  physical  grounds. We shall therefore  no t  

always require this p roper ty  bu t  find a subst i tu te  for i t  in Sect.  4. 

Of special interest  in connect ion with the hidden-variable  problem are the 

dispersion-]tee ]unctionats ~(.) defined by  the p roper ty  

Q(A ~) = [~(A)] s for all I t e rmi t ian  A of R.  

l%onghly speaking, the meaning of a dispersion-flee funct ional  is a <~ state  ~ 
for which every  observ~bl~ has ~n exact value. Posi t ive  function~ls are a convex 

set since for any  p~ir of real  numbers  A~>0, Af>0 such tha t  A~-~2----1 and  
any  pair  of funetionals ~o~ and ~2, we ver i fy  tha t  

(i) ~(T) ------ ~(T) + A~(T) 

is again a positive functional .  ~ o r e  generally, if x is a variable in a measure 

space M, d#(x) a p~sitive normalized measure and ~.(T) a posit ive funct ional  

for every  x e ig, then  

(2) ~p(T)--=JT~(T) d#(x) 

M 

is aga, in ~ positiYe functional .  We call such a s ta te  a mixture. A func t iona l  
~o(T) and the s ta te  which it  represents  is s~id to be pure if i t  cannot  be rep- 
resented by  such a formula as a mix tu re  of other  functionals  represent ing  states. 

A system is said to admi t  hidden variables if every  funct ional  represent ing  
a physical  s tate  has the  form (2) wi th  dispersion-lree states ~,(T). 

In  the nex t  Section, we shall need the mathemat ica l  concept  of an ideal J 
in an algebra R and ~lso tha t  of the quot ient  algebra R/~r A subset J of the 

algebra /~ is called an ideal of R if: a) J is a l inear  subset of R and  b) for 
every  T ~  r and any  S e R ,  bo th  T S  and S T  belong to J .  E v e r y  algebra 

has a t  least two ideals, the first consists of only the zero e lement  and the other  
is the ent ire  algebra. These two ideals will be called the tr ivial  ideals. I f  an 

algebra has no other  (two-sided) ideal, i t  is called simple. 
E v e r y  two-sided ideal  J of R defines classes of equivalent  elements mod- 

ulo J .  Two elements  T~ and  I'2 in R are said to be equivalent  (modulo 50 
if T ~ - - T ~ e J .  I f  R is a C*-~lgebra and  J a closed two-sided ideal  of R, i t  

c~n be shown tha t  the set R/5 ~ whose elements  are the classes of equivalent  

elements (modulo 5 r is a C*-algebra too. 

3. - Algebras of observables which admit dispersion-free positive linear functionals. 

With  the prel iminary m~tters  out  of the  way, we can now proceed to prove 
an immedia te  generalization of the  old result  of yon ICeumann concerning 

hidden variables.  
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THEORE~ 1 . -  A C*-algebra R (with uni t  e lement  I and  containing a t  
leant one e lement  o ther  t han  mult iples  of uni ty)  admi t s  a dispersion-free posi- 

t ive  l inear  funct ional  i f  and  only if  i t  has a (nontrivial)  closed two-sided ideal ~r 

such t ha t  the  quot ient  a lgebra  R / J  is Abelian.  For  the proof  of this theorem,  

we need the  following l e m m a t a .  

Zemma 1. Le t  ~ be a dispersion-free posi t ive l int 'ar  funct ional  on R. Then 

the  set J of all  e lements  Y in R for whieh ~( :T)=  0 is a (nontrivial)  closed 

two-sided ideal  of 1~'. 

Proof of Zcmma 1. We first observe tha t  or mus t  contain  e lements  other  

t han  the zero e lement .  ]n  fact ,  let  :T be a n y  eh 'men t  of/~ which is not  a mult iple  

of the ident i ty .  Then I ' - -  ~ (2 ' ) I  -#0, bu t  9~(T - ~ (T) ] )  --  0 and  :T--  ~(T)I 
belongs to J .  On the  other  hand,  J eannot  be the entire a lgebra  R for the 

un i ty  I eannot  belong to J .  

Since ~v is ~ l inear  funct ional ,  i t  easily follows tha t  J is a l inear  subset.  

We now show tha t  if  :T ~ J  and  S belongs to I~, then S T  and  TS belong to ~r 

For  this, we first observe t ha t  if  T e J  then  :T*~r  I n  fact ,  f o r a n y  posi t ive 

l inear  funct ional  % one has ~(s = [~(y/,)]* so t h a t  ~(1') = 0 implies ~(T*) O. 

] t  follows f rom this r e m a r k  t h a t  _7' belong to J if  and  only if the ] [e rmi t i an  

e lement  s 

~1 -~- a n d  ~f2 ~- 
" 2i 

also 1)elong to J .  Since a n y  e lement  of 1~ can be wri t ten  an a l inear eombi~mtion 

of nu(.h I f e r m i t i a n  elements,  i t  now suffices to show tha t  for any  Hermitian X 
in .r and  a n y  S in 1~, bo th  X S  and  S X  belong to J .  Bu t  if  X is H e r m i t i a n  

and  bvlongs to J ,  i t  follows froin (~auchy's inequal i ty  t ha t  

I (sx)] < = = 0 

for every  S ~ R .  Thus q~(SX)= 0 or ~ S X ~ J  for all  S c R .  Similarly, one can 

show tha t  X S  also belongs to ~r This completes  the proof  tha t  J is a nontr iv ia l  

(two-sided) ideal.  

We now ver i fy  t ha t  S is cloned. Le t  2",, ( n =  1, 2, ...) be a sequenee of 

e lements  in ~r such t ha t  [] T - -  T,, ][ -+ 0 q s ~,--> c~. We have  to show tha t  

T e J ,  i . e .  q~(T) = O. 

C*-algebra, we have  

Thus 

Since ~ in a normal ized posi t ive l inear  funct ional  on a 

I (T- T,,)I < l I T -  ; ll as n oo. 

:ro)l = 0 ,  

With thin, the L e m m a  ] is p roved  in full. 
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Zemma 2. I f  ~ is a dispersion-free positive linear funct ional  on R, then  

for all S, T ~ R .  

_Proof of Lemma 2. Since :r--~0(:r)I  ~ J  for all T, we have ST--~(1')S E J ,  

hence ~0(ST) -- q)(S)qJ(T) = 0. 

Proof of Theorem 1. Suppose ~v is a dispersion-free posit ive l inear funct ional  
on R. Then J ~ - - = ( T [ r e R ,  ~ ( T ) = 0 }  is a nontr iviM closed two-sided ideal 

of R (Lemma 1). Le t  T be any  e lement  and {T} the class of all e lements  T1 
such tha t  T - -  T~ e.r This class is one of the  elements  of the  residue class 

algebra R/J~,. I f  S e  {T} then  ~(S) = ~(T). Thus {T)-+ ~(T) defines a mapping  
f rom R/or onto the field of complex numbers.  I t  follows f rom the definition 

of or t ha t  i t  is one-to-one, and the l inear i ty  of ~ implies tha t  i t  is linear. 
Fm' thermore  q~(TS)=q)(T)~o(8)(Lemma 2), thus {T}.(8} = {TS} is mapped  

in to  ~o(TS)-= ~o(T)~o(S). We have thus verified that the  mapping {T}-->~(T) 

is an  algebraic isomorphism of R/hr~ onto the  complex numbers  C. Thus _R/J~ 

is Abelian. This proves the <( only if  ~> par t  of Theorem 1. The <~ if ~> par t  follows 

f rom the well-known fact  tha t  every  Abelian C*-Mgebra admits  a dispersion- 

free positive l inear functional .  The theorem is thus proved in full. 
A ra ther  typical  example which i l lustrates this theorem is const ructed as 

follows. For  the algebra R we take  the subset of 3 • matr ices which are of the 

T ~  

form 

0 

The dispersion-free l inear  funct ional  is then  given by  ~ ( T ) =  z. The two- 
sided ideal J ~  consists of all the matr ices of tile given form with z = 0. The 

equivalence classes R/J~ consist of all matr ices T for which z has the same 
value. The lemm~ta and  the theorem are easily verified on this example.  An 

immedia te  consequence of Theorem I is 

Corollary 1. A simple C*-Mg'ebra with uni t  e lement  has no nontr ivia l  

dispersion-free positive linear functional .  

We also have 

Corollary 2. A factor in a separable t t i lber t  space has no dispersion-free 

positive l inear functionMs. 

The proof of Corollary 2 follows f rom the following observations : the factors 
of t ype  I . ( n  < co), I[1 and I I I ~  are known to be simple, so tha t  Corollary 1 
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is appl icable in these eases. As for the  remain ing  two types  I .  and  I I .  their  

closed two-sided ideals are known and  one can ver i fy  t h a t  the residue class 

algebras defined b y  their  ideals are not  Abeli~n. 

For  f~etors of t ypa  I,  we recover  thus easily the  t heo rem of yon  N e u m a n n  

concerning hidden var iables  in q u a n t u m  mechanics.  

4 .  - M o n o t o n e - p o s i t i v e  f u n e t i o n a l s .  

I n  this Section, we shall inves t iga te  the question of hidden var iables  wi thout  

assuming tha t  s ta tes  are linear functionals .  Before doing this, i t  will be well 

to commen t  briefly on the meaning  of hidden v~riables.  

The i m p o r t a n t  question, wi th  which the  h idden-var iable  p rob lem is con- 

cerned, is whether  there  are dispersion-free funetiomfls with appropriate pro- 
perties so t ha t  they  m a y  be usefully considered as <~ s ta tes  ~), a lbei t  unobserva-  

ble (~ s ta tes  ~, of the  sys t em and  whether  the  physical states of the  sys t em 

can be ob ta ined  f rom such dispersion-free <~ s ta tes  ~> b y  sui table ~veraging pro- 

cedures. I f  the answer  to this quest ion is yes, one m a y  then  say t ha t  the 

physical  sys tem in question admi t s  hidden variables.  Somewhat  more precisely, 
w e  h a v e  

De/inition 1. A physical  sys tem specified by  the C*-algebra R of obserw~bles 

and  the set X of physical ly  realizable s ta tes  is s~id to admi t  hidden var iables  
if every  s ta te  ~ c X is of the  fo rm 

? 
(3) 

M 

for all  H e r m i t i a n  T of R. 

Here,  x denotes  the var iable  e lement  of a set M, #~ a posi t ive measure  
defined on (a suitable class of subsets of) M and ~,,(.) (for each x in M) is a 

dispersion-free funct ional  (on R) with approprie~te properties. 
Definit ion t is still  imprecise;  for we have  not  ye t  specified the  proper t ies  

t h a t  ~re required of the dispersion-free funet ionals  ~ occurring in relat ion (3). 

Admit ted ly ,  these funct ionals  need not  represent  physical ly  realizable s ta tes  

and  we are therefore  not  al lowed to assume for them all the proper t ies  common 

to funct iomds in X. Yet,  we cannot  allow these funct ionals  to be complete ly  

a rb i t r a ry ;  for noth ing  useful will be gained by  admi t t i ng  such a rb i t r a ry  objects 

in the  theory.  The p rob lem of hidden var iables  m a y  therefore  be said to revolve 

a round the centra l  question: wha t  proper t ies  should one require of the dispersion- 
free st~tes? 

Evident ly ,  i t  is quite reasonable  to suppose tha t  the funet iomds ~re positive. 
:But the condition of pos i t iv i ty  alone still leaves us wi th  too wide a class of 
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objects and  there  is no hope t ha t  a useful  thcol 'y  can be cons t ruc ted  with 
them.  Therefor% the condit ion of pos i t iv i ty  mus t  be s u p p h m e n t ( d  by  f ro /he r  

res t r ic t ive  conditions. 

]n  the last  Section, we took  the  supplem~mtary condit ion to be l inear i ty  

and  obtained,  as was to be expected~ a general izat ion of the  ear]ier r c ~ l t  of 

yon  Neumann .  But  the condit ion of l ineari ty,  as men t ioned  earlier~ is too 

s t r ingent  a condition in the contex t  of the  h idden-var iable  problem.  Therefor% 

we sa~reh now for a weaker  condit ion which could replace l ineari ty .  One such 

eondition~ which suggests i tself  natural ly ,  is a s t rengthened  fo lm  of posi t ivi ty ,  

the  so-called monotone-positivity. 

Dc/inition 2. A funct ional  9(T) on a C*-a]gebJa ~ is called monotone- 
positive if  the conditions T, S e R +  and  T ~ 5  ~ imply  t h a t  q~(T)~(S)>O. 

I t  is obvious t ha t  every  posi t ive l inear  funct ional  is monotone-pos i t ive  

whereas the  converse is not  t rue.  I t  also seems to be a min ima l  condit ic~ which 

one should impose on funct ionals  so t h a t  t hey  can be useful ly consid(red as 

<< states ~> of the system.  The physical  mean ing  of mo~mtonc-positivily is the 

following: we recall  t ha t  the  value of a funct ional  ~0 for a t [ e r m i t i a n  eh, m e n t  

T of R is the  expecta t ion  value, or mean  value of the  obselvable  T in the  

s ta te  F. I f  T > S  then  there  exists ano ther  positive obselvable  A such tha t  

T - -  S = A. I f  T and  S were compat ib le  observables  ( tha t  is if  t hey  commuted) ,  

then  one would have  q~(T)>~(S) for every  s ta te  as required b y  the condition 

of monotone-pos i t iv i ty  since then  T and  ~ could be measured  in principle b y  

the same appara tus  and  every  value of T is necessar i ly  g r ( a t e r  t han  a simul- 

taneous ly  measured  value of S. We ex tend  this r equ i rement  to observables  

which arc not  necessari ly compat ible .  
We shall  then  suppose in this Section t ha t  the dispersion-free <~ s tates  }> 

e.(T), in t e rms  of which the not ion of hidden var iables  is formula ted ,  are 

monotone-positive funet ionals  on R. Wi th  this st ipulat ion,  Definit ion ] acquires 
a precise mean ing  and  we m a y  now ask the basic qm~stion: when does a physical  

sys tem admi t  hidden var iables  in the sense of Definit ion ] ? To ~mswer this 

question, we need an  assumpt ion  abou t  the set X of all physically realizable 
states. 

Assumption. The set 2~ of physical ly  real izable s ta tes  is a /ull set of fmle- 

t ionals in the sense t ha t  if  T and  ~' arc any  two observables  and  

for all ~ E Z~ 

then  T ~> • > 0. 
Roughly  speaking, this a s sumpt ion  guarantees  t ha t  the set X of physical 

states is not  too small. I t  is thus a reasonable  p rope r ty  to require of the set Z. 
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We now prove the 

THEo~E~ 2. - A physical system character ized by  the C*-algebra R of 

observables and  a full set X of physically realizable states admits  hidden varia- 
bles only if the algebra R is Abeliun. 

Proof of ~_l'heorem 2. Since the system admits  hidden variables, every  physical 
s tate  ~(T) is of the form 

M 

where o~(T), d/~(x) and M h~ve the meaning ment ioned in Definition J. Now 
let T and S be two elements of R such tha t  T >  S >  0. For  every  ~v ~ ~ we have 

~nd 

(4) 

M M 

M M 

Since Q~(T) are assumed to be monotolle-positive~ 
and therefore 

we hay(' 9~(T)~9~(S)>0 

(;~) [,~z(T)] 2 ~ [Ox(~)]" f o r  a ] l  ; / ' ~  3 f .  

I t  results f rom (4) :~nd (5) thut  

r 2 r s ) > r '~ ) ~.~-~ o for all V ~ ' .  

Since 2_,~ is a full set~ we obtain I '~>$2~0. We haw', thus proved tha t  if the 
physic~l system specified by  the C*-a, lgebr~. Ir of observables admits  hidden 
w~ri:~bles, then  the conditions 2', S aR+ and 1 ' > S  imply tha t  1'~>S ~. The- 

orem 2 can now be easily proved by  applying the following mathem~tieal  

THEOREm[ 3. -- Let  R be a C*-~dgebra. If,  for ew'ry pair T~ S of elements 

in R with the proper ty  I'>S~()~ we also h~ve T2>~S~ then  the algcbr:~ R 
is Abeli~n (14). 

Theorem 2~ then~ excludes hidden variables whenever  the physical system 

has noncomp~tible observables. One eoldd~ of course~ plead for dropping the 

(14) T. OGASA~TAJ{A: Journ. So. Hiroshi,ma Univ., 18, 179 (1954). 
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requ i r emen t  of monotone-positivity on dispers ion-free  s ta tes .  There  is, however ,  

no weake r  pos tu l a t e  in  s ight  which  wou ld  al low h idden  var iab les  a n d  y e t  

i n t r o d u c e  sufficient s t r uc tu r e  in to  t he  set  of  dispers ion-free  s tates ,  so as to  

give ~m useful  a n d  (( non t r iv i a l  ~ t heo ry .  

I n  the  earl ier  i nves t iga t ion  (s), t he  m e a n i n g  ass igned to  h idden  var iables  

is essent ia l ly  the  same as t h a t  g iven  b y  our  Def in i t ion  ] .  H i d d e n  var iables  

m a y  howeve r  be g iven  a s o m e w h a t  wider  m e a n i n g  in the  sense of  the  fo l lowing 

Delinition 3. A phys ica l  s y s t e m  wi th  C*-algebra  R of  observables  a n d  the  

set  X of  phys ica l  s ta tes  is said to  a d m i t  (~ genera l ized  h idden  var iables  ~> if, 

for  eve ry  ~ in s  a n d  a n y  H e r m i t i a n  T of  R, the re  exis ts  a pos i t ive  measu re  p~ 

on ~ measure  space M, such t h a t  

M 

t tere ,  x denotes  the  var iab le  e l emen t  of  M a n d  ff~(T) deno tes  dispers ion-free  

func t iona ls  w i th  a p p r o p r i a t e  proper t ies .  

The  ((general ized h idden  var iab les  ~ are  more  genera l  t h a n  t he  h i d d e n  

var iables  of Def ini t ion 1 in theft t he  a v e r a g i n g  process  ( m a t h e m a t i c a l l y  sym-  

bol ized b y  the  measure  ~ )  b y  which  the  phys i ca l  s ta te  ~ is o b t a i n e d  f r o m  

the  d ispers ion- f ree  (( s t a t e s  ~, is now a l lowed  to  d e p e n d  no t  on ly  on the  p h y s i c a l  

s t a te  % b u t  also on t he  obse rvab le  T whose  e x p e c t a t i o n  va lue  is be ing  measu red .  

:lt is such genera l ized  h idden  var iables  which  seem to  be  a l luded  to  in several  

r e m a r k s  of  B o a ~  (~5). 

Now, ne i the r  the  resul ts  of  this  Sec t ion  nor  the  ((proof ~)(~G) of  ref.  (8), 

as i t  s tands ,  can  exc lude  such genera l i zed  h i d d e n  var iables .  I t  is h o w e v e r  

in t e res t ing  t h a t  t he  p roof  of ref .  (B) can be modif ied  so as t o  exc lude  even  th i s  

poss ib i l i ty  in the  l a t t i ce - theore t i ca l  s e t t i ng  of  q u a n t u m  mechan i c s  (~e). B u t  

(1~) Cf. D. BonM: 1. c. 
(16) If  the physical system admits of no super-selection rules and if a strengthened 

fo rm of the property (4) o (viz. that  denoted as (4) in ref. (s)) is required of the states, 
then Corollary 1 to Theorem 1 of gauch and Piron is, of course, sufficient to exclude 
the ~( generalized hidden variables ),. The question is if (c generalized hidden variables,  
can be also excluded without resorting to the stringent assumption (4) about tile states. 

Now, Theorem 2 of Jauch and Piton does not depend on axiom (4) for its proof 
and excludes hidden variables in the sense of Definition 1 of this paper. The proof 
of Theorem 2. however, needs to be modified before it can exclude (c generalized hidden 
variables ,. The required modification follows from adopting a definition of r 
bility )) which is different from, though equivalent to, that  adopted in ref. (s). This is: 
the propositions a and b are compatible if and only if(a n b)u (a'n b)u (ac~b')u (a' c~b')=l. 
The equivalence of this definition with that  in ref. (s) is shown in the alre~dy cited work 
of PreeN. The details of the proof of the slightly generalized version of Theorem 2 
of ref. (s) which excludes (( generalized hidden variables ,) is left to the reader. 
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no such resul t  is ava i lab le  in the  C*-algebraic f rame  unless one assumes the 

too s t r ingent  condit ion of l ineari ty.  

5. - Hidden variables in the general frame of quantum mechanics. 

I n  this Section, we shall briefly discuss the h idden-var iab le  p rob lem in a 

more general  algebraic  se t t ing of q u a n t u m  mechanics  t han  the 6'*-algebraic 

one (~0.n). The set of postula tes  out l ined by  SEGAL (n) wi l lbe  our s ta r t ing  point .  

We shall not  describe this general  a lgebraic  approach  in full, bu t  only ment ion  

the re levan t  assumpt ions .  For  a fuller discussion of the pos tu la tes  and  their  

physical  mot iva t ions ,  the  reader  m a y  see the ci ted references.  

Th~ basi(; object  of this approach  is again  the set 0 of all  (bounded) observ- 

ables of the system.  However ,  we no longer suppose t ha t  O forms the set of 

H e r m i t i a n  e lements  of a (/*-algebra. We shall r a ther  pos tu la te :  

1 ) The set 0 in a real  l inear  space, no t ha t  if A and  B are a n y  two observ- 

ables and  a a real  number ,  then  the  sum A §  and  the mult iples  c~A are defined. 

2) 0 euntains a uni t  e lement  I and  to every  A in 0, there  is an e lement  

A 2 in 0:  the square of A. 

Wi th  the  help of squaring operat ion,  one can in t roduce a quasi-product  

A o B  in 0 b y  se t t ing  A o B  = ~ [ ( A + B )  2 -  (A- -B)2] .  The quasi-product  thus  

defined is now required to have  the following p roper ty :  

3) (~A)~ = ~rA.r and A ~ ' =  A r o A  s, 

where A r is defined recursively b y  the following relat ions:  

A ~ = I  and  A * =  A oA~-~ (r, s =- 0, 1, 2, ...). 

I t  should be noticed t ha t  the quasi-product  is not necessari ly associat ive i.e. 

A o ( B o  C) is not  necessari ly ident ical  wi th  (Ao B) o C. NoT' doer tim quasi- 

p roduc t  necessari ly sat isfy a d is t r ibut ive  law with respect  to the  operat ion of 
t ak ing  sums of observables.  

The following pos tu la te  now introduces a topological  s t ructm'e  in 0:  

1) A bound !IA[] is assigned to every  A in 0 such tha t :  

a) [IA][>0, and  [IAIi=0 if and  only if A = 0 .  

b) 1[A!! and  ][A_ +BI] < IIAII +[/B]I. 
c) I f  A~ is a sequence of e lements  in 0 such t h a t  HA,,--A=][->0 as 

n, m--> o% then  there  exists  an e lement  of O, say A, such tha t  
[]A~--AI[-->0 as n ~ o o .  
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d) lIJZ=lI = IIAII = and l l ~ = - I ~ = l l < m ~ x  [ I IAll  =, IIBI[ q .  
e) A 2 is a continuous function of A in the topology d~fined by the 

bound. 

5) For  every  observable A in 0~ there  exists a pair  of positive elements  
2 A+ and A_ such tha t  A = A + - - A _  and A 2 =  A~ , A_.  In  this eonnection~ 

an observable is called positive~ as befor% if i t  is the square of ano ther  observ- 

able. 

I t  is easy to ver i fy  tha t  postulates _1) through 5) are satisfied by  the set 

of g e r m i t i a n  elements  of a C*-algebra. These postulates define, however~ a 

more general algebraic s t ructure  than  tha t  of the (set of Hermi t i an  elements 

in) C*-algebra. 

Pos tu la te  5) was not  expliei t ly assumed by  SEGAL. ] t  seems however  to 
be a p roper ty  which one may  re,~sonably require of the observables. ] t  says 

tha t  every  observable can be thought  of as l inear combinat ion of two compat-  

ible positive observables: the so-called positive and negat ive <~ parts  ~> of the 

given observable.  
The mathemat ica l  s t ructure  of the set 0 of observables is~ then,  defined 

by postulates 1) through 5). As to the states~ we shall suppose tha t  t hey  (whether  

physically realizable or not) are all represented by  (normalized) posit ive l inear 

functionMs on R. We shall, of course, not  suppose tha t  every  posi t ive l inear 

funetiona.1 is a physieMly realizable st,~te. Bu t  we shall suppose tha t  the  set X 
of physical states is sufficiently large so tha t  if  9(A) = 0  for all ~ E ~  then  A = 0. 

We now ask the question:  when is i t  possible to represent  e~ery physical  

s tate  cp ~ X  in the form 

(6) 
2r 

where ~x are dispersion-free posit ive l inear  functionMs on O? 
]~t order to answer this question~ we need the  concept  of a ((derivatio~7 ~ 

on 0. 
J)e]inition. A mapping" T - + / ) ( T )  f rom 0 into 0 is called a der ivat ion if: 

]) ~)(=l') = ~J)(f), 9(f, + G) = I)(G) + 3)(T~), 

and 

2) .D(T ~) = 2ToD(T). 

The answer to the previous question is contained in the following 

T H ~ o ~ t  4. - E v e r y  physical state ~v(T) of the system is of the  fo~rn (6) 

only if 0 has no (nontrivial) derivation.  
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_Proo] o] Theorem ~. We first show tha t  if e(l ')  is a dispersion-free positive 

l inear funct ional  on 0 and D(T) a derivation, then  ( ) (D( I ' ) )=  0. 

Now, i t  can be easily shown tha t  D(I)  0. I t  will hence suffice to show 

tha t  e(D(S)) = 0 where ~ T - -  e(T)[. 
Let  S+ and S_ denote  the positive and negative parts  of S (see postulate  5)). 

= = S_. Since o is dispersion-free and We then  have S ~ + - - S _  and S '2 S~ § 2 

9(S) = O, we have 

o ( s ~ )  + o(s~_) = e ( ~ )  = [ o ( s ) ] ~ -  o .  

Fur ther ,  S~ and SL are positive so tha t  o (S~)>0  and Q(SL)> 0. Thus, the last 
equat ion implies tha t  ~o(S~_)= e ( S L ) =  0 f rom which i t  also follows tha t  
e ( S + )  = e ( S _ )  = 0.  

S+ being posit ive is the square of some observable, sa.y B; S+--~B 2. 

Since o is dispersion-free "~nd O(S+) = 0, it  follows tha t  ~(B) = 0. Now D(S+) = 
= D(B ~) = 2B o D(B). There, fore, 

o ( D ( S + ) )  = 2o(B oD(B)) : �89 § D ( B ) )  2 -  (B - -  D(B) )~ )  -- 

: �89 {[~(B ~- D(B))]  2 -  [o(B -- I)(B))]  2} : 2~(B) o(D(B)) = 0 .  

Similarly, i t  can t)~ ~ proved tha t  o ( D ( S _ ) ) =  0. t Icnee 

e(D( ,S ' ) )  = e ( D ( S + ) )  - -  e ( D ( S _ ) )  = 0 .  

The proof of Theorem 4 can be now easily completed.  I f  every  physical 

s ta te  ~ can be expressed by  relat ion (6) in terms of dispersion-free positive 
l inear funetionals,  then 

, D  T = ~( ( ) )  0 for all physical states. 

But  this implies tha t  D ( T ) =  0. Hence there is only the t r ivial  derivat ion 
on 0 which maps every  T onto the zero element.  

In  order to unders tand  the physical meaning of Theorem 4, we should 
remember  that ,  when we specialize to the e~se of C*-algebra, the typical  examples 
of derivations arc the mappings which ~ssign to elements T of the C*-algebra 

their  commutator with some given clement  of the algebra. The absence of (non- 

trivial) deriw~tions on 0 may  thus be t aken  as an appropria te  mathemat ica l  

character izat ion of the physical s i tuat ion tha t  all observables of the system 
are mutua l ly  compatible.  

Theorem 4, then,  excludes hidden w~riables in the general  algebraic set t ing 

of quan tum mechanics if one assumes tha t  the dispersion-free (( states ~> have 

the propert ies  of l inear i ty  and posit ivity.  Unfor tunate ly ,  we have now no 
such result  if l inear i ty  is replaced by  a weaker condition, for instance, monotone-  
posi t ivi ty.  
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6. - Conc lud ing  r e m a r k s .  

We conclude this p~per  wi th  a br ief  r e m a r k  abou t  the not ion of ((state ~). 

Under lying the accus tomed representa t ions  of s ta tes  as funct ionals  (or 

prob'~bility measures)  defined on all (bounded) observables  (or propositions),  
there are two tac i t  assumpt ions .  These are:  

1) Any  of the (bounded) observables  of the sys tem can be measured  

i r respect ive  of the  s ta te  in which the  s y s t em  is. I n  o ther  words, the possibi l i ty  

t ha t  there m a y  be s ta tes  of the sys t em such tha t  cer ta in  of the observables  

cannot  be measured  on t hem is excluded by  this assumpt ion .  Yet  it  is not  

difficult to imagine s ta tes  of physical  sys tems such tha t  m e a s u r e m e n t  of certMn 

observables  would be beyond  the reach of avai lable  expe r imen ta l  technique.  

I n  all  such cases, i t  is assumed tha t  one can a t  least  th ink  of an  ideal  (( thought  

expe r imen t  ~>. 

I f  this assumpt ion  is not  made,  then  one cannot  represent  s ta tes  b y  func- 

t ionals  defined on all bounded observables  and  one would have  to  face the 

t ask  of finding cri teria t ha t  would single out the observables  which can be 
meusm'ed on a given st.~te. 

2) The second assumpt ion  lies somewhat  deeper  and  its denial  would 

call for a radical  revision of our concept ion of <( s ta tes  ~ and  (( observables  ~). 
According to our present  conception,  an  observable  represents ,  in general,  not  

one bu t  a whole class of expe r imen ta l  a r rangements .  W h a t  is more,  the  ma the -  

ma t i ca l  represen ta t ion  of observables  as operators  of a Hi lbe r t  space (or e lements  

of a latt ice,  etc.) permi ts  the possibil i ty tha t  the  class of expe r imen ta l  arrange-  
ments  corresponding to a given observable  m a y  contain mutua l ly  incompat ib le  
or exclusive exper imenta l  a r rangements .  Is'or instance,  if  we suppose tha t  every  
self-adjoint  oper.~tor of a Hi lber t  space represents  an  observable,  t h e n i t  is not  

difficult to find observables  A, B and  C such t h a t  A and  B do not  c o m m u t e  

and  C(% ~I) is a ]unction of A alone and  also of B alone. The observable  C 

(being a funct ion of A alone and  also of B alone) can now be measured  ei ther  

by  an exper imenta l  a r r a n g e m e n t  corresponding to A or ~hat of B. Since A 

and B are incompat ible ,  the class of expe r imen ta l  a r r angemen t s  corresponding 

to C would thus contain mu tua l ly  incompat ib le  e lements .  Yet,  in spite of this 

possibihty,  i t  is general ly assumed (and this is the  second tac i t  assumpt ion)  

t ha t  the measured  value of a given observable  does not  depend on the  choice 

of exper imenta l  a r rangement .  Wi thou t  some such assumpt ion ,  (~ expecta t ion  

value of an observable ~) would have  no unambiguous  mean ing  and  the accus- 

t omed  ma themat ioa l  descript ion of s ta tes  in t e rms  of <~ expec ta t ion  value )> 

of observables  (or <~ proposi t ions  ~>) would not  be possible. 
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There fo re ,  i f  one  q u e s t i o n s  t h e s e  two  a s s u m p t i o n s ,  a l l  t h e  (( i m p o s s i b i l i t y  

p roofs  ~> of  h i d d e n  v a r i a b l e s  w o u l d  t h e r e b y  be  p u t  in  q u e s t i o n  ( ' ) .  B u t  th i s  

l ine  of  t h o u g h t  e~n be  p u r s u e d  p r o f i t a b l y  o n l y  w h e n  a n  a l t e rm~t ive  m a t h e m a t i c a l  

descTipt iml  of s t a t ( %  which  does  n o t  suffer f r o m  t h e  l i m i t a t i o n  of the  a b o v e  

t a c i t  a s s u m p t i o n s ,  h~s b e e n  o u t l i n e d .  

This ,  however ,  has  n o t  y e t  b e e n  se r ious ly  a t t e m p t e d .  

F i n a l l y ,  we s h o u l d  r e c a l l  t h a t  t h e r e  ex i s t s  a l so  t h e  p o s s i b i l i t y  of (~ a p p r o x -  

i m a t e  h i d d e n  v a r i a b l e  ~ (~s) as  a l r e a d y  m e n t i o n e d  b y  JAuO~ a n d  PII~ON is). 

N o n e  of  t h e  k n o w n  <( imposs ib i l i ty  p roof s  ~> a re  s t r o n g  e n o u g h  to  e xc lude  such 

pos s ib i l i t i e s .  

I a m  i n d e b t e d  to  P r o f .  J .  M. JAUCH for  his  e n c o u r a g i n g  i n t e r e s t  in th i s  

w o r k  a n d  for  m a n y  sugges t i on  s b y  w h i c h  I h a v e  p ro f i t ed .  I a l so  t h a n k  ] ) r .  

C. PIR05" for  s e v e r a l  hou r s  of  i n s t r u c t i v e  d i scuss ions .  

(~7) BELL ref. (9) has in fact taken recourse to similar arguments for refuting 
the ((impossibility proof ~) flowing from the Gleason's theorem. 

(~s) A system characterized by  the algebra of observables .R is said to admit  of 
(( approximate  hidden variables )) if, for any given ~ ~ 0 (no mat ter  how small), every 
physical  s tate 9 cast be represented in the form ~(T)=jp~(T)d/%(x) ,  where t , (T)  aro 

A t l  

functions on R (with appropria te  propert ies so as to be usefully considered as (( states ))) 
such that  ]r162 I < e  for all T with I]2'[[~ 1. In  other words, if a system 
admits ,c approximate  hidden variables ,,, then every physical  s tate of the system is a 
mixture of (( states )) with arbi t rar i ly  small (although nonzero) r dispersion ,. 

R I A S S U N T 0  (*) 

Si esamina il problema delle variabil i  nascoste ltella formulazione assiomatica della 
meccanica quantist ica basata  sull 'algebra degli osservabili. Dopo una breve rassegna 
in t rodut t iva  degli studi precedenti ,  si analizza dappr ima la s t ru t tu ra  delle algobre C* 
ehe consentono funzionali l ineari  posit ivi  pr ivi  di dispersione. I1 r isultato ot tenuto b 
una di re t ta  generalizzazione de! ben noto r isul ta to  di yon Neumann r iguardante  le 
variabili  nascoste. Nella successiva Sezione si suppone, come prima, the gli osservabili 
formino gli elementi hermit iani  di un 'algebra C*. Ma ora si indeboliseono le condizioni 
sugli (( s ta t i  )) e si lascia che i cosiddetti  funzionali monotoni positivi (che non sono neees- 
sariamente lineari) rappresentino gli stati .  Si dimostra allora che, anehe quando sono 
ammessi questi s ta t i  generalizzati ,  un sistema a mmette  variabil i  nascoste solo se la sun 
algebra degli osservabili ~ abeliana, ciob solo se tu t t i  gli osservabili sono mutuamente 
compatibili .  In  un 'a l t ra  Sezione si s tudia la questione delte variabil i  naseoste netl ' ipotesi 
che gli osservabili, invece di formate un 'algebra C*, abbiano una certa s t ru t tura  Mgebrica 
pitt generMe. 

(*) T r a d u z i o n e  a cura  del la Redaz ione .  

Pe3~oMe Be l~o~yqCHO. 


